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Abstract

In order to relate measurements made by a sensor
mounted on a mechanical link to the robot’s coordi-
nate frame we must first estimate the lransformation
between the sensor and the link frame. In this paper we
introduce the use of dual quaternions which are the al-
gebraic counterpart of screws. We algebracally prove
that of we consider the camera and motor transforma-
trons as screws then only the hine coefficrents of the
screw azes are relevant regarding the hand-eye calibra-
tion. This new parametrization enables us to simulta-
neously solve for the hand-eye rotation and translation
using the Singular Value Decomposition.

1 Introduction

Hand-eye calibration is called the computation of
the relative position and orientation between the robot
gripper and a camera mounted rigidly on the gripper.
This problem concerns also all sensors that are rigidly
mounted on mechanical links, like a camera mounted
on a binocular head with mechanical degrees of freedom
as well as a camera mounted on the vehicle. Although
the term sensor-actuator calibration is more appropri-
ate we will throughout this paper use the well-known
term “hand-eye”.

The hand-eye transformation is required in a num-
ber of sensing-acting tasks. Using a camera mounted
on a gripper or a vehicle we can estimate the position
of a target to grasp or to reach in camera coordinates.
However, the control commands can be expressed only
in the coordinate system of the gripper or the vehicle.
Even if the desired control criterion is given in camera
coordinates we have to know which is the effect of a
robot motion in the camera frame.

The second task group is the placement of sensors at
desired positions. We can perform stereo by placing a
camera mounted on a gripper at multiple poses sharing
the same field of view. However, in order to reconstruct
the 3D positions we must know the relative orienta-
tion from the camera coordinate systems. But the only
transformations we know are in the robot coordinates.
The same applies for mounting cameras on binocular
heads. As the cameras are manually mounted a hand-
eye calibration is necessary in order to align the camera
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coordinate system with the tilt-vergence link.

The usual way to describe the hand-eye calibration
is by means of homogeneous transformation matrices.
We denote! by X the transformation from camera to
gripper, by A; the transformation matrix from the
camera to the world coordinate system and by B, the
transformation matrix from the robot base to the grip-
per at the i-th pose (Fig. 1). The camera-world trans-
formation A, is obtained with the extrinsic calibration
techniques. The robot base to gripper transformation
B; is given by the direct kinematic chain from the joint
angle readings. We see that for one pose we have two
transformations as unknowns: rohot base to world and
the camera to gripper X. In order to eliminate the

Figure 1. The transformations between differ-
ent frames at pose 1 and pose 2.

base to world transformation we need one motion (two
poses) which yields the well known hand-eye equation
first formulated by Shiu and Ahmad [6] and Tsai and
Lenz [7].

AX =XB (1)

'We use boldface capitals for matrices X, arrowed boldface
for 3D-vectors &, boldface for real quaternions z, checked normal
fonts # for dual scalars, checked arrowed boldface for dual vectors
Z, and checked boldface for dual quaternions #. The natural
inner product of two vectors or quaternions is denoted by =7y
and the cross product between 3D-vectors by £ x §.
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geneous transformation matrix has the form
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from (1) follows one matrix and one vector equation

and B = B, B;'

RsRx
(Ra=-I)ix =

RxRpg (2)
Rxip — 14 (3)

The majority of the approaches regards the rotation es-
timation in (2) decoupled from translation estimation,
the latter following the former. At least two rotations
containing motions with not parallel rotation axes are
required to solve the problem [7]. Several approaches
[T. 6, 2] have been proposed for the estimation of R yx
from (2) - a survey can be found in [9].

Horaud and Dornaika [5] are the first who applied
a simultaneous non-linear minimization with respect
to the rotation quaternion and the translation vector.
However, the first simultaneous consideration of rota-
tion and translation in a geometric way was presented
by Chen [1] who first introduced the screw theory in
the hand-eye calibration. A general displacement can
he represented by a rotation about an axis not through
the origin - the screw axis- and a translation parallel
to this axis - the screw pitch.

In this paper we introduce the algebraic entity for a
screw: the unit dual quaternion. Dual quaternions are
an extension of the real quaternions by means of the
dual numbers and were first introduced by Clifford [3].
Dual numbers and dual quaternions have been earlier
used in robotics [4] and in computer vision [8]. Based
on the dual quaternions we prove that

1. the hand-eye transformation is independent of the
angle and the pitch of the camera and hand mo-
tions and depends only on the line parameters of
their screw axes (geometrically proved in [1])

. the unknown screw parameters including both ro-
tation and translation can be simultaneously re-
covered using the Singular Value Decomposition.

(3

We next briefly introduce the dual quaternions.
Quaternions are an extension of the complex num-
bers to % Among other formalisms one definition of
quaternions is as pairs (s, q) where s € R and § € R®.
The quaternions are a vector space over the reals - we
will call H - with the zero element (0,0). The multi-
plication between quaternions defined as

—] - - ki - =
9192 = (5152 — Q1 Q2. 512 + $2G, + @ X @2)  (4)

has a unit element (1, 0) and is associative but not com-
mutative. Therefore the quaternions are an associative
algebra and since they do not contain zero-divisors they
are a division algebra. The norm of a quaternion is de-
fined as ||q|| = gg where @ is the conjugate quaternion

(s,—q). A subgroup of H regarding only the multi-
plication operation are the unit quaternions with norm
equal one. For every rotation (element of SO(3)) about
an axis 11 (||72]| = 1) with an angle f exists a corre-
sponding unit quaternion g = (cos 5 7,80 ;n) that maps
a vector £ € R to the vector q(0, )q.

A dual number is defined as Z = a + ¢b with €% = 0.
The operations addition and multiplication make them
an abelian ring called A but not a field because only
dual numbers with real part not zero possess an inverse
element. An important property is associated with the
derivatives of functions with dual arguments. Since all
powers greater equal two of ¢ vanish a Taylor expansion
yields always f(a +¢b) = f(a) + ¢bf'(a).

Dual guaternions are deﬁned in a similar way like
real quaternions as (5, ) where § a dual number and ¢
a dual vector. The product has the same definition as
in real quaternions (4) making the dual quaternions a
non-abelian ring with unit element (1,.0). The prod-
uct with a dual number makes the dual quaternions a
A-module. The norm of a dual quaternion is defined
as ||q|]| = @q and is a dual number with positive real
part. If the norm has a non vanishing real p'trL thau
the dual qualPrmon has an inverse ¢~' = ||q||~"
the norm is equal one then an inverse ﬁlement exiers
and is equal to the conjugate quaternion.

2 Line transformations with unit dual
quaternions

As already known the rotation of a point g, to a
point g, can be written by means of a unit quaternion
q as the product p, = qp;g - This form allows the
concatenation of rotations be represented by a simple
quaternion product. Unfortunately, no such quater-
nion representation exists for a general rigid transfor-
mation including translation. We will describe in this
section that the introduction of dual quaternions al-
lows a rigid transformation rule as simple as the one
for pure rotations, however. not for a point but for a
line. -

A line in space with direction ! through a point
can be represented with the 6-tuple {I-., m) where m is
called the line moment and is equal to # x . The line
moment is normal to the plane through the line and
the origin with magnitude equal to the distance from
the line to the origin. The constraints ||l-[| = 1 and

ITm =0 guarantee that the degrees of freedom of an
arbitrary line in space are four.
We next give an answer to the following problem:

A line given by its dual quaternion l, =1, +
em, is transformed with (R, 1) into a hne Ly.
Show that a unit dual quaternion erists such
that E'a = fil‘«-b(‘;"v

Applying a rotation R and a translation £ to a line




(I3, 7) we obtain the transformed line (l-.'l. m,)

™ -

I, = RI (5)
M, = P, xl,=(Rp,+1) x RI,
= R+t x RI,. (6)

We change from vector to quaternion notation which
means that the vector I is represented by a quaternion
with zero scalar part I = (0,0). The terms contain-
Ing rotation can be easily written with quaternions.
The difficulty with the cross-product is tackled with
the identity (0, ) = 3(gt+1tq) where t is the trans-
lation quaternion (0, %) and q the rotation quaternion
(0,q). We then obtain

l, = qlvq
sy ) _- £ -
Ma = qmuq + S(qliqt + tqlyq). (7)
We define a new quaternion g = %tq and a dual

quaternion ¢ = g+¢q’. It can be easily shown that (7)
1s equivalent to

lo+em, = {q+e_q'}(h,+crrzb)(f}+r.d’}. (8)
Denoting also the lines by dual quaternions I, and [,
we obtain )

Lo = Glyq.

This formula resembles to the rotation of points with
quaternions. Lines can thus be rigidly transformed us-
g a single operation (multiplying left and right with

the conjugate) in the non-abelian ring of dual quater-
nions. The norm

19 = 4G = q3+e(qq’ +q'q) = qq+¢/2(qqt+tqq) = |

hence g is a unit quaternion. The above relations give
also explicitly the transformation from (R, t) to q+eq’
The dual part ¢’ = 1tq and the quaternion q can be ob-
tained from the rotation matrix by finding the axis and
the angle of rotation. If § is a solution then —q 1s also
a solution. It is sufficient to enforce like in non-dual
quaternions that the scalar non-dual part is positive in
order to eliminate this ambiguity. Reversely, the trans-
lation ¢ can be recovered from the dual quaternion as
t = 29'q. The unit dual quaternion g can be written
as the concatenation of a pure translational unit dual
quaternion and a pure rotational quaternion with dual

part equal zero i.e. § = [l.f%)q.
3 Unit dual quaternions and screws

This section shows that the scalar and the vector
part of the dual quaternion have a specific meaning
which relates them to the kinematic notion of a screw.

—

According to Chasles’ theorem [1] a rigid transforma-
tion can be modeled as a rotation about an axis not
through the origin and a translation along this axis.
As the screw axis is a line in space it depends on four
parameters which together with the rotation angle
and the translation along the axis d (pitch) constitute
the six degrees of freedom of a rigid transformation.
In the following we will solve the problem

Compute d as well as the screw azis grven by
its direction and moment pair (I, m) from R
and t.

The direction [ is parallel to the rotation axis. The
pitch d is the projection of translation on the rotation
axis, therefore equal 71, In order to recover the mo-
ment 11 we introduce a point & on the screw axis being
the projection of the origin on the axis (Fig. 2).

Figure 2. The geometry of a screw: Every mo-
tion can be modeled as a rotation with angle
¢ about an axis at ¢ with direction I'and a sub-
sequent translation < along the axis.

The coordinate system is shifted to this point and
then transformed. The resulting translation is then
dl+ (I — R). The so called pitch d = ITZ. Using the

Rodrigues formula
RE=&+sin(0)] x &+ (1= cos )l x (I'x &)
and ETT'= 0 it follows that [1]
5 Yow Csmeme B
= —2-(t —(t" DI + cot El x t). (9)

This point and hence the screw axis is not defined if
the angle & is either 0 or 180. Otherwise the moment,
vector reads then

|

—

m=cxl=

1
2
We proceed then with the computation of the corre-
sponding quaternion:

L)

(f-xf:i-f'x{f'x ) cot —). (10)

N

Given the screw parameters (6, a',l-:ﬁi) com-
pule the corresponding dual quaternion q.




The quaternion derived from the rotation matrix R
reads

g . B
(90,q) = (cos 58in 1) (11)

hence the moment equation (10) can be written

—

sin —1m =

- = g =
3 St x g+ qﬁ—cos;{f‘rf’)l},

Using (I7%) = d and rewriting

=

1
2

I=

d 8 S o
5 5(Ex §+ qot)

sin —1m + — cos
5 2

-

which is the vector part of the dual part ¢’ of the dual
quaternion §. Applying (11) and ¢’ = %tq we obtain

"q0 ) L ~-4q7t
s ¢ 1 - .
q s(qot +t x q)

Every function f of dual numbers obeys the rule

fi= (12)

fla+¢€b) = fla) +ebf'(a

H+(d:’ —

+ed )

sin( 2

H .
hence cos( ? —¢4sin and

51:1-?; +¢£ coa—

[t is now straightforward to see that a dual quater-
nion can also be written as

i

This representation is very powerful since first 1t al-
gebraically separates the angle and pitch information
from the line information characterizing the pose of the
screw axis. Second writing the dual angle § = 0 + «d

cos

ro‘-:(”"d}

~.|n{"+ d}( + €7m1) (13)

and the dual vector I = I+ ¢ (13) becomes equivalent
to the pure rotation non-dual equation (11). We can
easily verify that

G = (cos8/2,sin é/?h

IS a unit quaternion ¢q = 1.

4 Hand-eye transformation with unit
dual quaternions

The concatenation of two rigid displacements or
screws can be written as the product of two dual
quaternions. Let @ denote the screw of a camera mo-
tion and b denote the screw of the motor motion. Mo-
tor (hand) and camera (eye) are rigidly attached to
each other. The rigid transformation between them
is unknown and it will be denoted by the unit dual
quaternion §. The screw concatenation yields then

(14)

321

which is the most compact equation since the dual
quaternion components are eight and not twelve like
in the homogeneous matrices of (1). The scalar part of
a dual quaternion a is (@ + @)/2, hence

éi)

= Sc(f}).

C=11

Se(a) (@+a)= -(gb

c(b)q = Se(b) ¢

2| o—
lx..'t'—'
.Ql
=
o

1
2
qSec

-C‘J Qsl

+5)3
(15)

According to (13) the scalar parts are equal to the co-
sine of the respective dual angles, hence the angle and
the pitch of the motor screw are equal to the angle
and the pitch of the camera screw, or the angle and
the pitch remain invariant under coordinate transfor-
mations. This is also known as the Screw Congruence
Theorem [1]. its proof without dual unit quaternions is,
however, considerably longer than the one line proof in
(15).

The fundamental equation @ = ¢bq consists of four
dual equations. Since the scalar parts are equal only
the vector components contribute to the computation
of the unknown gq:

o)
sin —q(U b}q

b, 0y =
sin —H u} = ¢(0.sin _i-b] =
If the angles f, ; are not 0 or 360 degrees the sines can
be simplified yielding

(0, &) = 4(0.5)§ (16)

which is nothing else then the motion of the lines of
the screw axes.
Thus,

. The hand-eye estimation is independent of the an-
gle and the pitch of the camera and the motor
motions.

2. The hand-eye calibration 1s equivalent to the 3D
motion estimation problem from 3D-line corre-
spondences where the lines are the screw axes of
the motors and the cameras.

We should note here that all other hand-eye cali-
bration methods make use of the rotation angle and
the pitch at least at the translation estimation step
(3) which turns out in (16) to be unnecessary. Having
shown that the problem is equivalent to the 3D-motion
problem we already know from computer vision that
the minimum requirement are two non parallel lines.

5 Estimation of the hand-eye screw

with SVD

Although we showed in the last section that only the
vector part of the dual quaternions is relevant for the
estimation of the unknown hand eye unit dual quater-
nion g let us keep the same notation @ and b for (0, 5]
and (0,d), respectively.



We split the fundamental equation (14) into the non-
dual and dual parts and we obtain

a =
r

a =

qbq
qbq’ + qb'q + ¢'bq.

Multiplyingon the left with q and applying the iden-
tity '
99 +3q=0
in the first term of the right hand side of the first equa-

tion yields

ag—qgb = 0
(a'q—qb')+(aq' —¢'b) = 0.

We keep in mind that from every of the two equations
above the scalar part is redundant because they are
equivalent to (16). Hence. we have in total sIX equa-
tions with eight unknowns which can be written in ma-
trix form as follows. Let a = (0,a@) and a’ = (0,@")

- - 1
as well as b = (0.b) and b' = (0.5 ). The quaternion
equations above can then be written as a matrix vector
equation

a— E ['(-l'—i— gfx 03, 0343 ( q )
i e —r Il - n r 4 =9
a-b [@+b], @a-b [@+ b, q

(17)
where the matrix - we will call § - is a 6 x 8 matrix and
the vector of unknowns (g7, g'") is 8-dimensional. The
operator [], denotes the antisymmetric matrix equiva-
lent to a cross product.

We have two constraints on the unknowns so that
the result is a unit dual quaternion

qrq =] and aq =0 (18)

We could think that six equations plus two constraints

would suffice, however, the vectors @ and B are unit

vectors and the vectors @ and b are perpendicular to
@ and b so that two equations are redundant. This is
nothing new, since it is well known that at least two
lines are necessary so that 3D motion can be estimated
from their correspondences. Thus. we need at least two
motions of the hand-eye system in order to get two lines
from the corresponding screws.

Suppose now that n > 2 motions are given. We
construct the 6n x 8 matrix
)T

T=(s] sT ... &7 (19)

which in the noise-free case has rank 6. Since in the
noise-free case the equations arise from natural con-
straints the null-space contains at least the solution
(g.q'). It is trivial to see that an additional orthogonal
Hence, the matrix is maximally

of rank 6. If all axes b are mutually parallel then the
rank of the matrix is 5. The proof is quite lengthy and

solution is (044, q).

will not be given here, however, it is plausible that in
this case a three-parameter family of solutions can not
be constrained by the two conditions (18).

We compute the Singular Value Decomposition
(SVD)T =UZVT where £ is a diagonal matrix with
the singular values, the columns of U are the left singu-
lar vectors, and the columns of V' are the right singular
vectors. If the rank is 6 than the last two right singular
vectors o7 and ¥g - corresponding to the two vanishing
singular values - span the nullspace of T. We write

them as composed of two 4 x 1 vectors Tyl = (ET. TTT]
and 75’ = {EET,F._,T}. A vector (qr.q“") satisfying

T(q",¢'")T = 0 must be a linear combination of #y

and ¥g, hence
q _ u 2
(fr’)‘)”(fl )”2( 72 )

The two degrees of freedom are fixed by the constraints
(18) which imply two quadratic equations in A, and
A

Further details, experimental results. and more ref-
erences can be found in the extended version available
under http://www.informatik.uni-kiel.de/~kd.
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