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Abstract: This article is concerned with the design and implementati-
on of a system for real time tracking of a moving object and binocular
vergence control for depth estimation. Object detection relies only on the
image motion without making any a priori assumptions about the object
form. Using only the first spatiotemporal image derivatives subtraction
of the normal optical flow induced by camera motion yields the object
image motion. On the other hand, both the left and the right image are
filtered hierarchically with Gabor functions. The phase difference of the
responses yields a disparity map. The disparity in the center is the refe-
rence signal for vergence control of the binocular head. Both behaviors
are implemented in parallel and the cycle rate achieved is 25 Hz.

1 Introduction

Traditional computer vision methodology regarded the visual system as a pas-
sive observer whose goal is the recovery of a complete description of the world.
This approach led to systems unable to interact in a fast and stable way with a
dynamically changing environment. The new paradigm of active behavioral visi-
on showed that the ability to control the mechanical degrees of freedom during
image acquisition as well as the behavior dependent selectivity in data proces-
sing facilitate more stable and real-time reactions in navigation and manipulation
tasks.

The most evident reason for object pursuing is the limited field of view availa-
ble by CCD cameras. The two degrees of freedom of panning and tilting enable
keeping a moving object of interest in view for a longer time interval. Even if
we had a sensor with 180 degrees field of view it would not be computationally
possible to process every part of the field of view in the same detail. On the
other hand, vergence control keeps the disparity magnitude bounded avoiding,
thus, a computationally expensive search in large regions. Working with small
disparities allows the use of filters with smaller support and reduces the com-
putation time. Potential applications for the presented system are in the field
of surveillance in indoor or outdoor scenes. The advantages are not only in the
motion detection but mainly in the capability of keeping an intruder inside the
field of view. Another application is in automatic video recording and video te-
leconferencing. The camera automatically tracks the acting or speaking person
so that it always remains in the center of the field of view. In manufacturing or
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recycling environments, an active camera can track and estimate the depth to
objects on the conveyor-belt so that they are recognized and grasped without
stopping the belt. New directions are opened if such an active camera platform
is mounted on an autonomous vehicle. As we will show in the results, vergence
control supports scene exploration and the building of an environmental map.

The novelty of this approach is in the achievement of a video rate tracking
and vergence control using sound image processing techniques. The performance
of 25 Hz with a latency of about 100ms classifies our system together with the
systems of Oxford and Stockholm among the fastest systems worldwide. Novel
is also the design of the derivative and Gabor filters with respect to the limi-
ted support and accuracy in the given pipeline architecture. We demonstrate
that real time implementation is not achieved by introducing heuristics but by
systematic filter design.

As pursuing is one of the basic capabilities of an active vision system most
of the research groups possessing a camera platform have reported results. The
Oxford surveillance system [6] uses data from the motor encoders to compute
and subtract the camera motion induced flow. It runs in 25 Hz with proces-
sing latency of about 110 ms. Camera behavior is modeled as either saccadic
or pursuit motion and a finite state automaton controls the switching between
the two reactions. The KTH-Stockholm system [10] computes the ego motion
of the camera by fitting an affine flow model in the entire image. It is the only
approach claiming pursuit in presence of arbitrary observer motion and not only
pure rotation as assumed by the rest of the algorithms. However, this global
affinity assumption is valid only if the object occupies a minor fraction of the
field of view which 1s not a realistic assumption. Elimination of the flow due to
known camera rotation is also applied by Murray and Basu [5]. The background
motion i1s compensated by shifting the images. Then large image differences are
combined with high image gradients to give a binary image. No real time imple-
mentation results are reported.

Regarding vergence control different approaches are developed. Olson and
Coombs [7] used a cepstral filter for disparity estimation, and developed a real
time vergence control with a servo rate of 10 Hz. Closer to our approach in
disparity estimation was the work of Theimer & Mallot [9]. They also used a
phase-based approach with Gabor filters on sub-sampled images with a rate of
1 Hz on common hardware. Westelius et al. [11] developed a vergence control
based on phase differences. To get stable results they additionally computed
the disparity from a pair of edge images. Uhlin et al. [10] also implemented a
vergence control with phase-based disparity estimation and achieved the servo
rate of 25 Hz.

2 Monocular pursuit of a moving object

A moving object in the image is defined as the locus of points with high image
gradient whose image motion is substantially different from the camera induced
image motion. We exploit the fact that the camera induced optical flow u. is
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pure rotational
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where (z., y.) are the camera coordinates and w is the angular velocity computed
from the angle readings of the axis encoders as follows.

The binocular camera mount' used in our system has four mechanical degrees
of freedom: the pan angle x of the neck, the tilt angle ¢, and two vergence angle
¢ und 0, for left and right, respectively (Fig. 1). The stereo basis is denoted by
B.

Abb. 1. The four degrees of freedom of the camera platform (left) and how it looks
like (right).

Let R(t) = Ry(1)Ro(¢) be the time varying rotation of the camera coordinate
system and (2 the skew-symmetric tensor of the angular velocity. Then we have
R(t) = R(t)§2 and the angular velocity with respect to the moving coordina-

te system reads w = ((ﬁ:cosﬁ 0 qi»siné’)T. We assume the Brightness Change
Constraint Equation gu + gyv + g. = 0 with g, g, and g; the spatiotemporal
derivatives of the grayvalue function. From this equation we can compute only
the normal flow - the projection of optical flow in the direction of the image
gradient (gc, gy). The difference between the normal flow u.,_ induced by camera
motion and the observed normal flow u,

1s the normal flow induced by the object motion. It turns out that we can test
the existence of object image motion without the computation of optical flow.
The sufficient conditions are that the object motion has a component parallel
to the image gradient and the image gradient is sufficiently large. We can thus
avoid the computation of full optical flow which would require the solution of
at least a linear system for every pixel. Three thresholds are applied: the first
for the difference between observed and camera normal flow, the second for
the magnitude of the image gradient, and the third for the area of the points

! Consisting of the TRC BiSight Vergence Head and the TRC UniSight Pan/Tilt Base
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satisfying the first two conditions. The object position is given as the centroid
of the detected area.

2.1 Real time spatiotemporal filtering

Special eﬂ'ort was given to the choice of filters suitable for the used pipeline-
processor ? so that the frequency domain specifications are satisfied without
violating the real time requirements. Whereas up to 8 x 8 FIR-kernels can be
convolved with the image with processing rate of 20 MHz the temporal filtering
must be carried out by delaying the images in the visual memory. We chose IIR
filtering for the computation of the temporal derivatives since its computation
requires less memory than temporal FIR filtering for the same effective time lag.

The temporal lowpass filter chosen is the discrete version of the exponential

2 tr
e 3 2>
Bt) = { 0 t<O.
If E,(t) is the n-th order exponential filter (n > 2) its derivative reads

dEn(t) _
=5 = T(En-1(t) — En(t)).

The discrete recursive implementation for the second order derivative filter reads

hi(k) + rhy(k — 1) = q(g(k) + g(k — 1))
ha(k) + rhao(k — 1) = q(h1(k) + hi(k = 1)) gi(k) = 7(h1(k) - ha(k)),

where g(k) is the input image, h;(k) and hq(k) are the lowpass responses of first
and second order, respectively, and g;(k) is the derivative response. We note,
that the lowpass response 1s used to smooth temporally the spatial derivatives.
The spatial FIR-kernels are binomial approximations to the first derivatives of
the Gaussian function.

2.2 FEstimation and Control

The control goal of pursuing is to hold the gaze as close as possible to the projec-
tion of a moving object. Output measurements are the absolute position of the
object denoted by o obtained from the centroid in the image and the angle rea-
dings. Let v and a be the velocity and acceleration of the object, ¢ be the absolute

position of the optical axis, and Au(k) the incremental correction in the camera

position. The state is described by the vector s = (T o7 vT aT) . A motion

model of constant acceleration and a linear control function Au(k) = —K3(k)
with 8 an estimate of the state enables the use of the separation principle stating
that optimal control can be obtained by combining the optimum deterministic
control with the optimal stochastic observer. The minimization of the difference
|llo — ¢|| between object and camera position in the reference coordinate system
can be modeled asa Linear Quadratic Regulator problem with the minimizing
cost function 71 _o 87 (k)Qs(k) where Q is a symmetric matrix with Q;; = 1,

2 Datacube MaxVideo 200 board
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Q12 = Q21 = —1,Q22 = 1 and the rest of its elements zero. In steady state
modus a constant control gain K is assumed resulting in an algebraic Ricatti
equation with the simple solution that input camera position should be equal
the predicted position of the object. One of the crucial problems in vision based
closed loop control is how to tackle the delays introduced by a processing time
longer than a cycle time. We emphasize here that the delay in our system is an
estimator delay. The normal flow detected after frame k concerns the instanta-
neous velocity at frame k£ — 1 due to the mode of the IIR temporal filter. At time
k — 1 the encoder is also asked to give the angle values of the motors. To the
delay amount of one frame we must add the processing time so that we have the
complete latency between motion event and onset of steered motion.

Concerning optimal estimation we also assume steady state modus obtaining
a stationary Kalman Filter with constant gains. The special case of a second
order plant yields the well known «a-3-y-Filter with update equation

3T(k+1)=3%(k)+ (a B/At v/A )T (m(k + 1) = m™ (k + 1)),

where st is the state after updating and m™ is the predicted measurement.
The gain coefficients «, 3 and vy are functions of the target maneuvering index
A. This maneuvering index is equal to the ratio of plant noise covariance and
measurement noise covariance. The lower is the maneuvering index the higher
is our confidence in the motion model resulting to a smoother trajectory. The
higher is the maneuvering index the higher is the reliability of our measurement
resulting to a close tracking of the measurements which may be very jaggy. This
behaviour was thoroughly studied in [1].

We proceed with a real experiment. In Fig. 2 the system is tracking a Tetra-
pak moving from right to left. The images in Fig. 2 are chosen out of 20 frames
saved “on the fly” during a time of 8s. The centroid of the detected motion area
is marked with a cross. We show the tracking error by drawing the trajectory
of the centroid in the image as well as the control values for the tilt and the
vergence angle, ¢ and @ for the entire time interval of 8s. Although the target
might move smoothly the orbit of the centroid depends on the distribution of
the detected points in the motion area. Therefore, it is corrupted with an error
of very high measurement variance. Allowing a high maneuvering index which
enables close tracking would result in a extreme jaggy motion of the camera. The
estimator would forget the motion model and yield an orbit as irregular as the
centroid motion. Therefore, we decrease the maneuvering index to 0.01 and ob-
tain as expected a much higher pixel error. Only a post processing of the binary
images could improve the position of the detected centroid. The small size of the
target enables a relatively small pixel error (the target is always observed left
from the center). Because the centroid variation is only in the vertical direction -
due to the rod holding the target - the tilt angle changes irregularly. The average
angular velocity is 8.5 deg/s. The reader is referred to [1] for numerous real and
synthetic experiments.
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Abb. 2. Four frames recorded while the camera is pursuing a Tetrapak moving from
right to left. The pixel error (bottom left) shows that the camera remains behind the
target and the vergence change (bottom right) shows the turning of the camera from
right to left with an average angular velocity of 8.5 deg/s.

3 Phase-based Disparity Estimation for Vergence Control

The idea of a phase-based approach is to implicitly solve the correspondence
problem. Without explicit feature extraction these approaches can be described
similarly by a local correlation of bandpass-filtered images. The local phase re-
sponse contains the information of the spatial position of the matched structure.
According to the Fourier shift-theorem

f(z) O—@ F(w) f(z+ D) O—@ F(w)e*?,

a global spatial shift D of a signal f(z) can be detected as a phase shift in the
Fourier spectrum. Extracting the local phase in both images of a stereo pair
with complex filters like Gabor filters leads to a direct computation of local
disparity. Fleet [2] and Sanger [8] have employed phase-based approaches to
recover disparity information with complex Gabor filters on different scales. The
spatial shift D(z) = J—?J—i
local phase difference [2]:

1s computed in the constant frequency model from

Ad(z) = ¢i(z) — ¢r(z). (1)

The phases are denoted ¢,(z) for the right and ¢;(z) for the left image.

Our Approach for a fast real-time algorithm [4] is influenced by the given
hardware to obtain real time performance. Small filters and a simple algorithm
can perform a high clock rate. We developed such a simple algorithm based on
the theoretical principles of the phase-based approach.




3.1 Filter design

Our Gabor filters with an odd size of 7x7 regard the following four constraints,
noticed in [11]:
a. No DC component to get an optimal phase behaviour.
b. Suppression of wrap around of the phase for maximizing the measurable
disparity.
c. Monotonous phase to assure the one to one relation between phase difference
and disparity.
d. Small support to get low computational costs.
To get no wrap around and to have a maximum measurable horizontal disparity
related to the filter size a wavelength A\ = 27 /w, = 6 pixel 1s optimal.
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Abb. 3. Odd and Even Gabor filter 7x7.

Without a consistency check of the measured phases in the left and the right
image, disparity estimation can produce arbitrary results. Our method to check
the stability of phase information based on thresholding the magnitude of the
filter responses. First, in each image the magnitudes are thresholded (by 20 % of
the maximum magnitude) and second, the sum of magnitudes of both images are
calculated and thresholded again (by 40 % of the sum maximum magnitude).
The estimated phase difference at image pixel z is called stable if these two
constraints are fulfilled. This map of stable phase differences is our confidence
map c(z).

The small filter size demands a strategy to deal with larger disparities in
stereo images. Our approach is to compute a Gaussian pyramid f;(z) by appro-
ximating the Gaussian filter by a 7x7 binomial filter B. Sub-sampling S reduced
the image resolution from 512x512 at the finest level to 16x16 at the coarsest le-
vel. This results in a maximal measurable disparity of 192 pixel at the coarsest
level.

Fla)y = Glao,w) % fi(2) fde) =5(B* fi-1{&)).
4 Vergence Control and one Application

The camera mount (Fig. 1) has four mechanical degrees of freedom: pan angle,
tilt angle ¢, and two vergence angle 6, and ;. The right camera has been declared
as the dominating eye of our system. Pan, tilt and right vergence angle are
controlled by a gaze-controller. Regarding vergence movement we only have to
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control the left vergence angle 6; to reduce the horizontal stereo disparity D,
in the center of view. The disparity D, is picked out from the center of the
computed disparity map. The vergence control is designed as a feedback loop.

The estimated disparities D, are compared with the reference signal Dy = 0
in the case of convergence. The left vergence angle 6; is controlled by the PD-
controller because of its robust behaviour in real time applications. The offsets
Af; 1s defined by the PD-control law:

A6 = K, D, + K4D, (2)

The controller gains K, and K, are tuned by the Ziegler-Nichols method to have
robust control and minimal settling time.

One application of combining vergence and gaze control is active depth esti-
mation in an unknown area. The gaze controller has to move the gaze direction of
the dominating right camera to interesting points in the world. These are edges
and corners in the case of well structured areas. Then the left camera can fixate
the same points by vergence control. After verging depth can be computed. We
use the responses of our Gabor filters for controlling the right camera by choo-
sing the local maxima of one confidence map (128x128) as gaze points. Normally
a lab scene contains 10 - 25 selected local maxima in a view. After estimating
the range of all points a new confidence map is computed. Then local maxima
can be detected again at this new view until the chosen segment of the unknown
area 1s explored.

4.1  Depth computation

In the case of convergence on a gaze point P we need the knowledge of the left
and right vergence angles 0;, 0, to compute the depth of this point. Additionally
the baseline of the stereo rig is known. We compute the depth in a cyclopean
frame (see Fig. 4). The origin O is at half base line B. The cameras are verging
on selected gaze point P. The gaze point is denoted by the angles (7, ¢),where
¢ 1s the tilt angle and v = arctan(sin(6; — 6, )/(2 cos 6; cos 6, )).

P

)

B/2 O B/2

Abb. 4. Stereo geometry of our vision system at convergence at gaze point P.

We define the depth Z of the point P as the length of the line P to O. With
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trigonometric transforms the equation for Z(6;, 6,, B) follows:
2 _ n2 5iﬂ2(9: —-6,) cos? 8, cos?

Z* = 5 ; 3
4sin’(; +6,)  sin’(6; + 6,) ) ()

We represent the depth map Z(v, ¢) with a resolution of 27 /360 for v and ¢.
The vergence angles have an intrinsic resolution of 0.006°. This results in a theo-
retical error in depth estimation £Z from 0.09% at Z = 1.0 m up to 0.9% at
Z = 10.0m in the case of symmetric vergence.

5 Experiments and results

The example shows a typical view of our lab. We explore this scene with our
system to get depth information. Fig. 5 shows a fly of four images (u.) and their
resulting confidence maps at a resolution 128x128 (l.). The confidence maps are

Abb. 5. The view of our lab which has to be explored. (1.) The confidence maps of the
same 1mages at resolution 128x128.

used for control the gaze direction (7, ¢). In this example the tilt angle ¢ =0 is
hold constant. The range of the gaze angle y is —55°...50°. The gaze controller
selected 14 points from the four confidence maps. The white scan line (Fig 5.)
1s the area, where local maxima are detected. It represents the constraint ¢ = 0
The gaze of the right camera is directed to each gaze point (7;,0). After verging
the depth Z(7;,0) is computed. The tabular shows the estimated depth values
(rounded in 0.05 m) and computed gaze directions (rounded in 1 degree).

vi| -53 -50 -42 -38 -32 -27 -21 -12 -5 5 7 16 21 43
Z|3.30 3.65 3.95 4.30 4.70 5.30 6.15 5.95 5.90 6.00 6.10 4.05 4.50 2.30

Figure 6 shows a result of depth exploration. The depth Z(y, 0) is the radius
of the polar figure. Linear interpolation is applied between gaze points (7;,0). In
Fig. 6 it can be recognized the approximate rectangular outline of our lab. At
the right side the windows, at the front side the open cupboards and the door
and clipboard at the left wall have good structure, so that vergence control with
Gabor filters was possible.

|_._ﬂ .
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Abb. 6. Depth mép Z(7:,0) of our lab. The gaze directions range from —53... + 43°.
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