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Abstract. Arificial vision systems for mobile robots necessitate sensors
and representations that enable a real-time reactive behavior. The log-
polar transform has been shown to be a variable resolution scheme that
achieves a high compression of the non-foveal part of an image. Such
space variant sensors must inevitably be active in order to utilize the
high- and homogeneous resolution fovea. We study here the computation
of the heading direction using a log-polar sensor able to fixate. The polar
nature of the complex logarithmic mapping produces a computationally
superior representation of the optical flow. Based on an insight for the
translational case we present a new algorithm for computing the focus
of expansion by applying fixation in case of general motion.

1 Introduction

In this paper, we study the properties of the motion field using a space variant
resolution scheme. We propose algorithms for the recovery of 3D-motion which
exploit the advantages of space variant sensing and fixation. Space variant sens-
ing is one of the main features of an attentive vision system. Attention arises:
as a necessity in building robot systems that are able to react according to the
visual stimuli in a dynamically changing environment. Even with the fastest im-
age processing architectures it is not possible to process a uniformly sampled
image with a wide field of view in a process time enabling immediate reaction.
To overcome the reaction time constraints we need an image data reduction
scheme which conserves high resolution in the center of the image - the fovea-
and a gradually decreasing resolution area - the periphery. Since most visual
motion tasks necessitate a wide field of view we have to elaborate algorithms for
computing the optical flow and recovering the 3D-motion and structure using
space-variant resolution. In this paper, we do not only elaborate motion algo-
rithms regarding the logarithmic polar plane as a practical necessity. We show
that the log-polar mapping has also computational advantages with respect to
motion recovery tasks:

— We propose a 1D-search algorithm for the computation of the translation
direction in case of pure translation.

— We show that fixation enables the computation of the translation direction
in case of general motion.
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Pursuit and optokinetic eye movements have long been considered by the psy-
chophysicists as a means to overcome the limited field of view, to bound the
binocular disparity, and to eliminate the motion blur [3]. Here, we prove that
eye movements are not only an implication of the inhomogeneous retina but they
support the recovery of 3D-motion.

We proceed with a survey of approaches to space variant motion sensing. We
refer to non-motion related work on space-variant sensing in a companion paper
in the same proceedings. Jain et al. [6] were the first who applied the complex
logarithmic mapping in image sequence analysis. Given the motion information
from other sensors and assuming pure translation they transformed the images
into the log-polar plane using the focus of expansion as the center. of the transfor-
mation. The depths of the viewed points were easily obtained by inspecting only
the shifts along one coordinate of the log-polar plane. Tistarelli and Sandini [10]
derived the motion equations for the log-polar plane and proposed a method for
the computation of the time to collision. Weiman [11] proposed several tracking
behaviors based on the log-polar mapping. The following references concern fix-
ation in the cartesian plane. Aloimonos et al. [1] and Bandopadhay and Ballard
[2] showed how the structure from motion problem is simplified in case of active
tracking. Fermiiller and Aloimonos [4] proved that normal flow measurements
are sufficient for bounding the locus of the focus of expansion and the time to
collision. Raviv and Herman [8] studied the geometric properties of fixation and
derived the locus of 3D-points whose projections yield a zero-optical flow in case
of motion with three degrees of freedom (road following). Taalebinezhaad (9]
proposed a method that simulates tracking by a pixel shifting process without
actively controlling the mechanical degrees of freedom of the camera. The trans-
lation direction is then obtained by minimizing the depth deviation from the
fixation point using only normal flow measurements. A similar method to ours
was proposed in [5] for the derotation of the cartesian motion field.

2 The log-polar motion field

We use (z,y) for the cartesian coordinates and (p,n) for the polar coordinates
in the plane. We apply the log-polar mapping on the non-foveal part of a retinal
image. Therefore, we define as the domain of the mapping the ring-shaped area
Po < p < Pmaz Where pg and ppq, are the radius of the fovea and the half-size
of the retinal image, respectively. Furthermore, a hardware CCD-sensor with
the log-polar property or a software implementation of the mapping needs a
discretization of the log-polar plane. By assuming that N, is the number of cells
in the radial direction and N, is the number of cells in the angular direction
the mapping from the polar coordinates (p, 7) to the log-polar coordinates &7
reads as follows (see also [10])
€= losa(;p;) 7= %’;E'n with a= ™ "(55%%),

-From now on we will use only 7 ranging from 0 to 2.

We proceed with a brief summary of the cartesian motion equations. Let
an object be moving with translational velocity v = (vs,vy,v;)7 and angular
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velocity w = (wz,wy,w;)T relative to the camera. We denote by X' the position
of a point on the object with respect to the camera coordinate system, by 2
the unit-vector in the z-axis taken as the optical axis, and by =z = (=, y, 1)T the
projection of X on the image plane Z = 1. The motion field vector reads

é:ii}xix(vxz)-+ix(zx(zxw)). (1)

In case of ego-motion of the camera in a stationary environment the above
equation as well as all following equations have to be read with the opposite
sign for v and w. The 3D-motion estimation problem is known as the recovery
of all the depths, the direction of translation v, and the angular velocity from
the motion field #. The magnitude of translation cannot be recovered due to the
scale ambiguity that couples translation and depth.

We first compute the motion field vectors in the polar plane. The definition
of the polar coordinates yields

p=zTcosn-+ysinn n:;(-—zsmn+ycosn). (2)
The radial component of the log-polar motion field can be easily obtained:
1 p

In order to make the equations for the log-polar plane more readable we introduce
the polar unit-vectors p = (cos 7, sin n)T and 7 = (—sinn, cos )T . Furthermore
we introduce the vectors vgy = (vz, vy)T and wzy = (wz,wy)T to describe motion
parallel to the image plane. We will carry out the computations for the polar
motion field (p,7). The log-polar motion field is different only in the radial
component ¢ which can be computed from p straightforward (3). This will also
enable us to find out that most of the advantages are due to the polar nature of
log-polar plane.

Using the cartesian motion field (1) and the transformation rules (2) we
obtain the following expressions which relate the polar motion field to the 3D
geometry (depths Z) and motion (v,w) of the scene: '

T -~
_ _Pv: | UzyP 2y, T »
P——7+7+(1+P Jwzy T
T 2 T =
= o7 P +w;. ( )
Hence, the log-component of the motion field reads
T ~
. Uz vzyp 1 T n
lna£_”—f+ pZ +(E+p)wzyn‘ (5)

We see that the motion field is the sum of the translational part including the
depth information and a rotational part like in the cartesian formulation. How-
ever, we note that the influence of the motion-components parallel to the optical
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axis are decoupled. The translation v, appears only in p and the rotation w, only
in 7. This was expected due to the properties of the complex logarithmic map-
ping regarding two-dimensional expansions and rotations, respectively. However,
as it is already known the main problem in recovery of 3D-motion is to totally
decouple the rotational from the translational effects.

2.1 Pure translation

If there is only translation parallel to the optical axis the polar (and the log-
polar) motion field has only one component. The magnitude variation of the
log-component £ in this case depends only on the depths of the projected 3D
structures. Closer inspection of the equations of the polar translational motion
field

T ~ )
. _ _PYs . UzyM

yields following facts:

1. The angular component reads n = %ﬂ. There are two lines in the motion
field 7 = ¢ and 7 = ¢ + 7 (or ¢ — 7 depending on which of both is in [0, 27)
) where 7 vanishes for every p. The angle ¢ gives the direction of (ve,vy) or
the line where the focus of expansion lies. Assuming that there is no direction
n where the integral [7™** —3dp vanishes the desired directions ¢ and ¢ =+ =
are given by the global minima of [ 1?dp in the presence of noisy measurements.
The above sufficient condition is satisfied if the camera does not gaze on a point
of infinite depth. For example, the condition is not satisfied if the origin of the
cartesian image lies above the horizon’s projection. If the integral [ 7?dp vanishes
everywhere we imply the existence of a pure v,-translation.

2. Along the lines n = ¢ + /2 and n = ¢ — 7/2 or (¢ + 37/2) the flow reads

ol 2
v, vz + vy

Potx/2 = =P  Npsx/z =% 7

By dividing we obtain

PPig+x/2 [o2 +v2

which is the tangent of the polar angle of the translation direction.

Hence, it is possible by an explicit search for the global minima along the
angle coordinate - which is feasible in the polar plane due to the low resolution
- to obtain the full translation direction.

2.2 Fization in the log-polar plane

We assume that the camera mount has two controllable degrees of freedom which
- enable a rotation about an axis parallel to the image plane through the optical
center. We denote by (£2;, £2;,0) the resulting additional angular velocity. The
motion field arising from the relative motion of the camera to the environment
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(ego and/or object motion) follows from (1)

8= 2222 ayug — Ba) + (L+ 22wy — D) — s
§= 2T — (14 9) (W = 2e) + zyluy — By) + 2ws. 8)

We define fixation as keeping the same point in the image center along time. The
fixated point may be a point on a moving object in case of a stationary or moving
observer or a stationary point in the case of a moving observer. Fixation is
achieved by closed loop control where controllables are the pan and the tilt angle
of the camera. The formally defined fixation criterion we use is the vanishing of
the motion field vector at the central point of the image: #|z=o = 0. This is
equivalent to

2 fwy—2,=0 and %”-—(w,-.rz,)=0, (9)
o o

where Z, is the depth of the point projected on the image center. What kind of
control strategy is applied to achieve the fixation criterion is not the subject of
this paper. We will assume that the system is in steady state mode and we will
study the effects of the satisfied fixation criterion in the peripheral motion-field
of the log-polar plane. We turn now to the motion field on the polar transform
of the periphery which reads in case of fixation after rewriting using (9) and
introducing v, = v;/Z, and v’,y = Ysy/Z,

. Zo Z, ”
p=—=pv, +(F —(L+s)v5b

. 1.2 N
= —(-—22 - l)vf',ﬂ+wz- (10)

To reduce the number of symbols we will use again non-primed symbols for the
translation. We first note that we obtain as independent unknowns the depths
—ZZF- relative to the depth of the fixation point which results in an object centered
scene representation. Second, the other unknowns are reduced from initially five
in the non-fixation case - three for rotation and two for the translation direction
- to four: the three scaled translation components, and one angular velocity
component. This dimension reduction was already proved in the cartesian plane
in [1; 2].

We next propose an algorithm to recover the motion parameters in case of
fixation from the motion field in the log-polar plane. Equivalent to the case of
pure translation without fixation our method is based on the observation that the
angular component 7 equals w, everywhere along the line n = ¢ where tan¢ =
vy /vz. However, this is not a necessary condition. The angular component 1
equals w; in the additional case that Z = Zj along a radial line, or more general
7 is constant if the relative depth is linearly varying: Z¢ — 1 = kp. This may
happen if the environment is planar. For a particular 7o the radial component
for n = no reads in this case

f’ = -(1 + kp)vz + (kp - pz)vg'ybqo'
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"We can exclude this case if we test p subject to quadratic variation variation
with respect to p. The algorithm we propose comprises following steps:

1. We build the average 7 over p for every 1 and the variance [, (7 — 7)%dp.

Thevariancevanishesatn=¢andn=¢iwandatthemglawﬂmZ:Zo
on an entire radial line which is excluded as described above.
" We carry out an one-dimensional search for the global minima of the above
integral. The global minima give the direction of the line containing the FOE
in the cartesian plane as well as w, (equal the average 7 at n = ¢). We exclude
additional global minima due to linear depth variation as described above.

2. At n=¢+ % and n=¢ — § (or ¢ + 5F) the motion field reads:

. Z . 1,2
p:—jpﬂ, r}:;(f--lh/ﬂi-&‘v;-ﬁ-w,.

We build the following averages

1 =Pws +(ZofZ — 1)y Jv2+v2 and p/p=—Zo/Zv;.

3. Building for every point the deviation from the average we obtain

Ly

b BTz
_P_P/P_ ‘(Z Z"/Z)
= 77— (p = P = |22 + 3o — Tl B).

After testing the vanishing of the lhs of the latter equation indicating a frontal
translation we obtain

2
—_— == — (11)
Jrr+vz  pi—pn—(p =P

for every point along the lines n=¢+ S andn=¢— 5 (or ¢+ %!-) Since w;
is given by the second step we are able to recover the angle between translation
and the optical axis. Its tangent is equal to the inverse of the above expression.

We elaborated a method to recover the direction of translation in the case
of fixation from the polar motion field based on a feasible 1D search over the
angle range. We emphasize that neither we did make any use of the amount of
rotation required to fixate (£2s, 2y) nor did we constrain the motion degrees of
freedom. The equations for the logarithmic field are obtained straightforward by
substituting (3) in the above expressions. This substitution does not introduce
any computational advantages besides complexity reduction, hence, the potential
of the method relies only on the polar nature of the log-polar mapping.
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3 Experiments on the translation computation

In this section, we present results on the computation of the translation direction
in the case of pure translation. We tested the method proposed in section 2 in
a log-polar sequence obtained from the cartesian real world sequence “Marbled
Block” * [7]. One image of the sequence and its log-polar transform are shown in
Fig. 1. The log-polar image is drawn such that the n-axis is the horizontal axis
and the {-axis is the vertical axis pointing downwards. To interpret the log-polar
images we note that the angle 7 is measured beginning counterclockwise from
the y-axis which is pointing downwards. So moving horizontally in the log-polar
plane we first see the transformed lower right quadrant, then the transformed
upper right quadrant and so on. The compression rate obtained by the log-polar
transformation is 1:25.

The optical flow is computed using the spatiotemporal derivatives and the
assumption that the flow is locally affine in the cartesian domain. Based on
the computed log-polar flow of the “Marbled Block” sequence Fig. 1 (bottom-
left) we apply the method in section 2 to estimate the direction of translation.
We show in Fig. 1 (bottom right) the computed average angular component
7 as a function of the angle. We obtain two global minima - differing by 180
degrees as expected - giving as result an angle of 253 degrees for the direction -
of the line containing the FOE. By averaging the expression ﬁ;,*ﬁ'% over the
diameter line corresponding to 253 — 90 = 163 degrees we obtain as estimated
cartesian FOE-position (—247,102). Using the intrinsic calibration parameters
of the sequence we find out that the angle error between the veridical and the
estimated translation direction is 5 degrees which is an acceptable estimation
error given the fact that the computational effort decreased to its 4%.

We introduced two new methods for computing the focus of expansion by
exploiting the structure of the flow patterns in the log-polar motion field. Both
are based on a 1D global minimum search which is inexpensive due to the low
angular resolution. The second method necessitates the pursuit movement of the
camera proving, thus, that a full attentional mechanism based on both fixation
and space-variant sensing enables motion estimation in case of general motion.
We implemented the first method in a translating real word sequence obtaining
an estimation error of 5° in the translation direction. We plan to implement
the second method in the near future using the controllable degrees of freedom
of an active binocular head. The mathematical advantages of our approach are
due to the polar representation in the log-polar image whereas the complexity
advantages are due to the logarithmic nature of the log-polar image.
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Fig.1. The original cartesian image (left above), the log-polar transformed image
magnified for illustration (right above), the computed optical flow in the log-polar
domain (left below), and the average of the squared angular components along the
radius as a function of the angle n for the Marbled Block sequence (right below).
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