Active Contour Based Object Detection

Falk Lempelius and Josef Pauli
Lehrstubl fiir Kognitive Systeme, Institut fur Informatik und Praktische Mathematik

Christian- Albrechts- Universitat zu Kiel

1 Introduction

A usual way to detect the contour of an object is to extract the edges of the whole image
using the magnitude of the grey level gradient, then to match an edge model of the object
with the edge image and to locate it by looking for the strongest correlation. The gradient
based edges come from grey level fluctuations within the object and from the object border.
Often the edges within the object are undesirable due to shading caused by nonperfect light-
ing conditions. Instead of that the edges at the object border are stable and object detection
should mainly take these into account.

Therefore a useful approach to detect border edges is to use a priori knowledge for distribut-
ing a set of points roughly around the object in a first step. In the second step the procedure
iteratively moves the points towards the object to stop finally if all points are laying directly
at the border. The polygon received by connecting every point of the sequence with its suc-
cessor is an approximation of the object contour. This way of proceeding first was discussed
by Kass et al. [1]. Such a sequence of points that change their location by time based on
several constraints is called an active contour or figuratively, a snake.

The kind of constraints which let the snake move (or more exactly the points) is a char-
acteristic property of every snake algorithm. There exist different snake algorithms, which
minimize the so-called snake energy. The snake energy represents the grade of the approx-
imation of the object border, it can depend on image grey levels, curvature, smoothness,
snake length ete. (see [1], [2]).

In this paper two calculation rules are presented for forcing a snake to approximate the
contour of a selected object or the outer contour of an assembly of objects. Actually this
second capability of extracting the contour of an object assembly characterises the novelty
of the approach. The snake works on an image of flat scene objects. Therefore the border of
the real 31) object can easily be reconstructed from the object contour in the image. It was
intented to develop a system which works with nearly arbitrarily chosen initial snake points,
to get a snake which “finds” the object even if the initial points are put far away from the
desired object. A further goal was to close gaps in the outer contour of an object assembly
if the space between two objects has to be bridged respectively.

2 Calculation Rules

With regard to objects and object assemblies it is not possible for the snake to decide if a
nonconvex object should be mould or a gap between two objects should be bridged. For this
reason there are two different algorithms which serve the two contradictory requirements
and the user has to select the proper algorithm.

The two calculation rules are based on the analysis of the 8neighbourhoods of each snake
point (Figure 2a). The algorithms run in a loop of iterations and in each iteration the
sequence of all points is considered. FEach point is moved in a way that the energy of the

snake can be reduced maximally. The loop stops when the energy has converged to a minimal

value.

2.1 Minimization of the Snake Length

Using the snake length as the main constraint for appoximating the object, it is obviously
possible to close gaps in the contour, in the same way as to span a bigger distance between
two objects (Figure 1). The minimization takes place in the following way: Start by taking

Figure 1: (a) start polygon, (b) end polygon, (¢) distribution of the points at the end.

_in the &
neighbourhood of P; which minimizes the euclidean distance to P,_y. If the replacing of P;

to shrink. Actually, the points rotate around the object and come closer and closer (Figure

two successive points P,y and P; into consideration. lLook for the point P;
is done for all points of the sequence iteration by iteration the snake polygon begins

2b). However, the replacement of point P, by P, . only makes sense if the grey level jump

in

is smaller than a given threshold.

0 1 2
X
3 4 _pl[s X\\
| e AN
\ 4 \\
d 7 8 / S
R1 R /
) N
g
,
/ -
{ -
X4

’ (a) (b)

Figure 2: (a) 8mneighbourhood, (b) length minimization.

Applying this procedure the snake tends to approximate only convex objects or forms the
convex hull of several included objects. The rotating behaviour of points can be used to make
the algorithm more robust against salt and pepper disturbances in the image. Everytime
when an edge is detected (because the grey level jump exceeds the threshold) a so-called hit
is counted. Thus it can be introduced another parameter value for the maximum number of
edge hits. A point does not have to stay constantly at an edge when it is detected for the
first time. Rather, in combination with the rotating behaviour a snake point can pass by
isolated points in the image that do not belong to the desired contour. All together the snake
points approach the object, run along the object contour and stay at remarkable places of

the contour, e.g. edges (Figure 1¢). To avoid too big gaps between points of the snake, a
maximum value for the distance between the snake points can be used.

2.2 Minimization of the Snake Polygon Area

As mentioned in the previous section, the minimization of the snake length is only a useful
approach for an object assembly or a convex object. However, to mould nonconvex areas of
an object a calculation rule is needed that works mainly by minimizing the area of the snake
polygon. Instead of minimizing the whole area of the polygon many times in an iteration
(equal to the number of snake points), it is more efficient to calculate the triangle areas
(Figure 3a) spaned by the vectors

T
Vi, =Py — P, and Vo, :=P — P, for P=| vy (for i=0,---,n—2), (1)
0
by using the following formula:
Vi, x Vy,
‘/trmm,gle,; = %7 Atrm,ngle,; = ||‘/t7’7fa,ngle,; - |7T3(‘/trm,ngle,;) . (2)

The x denotes the cross product and 73 the projection on the third component of the vector.
The Viriangie, 18 a 3-dimensional vector, and in our special case the first two components are
obviously zero because Vi, and V,, are laying in the x-y-plane.

XX

(;) ? (b)
Figure 3: (a)

single triangle minimization, (b) area minimization.

The third component represents the area of the triangle and its sign is important for deciding
if the triangle belongs to the polygon area or not. The sign depends on enumerating the
points F; clockwise or counterclockwise. For example the area of the triangle that is described
by Ps, Fs, and Pz in Figure 3b does not belong to the area of the polygon and its sign differs
from the sign of all other triangle areas. So the area Aijqnq0., cannot be minimized because
it is unknown whether m3(Vi iangie,) is positiv or negativ. To manage this problem a value o

o= sgn(wg(nf (Tkt T) X (ik o))) (3)

i=0 Yi+1 — Yo Yivr2 — Yo

is used,

with which each single triangle area is normalized in some way. The sum of cross products
calculates a vector with the (double) area of the snake polygon in its third component. The
variable o is positive if the points P; of the polygon run counterclockwise. Consequently the
expression

g - WR(Wria,w,gle,;)v (4)

is received, which describes one single triangle area that has to be minimized. That means,
in every iteration of the algorithm it is tested which point in the 8-neighbourhood of P,
minimizes the area of the triangle area om3(Viriangie,_,) optimally. The grey level jump is
tested in the same way as in the previous algorithm. The snake polygon shrinks in the way
as shown in Figure 3b.

3 Experiments

We demonstrate exemplarily a combined use of the two calculation rules. The first calculation
rule minimizes the contour length of an arch shaped object. Figure 4 shows the snake at
every 10 iterations of the loop. The algorithm stops with a nearly rectangular contour, and
all snake points are located at the convex part of the object border. If we now use these
snake points as the initial distribution for the second calculation rule, also the nonconvex
part of the object border can be approximated (before starting the algorithm the gap is
automatically filled with equidistantly distributed points). Figure 5 shows the snake at
every five iterations of this second loop.

The depicted objects are real objects and the image background has small grey level

fluctuations. The initial distance of the snake points was five pixels and to detect edges
a threshold of 20 grey levels was used. The maximum distance between a point and its
successor was unlimited and the allowed number of edge hits was 25.

Figure 4: Approximation of the snake polygon to an object by length reduction, every image
after 10 iterations. Upper left: initial polygon with equidistantly distributed points. Lower
right: end positions of the snake points.

Figure 5: Minimization of the included area, starting with a polygon similar to the end

polygon in figure 4 but with equidistantly distributed points.

4 Applications

Using a simple camera arrangement, where the optical axis is directed perpendicular to the
flat objects, it is easy to get a relation between the final snake points in the image and the
real world coordinates by a simple affine transformation. Thus a robot arm could handle
some tightly laying objects as a single unit, e.g. to weld them together (the received snake
polygon would be the welding seam). Actually we implemented a system where the end-
effector of a robot arm runs along the border of objects which are determined using the
active contour approach.

5 Conclusion

So far our snake algorithm does not make use of gradient based information. However, a
gradient based algorithm like the one presented in [3] could optimize the grade of approxi-
mation. Therefore such an algorithm could use our final points as initial points. Rather, our
snake uses a threshold for the grey level jump to detect edges if they are not too smooth.
This strategy is useful if the initial contour is far away from the object border. Until now the
initial snake points are set via mouse clicks. For an automatical setting several approaches
are conceivable, e.g. learning a point distribution model (see [4]) or decomposing an image
into objects and background.

References

[1] M. Kass, A. Witkin, D). Terzopoulos, Snakes: Active Contour Models, International
Journal of Computer Vision, pp. 321-331, 1988.

[2] D.J. Williams, M. Shah, A Fast Algorithm for Active Contours and Curvature Esti-
mation, Image Understanding, Vol. 55. No 1. January, pp. 14-26 1992.

[3] D. Young, Active Contour Models (Snakes), March 1995,
http://www.cogs.sust.ac.uk/users/davidy/teachvision/vision7.html.

[4] T.F. Cootes, C.J. Taylor, D. H. Cooper, J. Graham, Active Shape Models - Their
Training and Application, Computer Vision and Image Understanding, Vol. 61, No 1,
January, pp. 38-59, 1995.

