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Abstract

This paper studies the error sensitivity in the estima-

tion of the 3D-motion and the normal of a planar surface

from an instantaneous motion �eld. We use the statistical

theory of the Cramer-Rao lower bound for the error co-

variance in the estimated motion and structure parameters

which enables the derivation of results valid for any unbi-

ased estimator under the assumption of Gaussian noise in

the motion �eld. The obtained lower-bound-matrix is stud-

ied analytically with respect to the measurement noise, size

of the �eld of view and the motion-geometry con�guration.

The main result of this analysis is the coupling between

translation and rotation which is exacerbated if the �eld of

view and the slant of the plane become smaller and the devi-

ation of the translation from the viewing direction becomes

larger. By-products of this study are the relationships of

the uncertainty bounds for every unknown motion parame-

ter to the angle between translation and the plane-normal,

the size of the �eld of view, the distance from the perceived

plane and the translation magnitude.

1 Introduction

Three-dimensional motion and structure estimation
from monocular image sequences has been studied exten-
sively in the �elds of computer vision, perceptual psychol-
ogy and neurobiology. Many computational theories have
been developed and many algorithms have been proposed
in order to enrich mobile robots with the ability to inter-
act in a changing environment. It turned out that this
general problem formulation su�ers from the existence of
more than one solution { the ambiguity problem { and
the high sensitivity to measurement noise. Recently new
problem formulations have been stated that follow the lat-
est paradigms of qualitative, purposive and/or active vi-
sion in order to overcome the ambiguity and the sensitiv-
ity problem. Nevertheless, questions with regard to these
problems remain still open and our e�ort is to �nd an-
alytical answers in order to guarantee when a proposed
technique will exhibit a stable behavior and when not.
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We will follow the classical two-steps way in 3D-motion
estimation from a monocular image sequence. The �rst
consists of the computation of feature correspondences
(discrete case) or optical 
ow vectors (continuous case)
induced by the relative motion between the camera and
the environment. What we can measure in the image are
apparent shifts or velocities of gray-value structures which
are approximations to the geometrically de�ned displace-
ment or velocities of the projections of three-dimensional
features. We call the latter motion �eld in contrast to the
former which we call optical 
ow �eld [33]. Our analysis
refers to the continuous case and the existence of a dense
motion �eld. The second step { as of now we will consider
only the continuous case { consists in the estimation of
translational and angular velocities as well as of the dis-
tances to the points in the scene. The error sensitivity
of the second step to the error in the measurements of
the �rst step is the focus of our study. For a survey of
algorithms for 3D-motion and structure computation the
reader is referred to [14] for the discrete case and [2] for
the discrete as well as the continuous case.

For every point in the image associated with a motion
�eld vector we must, in general, introduce its distance to
the corresponding 3D-point as an unknown. The study of
the sensitivity in the structure estimates and of the de-
pendence of the estimation error on the structure thereby
becomes analytically intractable. In order to reduce the
number of unknowns we restrict our analysis to the case of
a planar surface. We, thus, can describe the structure by
only two unknowns which give the direction of the plane's
normal. The distance of the plane from the camera is cou-
pled with the translation magnitude due to the well known
scale-ambiguity. Furthermore, the motion �eld obtains a
very special form: It is quadratic with respect to the im-
age point positions and can be fully described by eight pa-
rameters. The functional dependence of the motion �eld
measurements to these parameters is linear whereas these
parameters are bilinear in the translational velocity and
the normal and linear in the angular velocity.

Solutions for the 3D-motion and the normal of a planar
surface have been proposed by [18, 5, 34, 28, 25, 15] for the
continuous case and by [32, 7, 35] for the discrete case. All
approaches are based on the solution of a cubic equation
derived either directly from the motion �eld equations or
as the characteristic equation of a 3�3 symmetric matrix.
Two solutions for the motion parameters and the normal
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exist if the translation is not perpendicular to the plane.
This twofold ambiguity has been proved repeatedly by [16,
10, 18, 20, 19, 24].

The case of planar surfaces in motion estimation is of
special interest regarding applications. Navigational tasks
like autonomous vehicle driving { both outdoor and in-
door { and aircraft landing include the interpretation of a
motion �eld induced by the motion of the camera relative
to a planar ground. The special quadratic form of this �eld
allows the detection of obstacles as well as of other mov-
ing scene components. In assembly operations the case of
polyhedral objects is very common. Robot manipulators
should be enabled to trace a trajectory towards the pla-
nar face of an object using the motion �eld recorded by a
camera on the gripper.

The sensitivity in motion estimation has been an ob-
ject of experimental as well as of analytical investigations.
[21] and later [11] proved that the minima of the error
surface lie in the neighborhood of a particular line on the
unit sphere of translation directions if the surface is suf-
�ciently nonplanar. This line connects points in the unit
sphere corresponding to the translation and the viewing
direction. [4] and [36, 35] show how the output-error am-
pli�cation and the error variance, respectively, can be com-
puted as a function of the error in the input data, how-
ever, this dependency is not given in closed-form but as a
procedure. By means of synthetic data they show that a
large �eld of view, a large ratio of translation magnitude
to distance from the moving object and a translation in
the optical axis direction contribute to robustness in the
motion estimates. The role of the translation direction and
the geometric meaning of the error metric in use has been
pointed out by [27, 30, 3, 13] and explicitly proved by [6].
[17] shows by means of concrete numerical examples that
measurement noise induced only by the �nite image reso-
lution can cause a relative motion error up to 10%. Linear
algorithms for the discrete case are extremely sensitive to
noise as reported by [31, 36]. [12] studied the surface and
motion con�gurations that cause a sensitivity represented
by a quadratic ascent in the error function after a linear
perturbation in the unknown motion parameters.

Planar surfaces in motion and the associated sensitivity
in estimation have been studied by [1, 37]. [1] proved that
motion �elds induced by di�erent translations and normals
of the planar surface deviate from each other only in the
quadratic terms. This deviation is negligible if the �eld of
view and the plane's slant are small as well as if the trans-
lation magnitude is small compared to the distance from
the object. [1] as well as [5, 22] pointed out that trans-
lation can be distinguished from rotation only be means
of the slant components appearing in the �rst and second
order terms of the motion �eld. We are going to show the
same fact by analytically studying the lower bound of the
error covariance for the velocities as well as the normal of
the plane. The same technique is used by [37] who derive
many results common with ours. Our contribution consists
in the investigation of the interaction between translation

and rotation through the analysis of the uncertainty direc-
tions { principal axes of the error ellipsoids { and departs
from the analysis of [37] who inspect only the diagonal el-
ements { i.e. the variances { of the motion parameters.
Due to the complexity of the expressions derived with help
of the MAPLE symbolic package we illustrate the uncer-
tainty magnitudes and directions as function plots of the
translation and normal direction. Furthermore, we give
the explicit dependence of the covariance matrix on the
angle between translation and the normal and we analyze
the sensitivity of the normal. [37] consider only the case
of the focus of expansion lying in the area of the projected
moving object. Thus, they exclude the case of a relative
translation to the environment parallel to the image plane
and disable the analysis of the transition from a translation
parallel to the viewing direction to a translation perpen-
dicular to the viewing direction. On the other side we
exclude the case of a planar surface parallel to the optical
axis. We can model this case only as a limit.

In the next two sections we will outline the problem for-
mulation and the theory of the Cramer-Rao lower bounds.
Then we will compute the lower bounds and study the
directions of uncertainty in dimension-reduced parameter
spaces. In the last section we analyze the sensitivity in the
estimation of the normal.

2 Motion �eld of a planar surface

Let an object be moving with translational velocity
v = (vx; vy; vz)T and angular velocity ! = (!x; !y; !z)T

relative to the camera. We denote by X the position of a
point on the object with respect to the camera coordinate
system. The velocity _X of this point is given by

_X = v +! �X: (1)

In case of ego-motion of the camera with the above veloc-
ities and a stationary environment, the above equation as
well as all following equations have to be read with the
opposite sign for v and !.

We choose the origin as the center of projection and the
z-axis { with ẑ representing its direction { as the optical
axis. We assume that the focal length is unity, hence the
perspective projection equation reads x = X=ẑTX where
x = (x; y; 1)T is the projection on the image plane of the
pointX. After di�erentiating the projection equation with
respect to time, we obtain the motion �eld vector

_x =
1

ẑTX
ẑ � (v� x) + ẑ � (x � (x �!)): (2)

In order to reduce the number of the depth unknowns we
sacri�ce generality and assume that the perceived surface
in motion is planar. As already said in the introduction,
piecewise planar environments are very common in appli-
cations. Let the plane be given by the equation NTX = 1
where N = (Nx;Ny;Nz)

T has the direction of the normal



to the plane and a magnitude equal to the inverse of the
distance of the origin to the plane. By dividing by the
depth we obtain 1=ẑTX = NTx which we insert in eq.
(2):

_x = (NT
x)(ẑ � (v� x)) + ẑ � (x� (x �!)): (3)

The scale ambiguity becomes evident since we observe that
the one-parametric family (v=s; sN ) of translation-normal
pairs creates the same motion �eld. Thus the actual num-
ber of unknowns is eight: Three for !, four for the direc-
tions of v and N and one for the ratio of the translation
magnitude to the distance from the origin to the plane,
written as kvk kNk.

After rearranging terms we obtain

_x = ẑ � (Px� x) (4)

with

P = vN
T + [!]�; (5)

where [!]� is the antisymmetric matrix with the property
[!]�x = ! � x. The elements of the matrix P are not
independent of each other: it is easy to show that det(P +
PT ) = 0. In order to avoid such a nonlinear constraint
we observe (see [25]) that the equation (4) is satis�ed by
every matrix P+�I. Therefore, we search for an arbitrary
solution Q of (4) and then we search for a value for � so
that det(P +PT ) = 0 for P = Q��I. We replace P in (4)
with Q and rewrite the equation using the components of
the vectors as follows

�
_x
_y

�
=

�
x y 1 0 0 0 �x2 �xy �x
0 0 0 x y 1 �xy �y2 �y

�
Q

(6)
with

Q =
�
Q11 Q12 Q13 Q21 Q22 Q23 Q31 Q32 Q33

�T
:

If m motion �eld vectors are used we have to invert
a (2m � 9) matrix. It is easy to observe that the ninth
column of such a matrix will be the linear combination
of the �rst and the �fth column. Thus, the null space of
the matrix contains the vector (1; 0; 0; 0; 1; 0; 0; 0; 1)T . By
rewriting this vector into a matrix we obtain the identity
matrix. This agrees with our observation that the addition
of a multiple of the identity gives a further solution to
(4). To obtain a solution from (6) we set Q33 = 0. The
corresponding value for � is �P33 = �vzNz. The solution
for v and N can then be computed from the eigensystem
of Q +QT .

We will not conduct an error analysis for this particular
solution technique. We are rather interested in a method-
independent error analysis technique which is provided by
the Cramer-Rao theory. However the above description
clari�es the way we will choose the intermediate parame-
ters used in the next steps.

3 Cramer-Rao inequality

Let p be the vector of unknown parameters { in our case
motion parameters and the normal, but we will de�ne them
later { and Z be the set of all measurements { in our case
all motion �eld vectors. The Fisher information matrix is
de�ned as follows [26]

F = E[
@ ln p(Zjp)

@p

T @ ln p(Zjp)

@p
]; (7)

where p(Zjp) is the conditional probability density func-
tion. The uncertainty of an estimator p̂ is given by its error
covariance E[(p� p̂)(p� p̂)T ]. Following the Cramer-Rao
inequality [26], the error covariance of an unbiased estima-
tor is bounded below by the inverse of the Fisher informa-
tion matrix:

E[(p� p̂)(p� p̂)T ] � F�1: (8)

An unbiased estimator that achieves the above lower
bound is called e�cient. The inequality for matrices means
that the di�erence of the lhs minus the rhs is a positive
semide�nite matrix. Since the diagonal elements of a pos-
itive semide�nite matrix are greater equal zero we can di-
rectly recover scalar lower bounds for the variances of the
unknowns. However, the inverse of the Fisher information
matrix provides much richer information about the most
and least error sensitive directions in the parameter space.
In the optimistic case of an e�cient estimator, the un-
certainty may be illustrated by the following uncertainty
ellipsoid with the estimate as the center

(p � p̂)TF (p� p̂) = c: (9)

The probability that the true value p lies inside the el-
lipsoid is given by the constant c which geometrically ex-
presses the ellipsoid's stretching. The directions of the
symmetry axes of the ellipsoid are given by the eigenvec-
tors of F . The lengths of the semiaxes are equal to

p
(c=�)

where � is the corresponding eigenvalue of F . The direc-
tion of the lowest uncertainty is given by the eigenvector
corresponding to the largest eigenvalue of F { this is not
an oxymoron, if one recalls that the error covariance lower
bound is equal to the inverse of F . This direction allows
us to obtain insight into the problem which linear combi-
nations of the unknown parameters (projections of the pa-
rameter vector onto subspaces) can be robustly estimated
even if each parameter estimate for itself may have a high
uncertainty. We will discuss this fact in the next section
in order to elucidate the coupling between translation and
rotation.

4 Computation of the Fisher informa-
tion matrix

The analytic computation of the Fisher information ma-
trix requires a model of the probability density function of



the measurements. We assume a Gaussian distribution for
all measured motion �eld vectors, with zero mean and co-
variance equal to �2I. The assumptions of isotropy and
constancy of the measurement noise do not hold for the
optical 
ow measurements. Uncertainty in optical 
ow es-
timation is well known to depend on the richness of the
gray-value structure. Modeling this uncertainty in order
to incorporate it into our computation is a future direction
of research. Under the above assumptions the conditional
probability density function reads as follows

p(Zjp) =
1

k
exp(�

1

2�2

ZZ
D

k _~x � h(p)k2 dxdy); (10)

where h(p) is the measurement function we will describe
below. The constant k is chosen appropriately to normal-
ize the probability density function. We assume a dense
motion �eld over the domain D equal to the area of the
projection of the environmental part moving relative to the
camera which we call the e�ective �eld of view. It is equal
to the �eld of view in case of a stationary environment and
ego-motion of the camera.

Di�erentiation with respect to p yields

@ ln p(Zjp)

@p
=

1

�2

ZZ
D

( _~x � h(p))T
@h

@p
dxdy (11)

and

F = E[
@ ln p(Zjp)

@p

T @ ln p(Zjp)

@p
]

=
1

�2

ZZ
D

@h

@p

T @h

@p
dxdy:

The inverse of the Fisher information matrix is propor-
tional to the variance of the measurement noise as ex-
pected. For the sake of simplicity we will omit �2 in the
further computations.

We return to the measurement function of the motion
�eld (2) and collect the terms including unknowns in an
intermediate parameter vector q and obtain

_~x = Bq =

�
1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

�
q with

q = (vxNz + !y; vxNx � vzNz; vxNy � !z;

vyNz � !x; vyNx + !z; vyNy � vzNz;

!y � vzNx; �vzNy � !x)
T :

We used a di�erent symbol _~x for the motion �eld vector
in R2 in contrast to _x in (2) which belongs to R3 with the
third component equal to zero. The elements of the vector
q correspond to the elements of Q in (6) after rearranging
columns, inserting � = �vzNz and negating Q31 and Q32.

Hence, the derivative of the measurements function
with respect to the unknown parameters p may be written

@h

@p
=
@h

@q

@q

@p
= B

@q

@p
:

The Jacobian
@q
@p is independent of the image coordinates,

hence

F =
@q

@p

T
�ZZ

D

BTB dxdy

�
@q

@p
: (12)

We model the integration domain D { i.e. the e�ective
�eld of view { as a rectangle placed in the image center
and side lengths equal to � and �. The integral

Bintegral =

ZZ
D

BTB dxdy

depends only on the size of the �eld of view and its deter-
minant reads

det(Bintegral) =
1

25
��A3B3(4A + 5B)(5A + 4B): (13)

Thus, the error covariance is a monotonically decreasing
function of the size of the e�ective �eld of view.

We hence omit the factor ��, too, in order to simplify
the further expressions.

Before we proceed with the computation of the Jacobian
@q
@p we must choose eight independent unknowns among

the elements of v, ! and N . We assume that Nz 6= 0
which implies that the planar surface is not parallel to the
optical axis and we make the following substitutions:

N 0

x = Nx

Nz

v0x = vxNz

N 0

y =
Ny

Nz

v0y = vyNz

v0z = vzNz:

(14)

For the sake of simple expressions, we retain the unprimed
symbols instead of the primed ones. The vector of inde-
pendent unknown parameters then reads as follows:

p =
�
vx vy vz !x !y !z Nx Ny

�
:

We obtain the following Jacobian for the measurement
function

@q

@p
=

0
BBBBBBBB@

1 0 0 0 1 0 0 0
Nx 0 �1 0 0 0 vx 0
Ny 0 0 0 0 �1 0 vx
0 1 0 �1 0 0 0 0
0 Nx 0 0 0 1 vy 0
0 Ny �1 0 0 0 0 vy
0 0 �Nx 0 1 0 �vz 0
0 0 �Ny �1 0 0 0 �vz

1
CCCCCCCCA
:

(15)
Before we recover its inverse we compute its determinant:

det(F ) = det2(
@q

@p
)det(Bintegral)

After tedious adding and subtracting the rows of the Ja-
cobian we obtain

det(
@q

@p
) = kN � vk2: (16)

This result is new in such a general form { only the third
element of the normal N is assumed to be equal unity {



although it has been already stated in the ambiguity frame-
work [18, 7, 32]: The case of parallel normal and transla-
tion causes the existence of a unique solution, but as a
degenerate case of the general one of two solutions this
unique solution is sensitive to noise. We observe that
in this degenerate case the Fisher information matrix be-
comes singular and the Cramer-Rao lower bounds are in-
�nitely large.

Furthermore, the Fisher information matrix is indepen-
dent of the angular velocity. This observation is trivial as
already argued by [37] since the measurement function is
linear in !.

We carry out the matrix multiplications in (13) and
obtain

F =

�
K L

LT M

�
: (17)

The reader is referred to [?] for the long expressions of the
submatrices omitted here due to space limitation.

5 Confusion between translation and
rotation

The motion �eld vector is the sum of two components,
a translational one including the information about the en-
vironment and a rotational one (see also eq. (2)). Motions
almost parallel to the image plane and in the same direc-
tion { like the (vx; !y) and (vy;�!x) pairs { cause a con-
fusion to the observer who cannot disambiguate whether a
motion �eld is induced by a translation or a rotation (see
Fig. 1).

This confounding becomes dominant if the �eld of view
is small or if there is no depth variation in the environment.
However, as already argued by other authors, one may
robustly compute the amount of motion represented by the
sum vxNz + !y and the di�erence vyNz � !x since they
build the zeroth order terms regarding the motion �eld as
a polynomial with respect to the image coordinates (x;y).
In the following we will show by means of the lower bound
of the error covariance that such \robust" combinations of
unknowns do indeed exist although the estimate for each
individual unknown is sensitive to noise.

In order to invert the Fisher information matrix com-
puted in the last section we make use of the formula [8]�

K L

LT M

�
�1

=

�
E�1 �E�1LM�1

�M�1LTE�1 M�1 +M�1LTE�1LM�1

�

with E = (K � LM�1LT ) (18)

The Fisher information matrix is a function of the �eld
of view and the magnitude of the scaled translational ve-
locity as well as a function of the directions of the transla-
tional velocity v and the normal N . The matrix E obtains
the following block-diagonal form

E =

�
E135 0
0 E246

�
; (19)

(a)

(b)

Figure 1: Pure translational (a) and pure rotational
(b) motion �eld induced by vx-translation and !y-
rotation, respectively. A large �eld of view allows the
perception of the depth variation through the change
of the 
ow magnitude in (a). A small �eld of view
around the center contains in both cases (a) and (b)
almost identical �elds. The motion �elds have been
produced by simulation of the motion of a camera on
a gripper in front of a calibration plate.

if we set vy = 0 and Ny = 0. This means that the transla-
tional velocity as well as the normal lie on the XZ plane
as illustrated in Fig. 2. We introduce the angles  and �
between the optical axis and v and N , respectively:

v =
�
vx 0 vz

�
=
�
kvk sin  0 kvk cos 

�
N =

�
Nx 0 1

�
=
�
tan� 0 1

�
:

The block matrices E135 and E246 correspond to the
unknown triples (vx; vz; !y) and (vy; !x; !z), respectively.
We are, thus, able to invert the matrix E by inverting the
two 3� 3 block matrices.

E�1 =

�
E�1

135
0

0 E�1

246

�
: (20)

We used the MAPLE symbolic package to compute the
inverses E�1

135
and E�1

246
. The uncertainty between the two

unknown-triples is decoupled. We will study the �rst triple
(vx; vz; !y), the study of the second triple can be conducted
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Figure 2: Illustration of the used angles in case of
coplanar viewing direction, plane normal and transla-
tional velocity (Ny = 0; vy = 0). We denote the angle
between viewing and translation direction by  and
the angle between viewing direction and the normal
by �.

analogously. The diagonal elements corresponding to the
lower bounds of the variances of vx, vz and !y are

(E�1

135
)11 =

10A + 8A cos2  + (14A2 + 5) sin2  + 9A tan� sin (cos � tan� sin  )

9A2(tan� cos � sin )2

(E�1

135)22 =
1

A

(E�1

135)33 =
5 sin2  + 18A cos2  + 28A tan� sin cos +Atan2 �(14Acos2  + 9 sin2  )

9A2(tan� cos � sin )2
:

The singularity induced by the terms in the denominators
expresses the case � =  of parallel translation and normal
already proved by the computation of the determinant of
the Fisher information matrix.

We note that the uncertainty in the estimate for vz is
independent of the translation and the normal and it is
not a�ected by the singularity v k N .

We next focus on the uncertainty in the parame-
ter space (vx; !y). We introduce the unit-vector u =
(cos �; 0; sin �)T . The quadratic form uTE�1

135
u represents

the uncertainty in direction �. The uncertainty in the
(vx; !y) space can be illustrated geometrically as the in-
tersection of an ellipsoid with a plane. Let S be the 2� 2
submatrix of E135 built by the �rst and third columns and
rows of E135. The bounds of the quadratic form uTE�1

135
u

are given by the smallest and the largest eigenvalue of S

[9]:

�min(S) � u
TE�1

135
u � �max(S): (21)

We are interested in the value of the lowest uncertainty
which is proportional to �min(S). The expression for
�min(S) computed by MAPLE is very long. We restrict
ourselves to plot it as a function of  and � for two sizes
of the �eld of view. Fig. 3 shows that the smallest eigen-
value is not a�ected by the singularity � =  . However,
the error variances of vx and !y in (22) become in�nitely
large. This fact substantiates our methodology in exploit-
ing the entire structure of the lower bound covariance ma-
trix. Fig. 3 shows that the variance in the direction of the
lowest uncertainty is an increasing function of the slant �
if the translation is parallel to the image plane ( = �=2)
and a decreasing function of the slant � if the translation
is parallel to the optical axis ( = 0).

We next compute the angle �min (see Fig. 4) with help
of MAPLE and plot it in the same way as above. Fig. 5
shows that for a small �eld of view the angle �min takes
almost everywhere values close to �=4. Hence, the direc-
tion of lowest uncertainty is (cos�=4; sin �=4) which im-
plies that the sum vx+!y can be robustly estimated. Val-
ues of �min near zero mean that the most robust direc-
tion in (vx; !y)-space is (1; 0), implying that the estimate
for translational velocity vx is robust. This happens if
the plane is parallel to the optical axis (� near �=2) and
the translation is parallel to the optical axis ( near zero)
as well. Planes parallel to the optical axis induce a high
variation in the magnitudes of the motion �elds vectors.
Translations parallel to the optical axis induce radially
expanding motion �elds. In both cases the motion �eld
cannot be confused with a motion �eld induced by a pure
rotation about an axis parallel to the image plane. The
e�ect of a dominant direction in (vx; !y)-space is weaker
if the �eld of view is large (Fig. 5 below). The angle �min

may take values greater than �=4 but is never close to �=2
what prevents the estimate for !y from having the lowest
uncertainty.

The analysis in (vy; !x)-space can be carried out in the
same way. We found out that the direction of lowest un-
certainty in case of a small �eld of view is ��=4 which
allows a robust computation of the di�erence �vy + !x.

6 Uncertainty in the computation of

plane's normal

The information about the uncertainty lower bounds in
the direction (Nx;Ny) of the normal is contained in the
lower-right submatrix of the inverse of the Fisher informa-
tion matrix in (19). We denote this submatrix by D:

D =M�1 +M�1LTE�1LM�1: (22)

After applying the same assumptions vy = 0;Ny = 0 for
the normal and the translation, D becomes diagonal and



we obtain the following variances for Nx and Ny:

D11 =
18A + (5 + 28A + 14A2) tan2 �+ 9A tan4 �

9A2kvk2(tan� cos � sin  )
(23)

D22 =
18A + (5 + 28A + 14A2) tan2 �

9A2kvk2(tan� cos � sin  )
(24)

Both are singular if the translation is parallel to the nor-
mal. The lower bounds grow if the scaled translation mag-
nitude becomes smaller. This has been expected since van-
ishing translation does not allow the recovery of depths. In
the function plots of the variances of Nx and Ny (Fig. 6)
we use the arctan of the variance in order to include the
case of in�nite values. As an artifact of our modeling we
obtain an in�nite variance for planes parallel to the opti-
cal axis, too, since in this case the visible part of the plane
inside the �eld of view corresponds to in�nite depths.

We observe that the estimates are less sensitive if the
plane is frontal (� = 0) and the translation is parallel to
the image plane ( = �=2). Hence, we get a trade-o�
between motion and structure computation: A geometry-
motion con�guration that enables a robust estimation of
the normal (small values for the arctan of the error variance
{ see Fig. 6) causes a sensitive estimation for motion, i.e.
signi�cantly non-zero values for the smallest eigenvalue of
S { see Fig. 3.

7 Conclusion

We have shown that the directions of the lowest un-
certainty in the mixed translational-rotational parameter
space correspond to the sum and di�erence of the compo-
nents of the velocities causing motion parallel to the image
plane. The lower bounds for each component individually
are higher and this e�ect is ampli�ed if the size of the �eld
of view and the slant of the plane become smaller. The
uncertainty lower bounds are due to Cramer-Rao and are
valid for any unbiased estimator under the assumption of
Gaussian zero-mean noise in the motion �eld. In order
to invert the Fisher information matrix and to reduce the
number of the parameters a�ecting the sensitivity, we have
restricted our analysis to the case of coplanar translational
velocity, normal and viewing direction. The error variance
becomes in�nite if the translation is parallel to the normal
(17). Moreover, the error variance is a decreasing function
of the size of the �eld of view { see the factor �� in (??).

The parameters of the normal can be estimated more
robustly if the translation is parallel to the image plane
and the plane's slant is small. We, thus, show a trade-o�
between structure and motion estimation regarding sensi-
tivity.

Next research steps include the sensitivity analysis of
motion estimation from multiple frames (see also [23, 29]).
We developed a recursive algorithm and tested it on real
as well as synthetic experiments1 results show that if the

1Citation omitted in order not to easily jeopardize the double

motion is purely translational the coupling between trans-
lation and rotation persists along time.

Future work in error sensitivity has to be done for
the new active and/or qualitative motion estimation tech-
niques in order to provide rigorous stability proofs that
will substantiate the successful real-world experiments.
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Figure 3: The smallest eigenvalue of S as a function
of the angles  of translation and � of the normal
with the optical axis for two sizes of the �eld of view:
A = 0:1 (above) and A = 1:0 (below).
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Figure 4: The intersection of the error ellipsoid 9 with
the plane (vx; !y) yields the uncertainty ellipse. The
angle �min gives the direction of lowest uncertainty.
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Figure 5: The angle �min of the lowest uncertainty
direction as a function of the angles  of translation
and � of the normal with the optical axis for two sizes
of the �eld of view: A = 0:1 (a) and A = 1:0 (b).
In case (a) of small �eld of view this angle is almost
everywhere equal �=4. Thus the direction of lowest
uncertainty is (1; 1) and the sum vx + !y may be ro-
bustly estimated. This e�ect becomes the weaker the
larger the size of the �eld of view.

0

.4

.8

1.2
chi

0

.4

.8

1.2
psi

1.53

1.54

1.55

1.56

1.57

0

.4

.8

1.2
chi

0

.4

.8

1.2
psi

1.53

1.54

1.55

1.56

1.57

Figure 6: The arctan of the error variance of Nx

(above) and Ny (below) as a function of the angles
 of translation and � of the normal with the optical
axis for size A = 0:1 of the �eld of view. The value
�=2 represents an in�nite error variance and appears
in case of parallel translation and normal (� =  ).


