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Abstract

Attentive vision is characterized by selective sensing in space and time as well as selective
processing with respect to a speci�c task. Selection in space involves the splitting of the
visual �eld in a high resolution area - the fovea - and a space-variant resolution area -
the periphery. Both in neurobiology and in robot vision, models of the resolution decrease
towards the image boundaries have been established. The most convincing model is the
theory of log-polar mapping where very high data compression rates are achieved.

In combination with the complexity reduction we believe that the log-polar mapping has
further computational advantages which we elaborate in this study. Based on the optical

ow we study the computation of 3D motion and structure globally and locally. We present
a global method to compute the Focus of Expansion in the case of pure translation. By
�xating on an object we show how to estimate ego motion in the presence of translation
and rotation of the observer from the 
ow in the log-polar periphery. Then, we turn to local
di�erential computations and we establish both approximate and exact expressions for the
time to collision.

1 Introduction

It is well known that when a human observer has to accomplish a navigational task like car
driving the retinal information of the entire �eld of view is used for the estimation of 3D-motion
and the control of the vehicle. It is also well known and easy to show experimentally that there is
an immense decrease of the resolution towards the periphery of the retina. However, the coarse
resolution on the major part of the �eld of view does not hinder the observer to detect alarming
events and to exploit the image periphery for the estimation of ego-motion. In the same scenario,
if the car-driver approaches a crossing he tries to estimate the relative motion of the cross-
moving cars in order to react appropriately. Then the driver directs his gaze towards the moving
object and pursues it for a short time interval. Such a gaze change and holding are carried out
with a navigational and not a recognition purpose: the driver needs the information how the
cross-moving car is moving rather than how it looks like.

In this paper, we study the properties of the motion �eld using a space variant resolution scheme,
and we propose algorithms for the recovery of 3D-motion which exploit the advantages of space
variant sensing and �xation. Space variant sensing is one of the main features of an attentive
vision system. Attention arises as a necessity in building robot systems that are able to react
according to the visual stimuli in a dynamically changing environment. Even with the fastest
image processing architectures it is not possible to process a uniformly sampled image with a
wide �eld of view in a process time enabling immediate reaction. To overcome the reaction time
constraints we have to focus on a region of interest. However, even if we select a subset of the
retinal information we have still to process the image data outside the focus of attention to detect
new events. We, thus, need an image data reduction scheme which conserves high resolution in
the center of the image - the fovea- and a gradually decreasing resolution area - the periphery.
Since most visual motion tasks necessitate a wide �eld of view we have to elaborate algorithms
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for computing the optical 
ow and recovering the 3D-motion and structure using space-variant
resolution. In this paper, we use the complex logarithmic mapping (or log-polar transformation)
to model the non-uniform periphery of an image, and we keep the cartesian model for the uniform
fovea. However, we do not only elaborate motion algorithms regarding the logarithmic polar plane
as a practical necessity. We show that the log-polar mapping has also computational advantages
with respect to motion recovery tasks:

� We propose an algorithm for the computation of the translation direction in case of pure
translation using only 4% of the original data.

� We show that �xation enables the computation of the translation direction in case of
general motion. Pursuit and optokinetic eye movements have long been considered by the
psychophysicists [6] as a means to overcome the limited �eld of view, to bound the binocular
disparity, and to eliminate the motion blur. Here, we prove that eye movements are not only
an implication of the inhomogeneous retina, but they support the recovery of 3D-motion.

� In analogy to the approach in [23] we prove that the polar motion �eld enables the local
computation of bounds to the time to collision which are independent of rotation and the
slant of the viewed surface.

We proceed with a survey of approaches to space variant sensing and �xation. The �rst experi-
mental �ndings on the density of the photoreceptors in the human retina are due to Schulze [18]
- for a comparison of further biological �ndings the reader is referred to [6, 25]. Space variant
arrangements concern not only the density of the photoreceptors but the geometry of the recep-
tive �elds in the cortex, too. Such retino-cortical mappings have been explicitly formulated by
Schwartz [19] for cortical areas of the monkey and by Mallot [13] for cortical areas of the cat.
Schwartz [19] proposed the complex logarithmic mapping and showed its invariance properties.
The amount of literature on biological work is very large and we will not attempt to give a
further review.

Weiman and Chaikin [28] studied the properties of the complex logarithmic transformation as
a conformal mapping and they proposed a logarithmic spiral grid as a digitization scheme for
both image synthesis and analysis. Sandini et al. [14] studied the recognition of 2D-patterns in
the log-polar plane and they proposed optimality criteria for the subsampling of the non-foveal
part of the image. The description of the �rst CCD-sensor with a cartesian fovea and a log-polar
periphery can be found in [24]. Wallace et al. [26] implemented the log-polar mapping on a
DSP-architecture by averaging sets of CCD pixels. They integrated the log-polar mapping into a
miniaturized pan-tilt camera enabling a visual communication using voice-bandwidth channels.

Jain et al. [10] were the �rst who applied the complex logarithmic mapping in image sequence
analysis. Given the motion information from other sensors and assuming pure translation they
transformed the images into the log-polar plane using the focus of expansion as the center of
the transformation. The depths of the viewed point were easily obtained by inspecting only the
shifts along one coordinate of the log-polar plane. Tistarelli and Sandini [22, 23] derived the
motion equations for the log-polar plane and proposed a method for the computation of the
time to collision. Our work on local computations (section 4) is inspired by their approach. The
combination of �xation and space variant sensing appears only in [22]. The following references
concern �xation in the cartesian plane. Aloimonos et al. [1] and Bandopadhay and Ballard [2]
showed how the structure from motion problem is simpli�ed in case of active tracking. Ferm�uller
and Aloimonos [8] proved that normal 
ow measurements are su�cient for bounding the locus
of the focus of expansion and the time to collision. Raviv and Herman [17] studied the geometric
properties of �xation and derived the locus of 3D-points whose projections yield a zero-optical

ow in case of motion with three degrees of freedom (road following). Taalebinezhaad [21] pro-
posed a method that simulates tracking by a pixel shifting process without actively controlling
the mechanical degrees of freedom of the camera. The translation direction is then obtained by
minimizing the depth deviation from the �xation point using only normal 
ow measurements. A
similar method was proposed in [9] for the derotation of the cartesian motion �eld.
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The organization of the paper is as follows. First, we formally describe the complex logarithmic
mapping. We derive the equations of the motion-�eld in the log-polar plane in section 3. The
rest of the study is divided to global motion computations (subsections of 3) and local parallax
computations (section 4).

2 The complex logarithmic mapping

We use (x; y) for the cartesian coordinates and (�; �) for the polar coordinates in the plane. By
denoting with z = x + jy = �ej� a point in the complex plane the complex logarithmic (or
log-polar) mapping is de�ned as

w = ln(z) (1)

for every z 6= 0 where Re(w) = ln� and Im(w) = � + 2k�. To exclude the periodicity of the
imaginary part we constrain the range of Im(w) to [0; 2�). The complex logarithmic mapping
is a well-known conformal mapping preserving the angle of the intersection of two curves. It is
illustrated in Fig. 1 where � denotes ln�. It is trivial to show that every scaling and rotation
about the origin in the z-plane is represented in the w-plane by a shift parallel to the real and
imaginary axis, respectively.

x

y �

�

Figure 1: The complex logarithmic mapping maps radial lines and cocentric circles into lines
parallel to the coordinate axes. The log-polar variables � and � are de�ned in (2).

We apply the log-polar mapping on the non-foveal part of a retinal image. Therefore, we de�ne
as the domain of the mapping the ring-shaped area �0 < � < �max where �0 and �max are the
radius of the fovea and the half-size of the retinal image, respectively. Furthermore, a hardware
CCD-sensor with the log-polar property or a software implementation of the mapping needs a
discretization of the w-plane -which we will call log-polar plane in contrast to the cartesian plane.
By assuming that Nr is the number of cells in the radial direction and Na is the number of cells in
the angular direction the mapping from the polar coordinates (�; �) to the log-polar coordinates
(�; 
) reads as follows (see also [22])

� = loga(
�

�0
)


 =
Na

2�
� (2)

where the logarithmic basis a is obtained from the foveal radius �0, the image radius �max and
the radial resolution Nr

aNr =
�max

�0
or a = e

1

Nr
ln( �max

�0
): (3)

From now on we will use only � ranging from 0 to 2� for the angular component of the motion
�eld vector.

The mapping of the gray-value function I(x; y) in the cartesian plane to the gray-value function
J(�; �) in the log-plane is by no means trivial. This issue concerns the software implementation
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of the log-polar mapping given a cartesian image. Every log-polar cell corresponds to a receptive
�eld in the cartesian plane. The image J(�; �) is the result of a space-variant �ltering that a�ects
all subsequent computations on the log-polar plane like spatiotemporal �ltering appearing later
in this paper. We will not delve in this issue here. It has been extensively studied in [3] but it still
remains an open problem. In our implementation we used non-overlapping averaging receptive
�elds as implemented in the emulation of the space-variant sensor in [22].

3 The motion �eld in the log-polar plane

We begin this section with a brief summary of the cartesian motion equations. Let an object
be moving with translational velocity v = (vx; vy; vz)

T and angular velocity ! = (!x; !y; !z)
T

relative to the camera. We denote by X the position of a point on the object with respect to the
camera coordinate system, by ẑ the unit-vector in the z-axis taken as the optical axis, and by
x = (x; y; 1)T the projection of X on the image plane Z = 1. The motion �eld vector reads [15]

_x =
1

ẑ
T
X
ẑ � (v � x) + ẑ � (x� (x�!)): (4)

In case of ego-motion of the camera with the above velocities and a stationary environment, the
above equation as well as all following equations have to be read with the opposite sign for v and
!. The 3D-motion estimation problem is known as the recovery of all the depths, the direction
of translation v, and the angular velocity from the motion �eld _x. The magnitude of translation
cannot be recovered due to the scale ambiguity that couples translation and depth.

We �rst compute the motion �eld vectors in the polar plane. The de�nition of the polar coordi-
nates yields

_� = _x cos � + _y sin �

_� =
1

�
(� _x sin � + _y cos �): (5)

The radial component of the log-polar motion �eld can be easily obtained:

_� =
1

lna

_�

�
: (6)

In order to make the equations for the log-polar plane more readable we introduce the polar
unit-vectors �̂ = (cos �; sin �)T and �̂ = (� sin �; cos �)T . Furthermore we introduce the vectors
vxy = (vx; vy)

T and !xy = (!x; !y)
T to describe motion parallel to the image plane. We will

carry out the computations for the polar motion �eld ( _�; _�). The log-polar motion �eld is di�erent
only in the radial component _� which can be computed from _� straightforward (6). This will also
enable us to �nd out that most of the advantages are due to the polar nature of log-polar plane.

Using the cartesian motion �eld (4) and the transformation rules (5) we obtain the following
expressions which relate the polar motion �eld to the 3D geometry (depths Z) and motion (v;!)
of the scene:

_� = ��vz
Z

+
vTxy�̂

Z
+ (1 + �2)!T

xy�̂

_� =
vTxy�̂

�Z
� !T

xy�̂

�
+ !z: (7)

Hence, the log-component of the motion �eld reads

lna _� = �vz
Z

+
vTxy�̂

�Z
+ (

1

�
+ �)!T

xy�̂: (8)

Equivalent relations have been derived in [23].
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We see that the motion �eld is the sum of the translational part including the depth information
and a rotational part like in the cartesian formulation. However, we note that the in
uence of
the motion-components parallel to the optical axis are decoupled. The translation vz appears
only in _� and the rotation !z only in _�. This was expected due to the properties of the complex
logarithmic mapping regarding two-dimensional expansions and rotations, respectively. However,
as it is already known the main problem in recovery of 3D-motion is to totally decouple the
rotational from the translational e�ects. We will show later how to attack this problem globally
by an active technique, and locally by a purposive technique.

3.1 Pure translation

If there is only translation parallel to the optical axis (Fig. 2a) the polar (and the log-polar)
motion �eld has only one component as can be seen in Fig. 2b. The magnitude variation of the
log-component _� in this case depends only on the depths of the projected 3D structures. If the
motion is pure translation in an arbitrary direction (Fig. 2c) the motion �eld looks like in Fig. 2d.

To better understand this �eld structure and the method presented next we show a pencil of
lines in the cartesian plane and its complex logarithmic mapping in Fig. 3. The lines are the
orbits of the motion �eld.

Closer inspection of the equations of the polar translational motion �eld

_� = ��vz
Z

(9)

_� =
vTxy�̂

�Z
(10)

yields following facts:

1. The angular component reads _� =
vTxy�̂
�Z . There are two lines in the motion �eld � = � and

� = �+ � (or � � � depending on which of both is in [0; 2�) ) where _� vanishes for every
�. The angle � gives the direction of (vx; vy) or the line where the focus of expansion lies.
Assuming that there is no direction � where the integralZ �max

�0

1

�2Z2
d�

vanishes the desired directions � and � � � are given by the global minima of
R
_�2d� in

the presence of noisy measurements. The above su�cient condition is met if the camera
does not gaze on a point of in�nite depth. For example, the condition is not satis�ed if
the origin of the cartesian image lies above the horizon's projection. If the integral

R
_�2d�

vanishes everywhere we imply the existence of a pure vz-translation.

2. Along the lines � = �+ �=2 and � = �� �=2 or (�+ 3�=2) the 
ow reads

_��+�=2 = ��vz
Z

_��+�=2 = �

q
v2x + v2y

�Z
:

By dividing we obtain
_��+�=2

�2 _��+�=2
= � vzq

v2x + v2y

(11)

which is the tangent of the polar angle of the translation direction.

Hence, it is possible by an explicit search for the global minima along the angle coordinate -
which is feasible in the polar plane due to the low resolution - to obtain the full translation
direction.
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As an alternative method, we could proceed as in the cartesian case where we �rst eliminate the
depth from the motion �eld equation (4) - recall that eq. (4) consists of two equations since _x
has two components. If we eliminate depth from (7) we obtain

� _�(vTxy�̂� �vz) = _�vTxy�̂

that can be rewritten as

�
vx vy vz

�0@ � _� cos � + _� sin �
� _� sin � � _� cos �

��2 _�

1
A = 0: (12)

This is nothing else than the equivalent of the well known epipolar constraint in the continuous
case [5]:

vT (x� _x) = 0:

3.2 Fixation in the log-polar plane

We assume that the camera mount has two controllable degrees of freedom which enable a
rotation about an axis parallel to the image plane through the optical center. We denote by
(
x;
y; 0) the resulting additional angular velocity. The motion �eld arising from the relative
motion of the camera to the environment (ego and/or object motion) follows from (4)

_x =
vx � xvz

Z
� xy(!x �
x) + (1 + x2)(!y �
y)� y!z

_y =
vy � yvz

Z
� (1 + y2)(!x �
x) + xy(!y �
y) + x!z: (13)

We de�ne �xation as keeping the same point in the image center along time. The �xated point
may be a point on a moving object in case of a stationary or moving observer or a stationary point
in the case of a moving observer. Fixation is achieved by closed loop control where controllables
are the pan and the tilt angle of the camera. The formally de�ned �xation criterion we use is
the vanishing of the motion �eld vector at the central point of the image:

_xjx=0 = 0: (14)

This is equivalent to

vx
Zo

+ !y �
y = 0 and
vy
Zo

� (!x �
x) = 0; (15)

where Zo is the depth of the point projected on the image center.

However, this criterion relies on the existence of a well de�ned mathematical point in the image.
In reality, this is only the case when the camera �xates on an object like a light spot. When
�xating on a larger object the average 
ow over an area should be minimized. Assuming that
this area is the cartesian fovea we seek control angular velocities (
x;
y) such thatZ

r=0::�0

Z
�=0::2�

_xr dr d� = 0

where _x = ( _x; _y) is given in (13) and �0 is the foveal radius. We note that we do not minimize
the integral of the squares of the 
ow so that we allow foveal motions like rolling around the
optical axis. After integration we obtain


y = !y + vx
�

1 +
�20
4

and 
x = �!x + vy
�

1 +
�20
4

(16)
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where � is the average of the inverse depth. For a small foveal area we can still use the approxi-
mation (15).

What kind of control strategy is applied to achieve the �xation criterion is not the subject of
this paper. We will assume that the system is in steady state mode and we will study the e�ects
of the satis�ed �xation criterion in the peripheral motion-�eld of the log-polar plane.

We turn now to the motion �eld on the polar transform of the periphery which reads in case of
�xation:

_� = ��vz
Z

+
vTxy�̂

Z
+ (1 + �2)(!xy �
xy)

T �̂

_� =
vTxy�̂

�Z
� (!xy �
xy)

T �̂

�
+ !z: (17)

We rewrite the polar motion �eld by means of (15)

_� = ��vz
Z

+
vTxy�̂

Z
+ (1 + �2)

� vy
Zo

� vx
Zo

�
�̂

_� =
vTxy�̂

�Z
� 1

�

� vy
Zo

� vx
Zo

�
�̂+ !z: (18)

that leads to the following polar motion �eld in case of �xation:

_� = ��vz
Z

+ (
1

Z
� 1 + �2

Zo
)vTxy�̂

_� =
1

�
(
1

Z
� 1

Zo
)vTxy�̂ + !z: (19)

We rewrite the equation by introducing v0z = vz=Zo and v
0

xy = vxy=Zo:

_� = �Zo

Z
�v0z + (

Zo

Z
� (1 + �2))v0Txy�̂

_� =
1

�
(
Zo

Z
� 1)v0Txy�̂ + !z: (20)

To reduce the number of symbols we will use again non-primed symbols for the translation.
We �rst note that we obtain as independent unknowns the depths Zo

Z relative to the depth of
the �xation point which results in an object centered scene representation. Second, the other
unknowns are reduced from initially �ve in the non-�xation case - three for rotation and two
for the translation direction - to four: the three scaled translation components, and one angular
velocity component. This dimension reduction was already proved in the cartesian plane in [1]
and [2].

We next propose an algorithm to recover the motion parameters in case of �xation from the
motion �eld in the log-polar plane. Equivalent to the case of pure translation without �xation
our method is based on the observation that the angular component _� equals !z everywhere along
the line � = � where tan� = vy=vx. However, this is not a necessary condition. The angular
component _� equals !z in the additional case that Z = Z0 along a radial line, or more general _�
is constant if the relative depth is linearly varying:

Zo

Z
� 1 = k�: (21)

This may happen if the environment is planar. For a particular �0 the radial component for
� = �0 reads in this case

_� = �(1 + k�)vz + (k�� �2)vTxy�̂�0 :

We can exclude this case if we test _� subject to quadratic variation variation with respect to �.
The algorithm we propose comprises following steps:
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1. We build the average _� over � for every � and the varianceZ
�

( _� � _�)2d�:

The variance vanishes at � = � and � = ��� and at the angles where Z = Z0 on an entire
radial line which is excluded as described above.

We carry out an one-dimensional search for the global minima of the above integral. We
carry out the above described linearity test to exclude the case Z = Z0. The global minima
give the direction of the line containing the FOE in the cartesian plane as well as !z (equal
the average _� at � = �). We exclude additional global minima due to linear depth variation
as decribed above.

2. At � = �+ �
2 and � = �� �

2 (or �+ 3�
2 ) the motion �eld reads:

_� = �Zo

Z
�vz

_� =
1

�
(
Zo

Z
� 1)

q
v2x + v2y + !z:

We build the following averages

� _� = �!z + (Zo=Z � 1)
q
v2x + v2y

_�=� = �Zo=Zvz:

3. Building for every point the deviation from the average we obtain

_�

�
� _�=� = �vz(Zo

Z
� Zo=Z)

� _� � � _� � (�� �)!z =
q
v2x + v2y(

Zo

Z
� Zo=Z):

After testing the vanishing of the lhs of the latter equation indicating a frontal translation
we obtain

vzq
v2x + v2y

= �
_�
� � _�=�

� _� � � _� � (�� �)!z
(22)

for every point along the lines � = �+ �
2 and � = �� �

2 (or �+ 3�
2 ). Since !z is given by

the second step we are able to recover the angle between translation and the optical axis.
Its tangent is equal to the inverse of the above expression.

We elaborated a method to recover the direction of translation in the case of �xation from
the polar motion �eld based on a feasible 1D search over the angle range. The equations for
the logarithmic �eld are obtained straightforward by substituting (6) in the above expressions.
This substitution does not introduce any computational advantages, hence, the potential of the
method relies only on the polar nature of the log-polar mapping.

3.3 Experiments on the translation computation

In this subsection, we present results on the computation of the optical 
ow in the log-polar
domain as well as on the computation of the translation direction in the case of pure translation.

We tested the method proposed in section 3 in a log-polar sequence obtained from the cartesian
real world sequence \Marbled Block" 1 [16]. One image of the sequence and its log-polar transform

1Created by Michael Otte at University of Karlsruhe and FhG-IITB, Germany.
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are shown in Fig. 6 top and middle, respectively. The log-polar image is drawn such that the
�-axis is the horizontal axis and the �-axis is the vertical axis pointing downwards. To interpret
the log-polar images we note that the angle � is measured beginning counterclockwise from the
y-axis which is pointing downwards. So moving horizontally in the log-polar plane we �rst see
the transformed lower right quadrant, then the transformed upper right quadrant and so on. The
compression rate obtained by the log-polar transformation is 1:25.

The optical 
ow is computed using the spatiotemporal derivatives and the assumption that
the 
ow is locally a�ne in the cartesian domain. Based on the computed log-polar 
ow of
the \Marbled Block" sequence we apply the method in section 3 to estimate the direction of
translation. We show in Fig. 4 the computed average angular component _� as a function of the
angle. We obtain two global minima - di�ering by 180 degrees as expected - giving as result an
angle of 253 degrees for the direction of the line containing the FOE. By averaging the expression

_��+�=2

�2 _��+�=2

over the diameter line corresponding to 253� 90 = 163 degrees we obtain as estimated cartesian
FOE-position (�247; 102). Using the intrinsic calibration parameters of the sequence we �nd out
that the angle error between the veridical and the estimated translation direction is 5 degrees
which is an acceptable estimation error given the fact that the computational e�ort decreased to
its 4%.

4 Local motion computations

In the prior sections we presented methods which exploited the log-polar motion �eld over the
entire peripheral �eld of view - the domain of log-polar mapping. Here, we delve into the variation
of the motion �eld { also called motion parallax { in the immediate neighborhood of every point. It
was repeatedly proved [11, 27, 20, 7] that the di�erential invariants of the optical 
ow divergence,
curl, and the two shear components contain information on motion and depth.

In this section, we will study the local motion parallax in the log-polar plane. We start with a
brief description of the parallax in the cartesian plane. After di�erentiating the motion �eld _x
in (4) with respect to x and y we obtain the �eld divergence

div =
@ _x

@x
+

@ _y

@y
=
�2vz + (pvx + qvy)� 3vz(px+ qy)

Z(1� px� qy)
� 3y!x + 3x!y; (23)

where

p =
@Z

@X
q =

@Z

@Y
;

and (�p;�q;�1) is the normal to the tangential plane of the viewed surface. The shear compo-
nents are similarly obtained

shear1 =
@ _x

@x
� @ _y

@y
=
�p(vx � xvz) + q(vy � yvz)

Z(1� px� qy)
+ y!x + x!y

shear2 =
@ _x

@y
+

@ _y

@x
=

@ _x

@x
� @ _y

@y
=
�q(vx � xvz)� p(vy � yvz)

Z(1� px� qy)
� x!x � y!y: (24)

We do not consider the curl of the motion �eld because it contains information about the !z
component which is not of interest to the behavioral tasks we study. The above expressions are
simpli�ed at the center of the image (x = 0; y = 0) where they contain only translational and
depth information. Furthermore if the translation is parallel to the optical axis (vx = 0; vy =
0) the divergence equals vz=Z which is the inverse of the time to collision (TTC) with the
object viewed in the image center. If the translation is arbitrary Subbarao [20] proved that the
inverse of the TTC can be bounded by the two values div � ksheark. Unfortunately, if points
outside the fovea are considered - as is the case in the log-polar motion �eld- the above parallax
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expressions contain rotational information that cannot be eliminated. Parallax methods have
either considered the rotational terms as negligible [4] or have used a di�erent image surface.
Indeed, if the scene is projected on a spherical surface, the divergence and shear components of the
resulting motion �eld - which is tangential to the image sphere - get rid of the rotation information
[11]. This is based on the fact that the rotational spherical motion �eld is linear in (x; y) whereas
the rotational planar motion �eld contains terms quadratic in the image coordinates.

Although there are many practical situations where the cartesian invariants could yield acceptable
results for the time to collision and the surface slant - the examples from the literature are very
rare - we will search here for exact relations. The inspiration of this study was the result in [23]
we will begin with.

We denote the derivatives of depth with respect to � and � with Z� and Z�. We �rst compute
the following spatial derivatives:

@ _�

@�
= � Z�

�Z2
vTxy�̂ �

1

�Z
vTxy�̂�

1

�
!T
xy�̂ (25)

@ _�

@�
=

�Z� � Z

Z2
vz � Z�

Z2
vTxy�̂+ 2�!T

xy�̂: (26)

In combination with the scaled �eld component

_�

�
= �vz

Z
+

1

�Z
vTxy�̂+ (

1

�
+ �)!T

xy�̂ (27)

We see that the only linear combination of the above three expressions that is independent of
rotation is

2
@ _�

@�
� @ _�

@�
+ 2

_�

�
= �vz

Z
+

Z�

Z2
(vTxy�̂� �vz)� 2

Z�

�Z2
vTxy�̂: (28)

If we assume that the surface is locally frontal then the depth derivatives vanish [23] and we
obtain the inverse of the time to collision vz

Z . However, this assumption is not always valid. In
high eccentricities the pixels of the log-polar plane span a considerable viewing angle in space that
may contain a non negligible depth variation. Therefore, we compute the depth derivatives Z�

and Z� as a function of the normal of the surface. Suppose that the surface normal is (�p;�q;�1)
with p = @Z

@X and q = @Z
@Y . It can be easily proved that

@Z

@x
=

pZ

1� px� qy

@Z

@y
=

qZ

1� px� qy

Let us denote (p; q) with p. The required derivatives read

Z� =
ZpT �̂

1� �pT �̂
and Z� =

Z�pT �̂

1� �pT �̂
: (29)

Hence,

2
@ _�

@�
� @ _�

@�
+ 2

_�

�
=
�vz + vTxy�̂p

T �̂� 2vTxy�̂p
T �̂

Z(1� �pT �̂)
: (30)

The exact expression has the advantage of being rotation independent but depends on the un-
known normal of the tangential plane of the viewed surface. We know [20] that we can only
bound the time to collision by using both divergence and shear. However, in a planar image this
is only possible in the rotation-free case. Using a spherical image the bounds become rotation-
independent because the dependence of the motion �eld on rotation becomes linear ! � x (cf.
the quadratic rotational terms in (4) and (5)). Earlier approaches have assumed that near the
center a planar image can be approximated by a spherical image [7]. However, this approxima-
tion is not valid in the non-foveal part considered in the log-polar mapping. We will avoid this
approximation by transforming exactly onto the polar plane.
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Let us assume that the image is the unit half-sphere and that the position on this sphere is given
by the polar angle � and the azimuth angle �. Regarding the polar coordinate system above, we
have

� = tan � and � = �:

The velocity _s of a point s on the image sphere is on the tangential plane at that point and is
given by

_s = _��̂ + _� sin ��̂ (31)

where �̂ and �̂ are the unit-vectors of the spherical coordinate system respectively. In analogy to
the di�erential invariants on a spherical image we next propose parallax expressions in the polar
motion �eld that provide bounds for the time to collision which are independent both from the
surface slant and the rotation. The divergence of the spherical motion �eld is [12]

div _s =
@ _�

@�
+

@ _�

@�
+

_�

tan �
(32)

and the two shear components read [11]

shear1 _s =
@ _�

@�
� @ _�

@�
�

_�

tan �
and shear2 _s =

1

sin �

@ _�

@�
+ sin �

@ _�

@�
: (33)

By rewriting the right hand sides of the above equations using a polar coordinate system (� =
tan �; � = �) on the image plane we obtain

div _s =
@ _�

@�
+

@ _�

@�
+

_�

1 + �2
(
1

�
� 2�)

shear1 _s =
@ _�

@�
� @ _�

@�
� _�

1 + �2
(
1

�
+ 2�)

shear2 _s =

p
1 + �2

�
((1 + �2)

@ _�

@�
+

1

1 + �2
@ _�

@�
): (34)

Then we build the squared shear magnitude

shear2 _s = shear21 _s+ shear22 _s

and after tedious calculations we �nd out that it is factorizable:

shear1 _s
2 + shear2 _s

2 = kS�k2 kS�k2 (35)

with

S� =
1

Z

 
Z�(1 + �2) + �

Z�
p

1+�2

Z�

!
S� =

1

Z

0
@ vTxy�̂��vz

1+�2

vTxy�̂p
1+�2

1
A :

On the other hand, trying to express the divergence as a function of S� and S� we �nd out that

div _s = �2(�vTxy�̂+ vz)

Z(1 + �2)
� ST

�S� : (36)

Since ST
�S� � kS�k kS�k we obtain

div� ksheark < �2(�vTxy�̂+ vz)

Z(1 + �2)
� div + ksheark: (37)

The expression in the middle can be rewritten as

(�vTxy�̂+ vz)

Z(1 + �2)
=
vT x̂

kXk
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where x̂ is the unit-vector in the space direction of the point x = (x; y; 1) and kXk is the
distance to the 3D-point X . This expression is referred in the literature as the inverse of the
time to collision [7] or looming [17]. However, it di�ers from the more frequently de�nition vz=Z.
The former deals with distances kXk to the points, whereas the latter deals with the depths z of
the points. The physical interpretation is shown in Fig. 5. The time to collision Z=vz is the time
required for the observer to hit the plane � at depth Z or the time required by an object like a
frontoparallel plane � to hit the observer. It is always geometrically plausible in the sense of a
scaled depth map but it is physically plausible only in case of frontal translation. On the other
hand, the looming expression vT x̂=kXk is the time required by the observer to hit the plane
� perpendicular to the line of sight at the considered point. It is neither a scaled depth nor a
scaled range but it can be interpreted as the inverse of the time to collision if the line of sight
is in the translation direction. Furthermore, it achieves its maximum at this point - the focus of
expansion - if we assume that all points are equidistant kXk = constant.

In contrast �rst to the rotation dependent cartesian bounds of vz=Z, and second to the slant
dependent expression in polar coordinates in (30), we derived both rotation and slant independent
bounds on a new expression for the time to collision in the polar plane. All the expressions
appearing in (34) may be easily transformed from the polar to the logpolar plane using

_� = lna�0a
� _� @ _�

@� = lna _� + @ _�
@�

@ _�
@� = lna�0a

� @ _�
@�

@ _�
@� = �0a

�

lna
@ _�
@� :

(38)

Despite the signi�cant data reduction no further advantages are obvious from the transition from
polar to log-polar coordinates.

5 Conclusion

An essential feature of an attentive visual system is space-variant sensing. In this study we used
the complex logarithmic mapping to model the resolution decrease in the image periphery. The
achieved compression ratio of up to 1:25 enables reactive behavior in real time.

We introduced two new methods for computing the focus of expansion by exploiting the structure
of the 
ow patterns in the log-polar motion �eld. Both are based on a 1D global minimum
search which is inexpensive due to the low angular resolution. The second method necessitates
the pursuit movement of the camera proving, thus, that a full attentional mechanism based on
both �xation and space-variant sensing enables motion estimation in case of general motion. We
implemented the �rst method in a translating real word sequence obtaining an estimation error
of 5� in the translation direction. We plan to implement the second method in the near future
using the controllable degrees of freedom of an active binocular head. The second part of our
study was devoted to derive motion parallax expressions which yield the time to collision. Based
on the parallax equations on a spherical image we derived exact equations for the transformation
onto the polar plane. Then, we recovered bounds on the time to collision that are independent
of rotation and the surface slant at every position of the image periphery. The mathematical
advantages of our approach are due to the polar representation in the log-polar image whereas
the complexity advantages are due to the logarithmic nature of the log-polar image.
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Figure 2: Two translational motion �elds in the cartesian plane (left) and the log-polar plane
(right). The horizontal axis is the �-axis and the vertical axis is the �-axis. The � angle is measured
counter-clockwise beginning at �90�.
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Figure 3: The complex logarithmic mapping of a line pencil. The line through the origin is
mapped into a vertical line. The horizontal axis is the �-axis and the vertical axis is the �-axis.
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Figure 4: The average of the squared angular components along the radius as a function of the
angle � for the Marbled Block sequence.
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Figure 5: Geometric interpretation of di�erent de�nitions for the time to collision. The time to
collision Z=vz is the time required for the observer to hit the plane � at depth Z or the time
required by an object like a frontoparallel plane � to hit the observer. The second de�nition
vT x̂=kXk is the time required by the observer to hit the plane � perpendicular to the line of
sight at the considered point.
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Figure 6: The original cartesian image (above), the log-polar transformed image (middle) and
the computed optical 
ow in the log-polar domain (below) for the Marbled Block sequence.
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