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Abstract. We present an approach for learning appearance-based re-
cognition functions, whose novelty is the sparseness of necessary train-
ing views, the exploitation of constraints between the views, and a spe-
cial treatment of discriminative views. These characteristics reflect the
trade-off between efficiency, invariance, and discriminability of recogni-
tion functions. The technological foundation for making adequate com-
promises is a combined use of principal component analysis (PCA) and
Gaussian basis function networks (GBFN). In contrast to usual applica-
tions we utilize PCA for an ellipsoidal interpolation (instead of approxi-
mation) of a small set of seed views. The ellipsoid enforces several biases
which are useful for regularizing the process of learning. In order to con-
trol the discriminability between target and counter objects the coarse
manifold must be fine-tuned locally. This is obtained by dynamically
installing weighted Gaussian basis functions for discriminative views.
Using this approach, recognition functions can be learned for objects
under varying viewing angle and/or distance. Experiments in numerous
real-world applications showed impressive recognition rates.

1 Introduction

Famous physiologists (e.g. Hermann von Helmholtz) insisted on the central role
of learning in visual processes [2]. For example, object recognition is based on
adequate a priori information which can be acquired by learning in the actual
environment. The statistical method of principal component analysis (PCA) has
been used frequently for this purpose, e.g. by Turk and Pentland for recognition
of faces [8], or by Murase and Nayar for recognition of arbitrary objects [3]. The
most serious problem in using PCA for recognition is the daring assumption of
one multi-dimensional Gaussian distribution of the vector population, which is
not true in many realistic applications. Consequently, approaches of nonlinear
dimension reduction have been developed, in which the input data are clustered
and local PCA is applied for each cluster, respectively. The resulting architec-
ture is a Gaussian basis function network which approximates the manifold more
accurately by a combination of local multi-dimensional Gaussian distributions
[6]. However, large numbers of training views are required for approximating



the Gaussians. Furthermore, the description length has increased which makes
the recognition function less efficient in application. OQur concern is to reduce
the effort of training and description by discovering and incorporating invari-
ances among the set of object views.! Apart from characteristics of efficiency
and invariance, the major criterion for evaluating a recognition function is the
discriminability, i.e. the capability to discriminate between the target object and
counter objects. Similar views stemming from different objects are of special in-
terest for learning reliable recognition functions. This principle is fundamental
for the methodology of support vector machines. At the border between neigh-
boring classes a small set of critical elements must be determined from which
to construct the decision boundary [9]. Although the border elements play a
significant role it would be advantageous to additionally incorporate a statisti-
cal approximation of the distribution of training samples. Our approach takes
special care for counter (critical) views but also approximates the distribution
of all training views.

2 Foundation for object recognition

For the purpose of object recognition we construct an implicit function fi™,
which approximates the manifold of appearance patterns under different viewing
conditions.

f™A,Z2)=0 (1)

Parameter vector A specifies a certain version subject to the type of the function,
and measurement vector Z is the representation of an appearance pattern. In
terms of the Lie group theory of invariance [4], the manifold of realizations of
Z is the orbit of a generator function whose invariant features are represented
in A. Function f¥™ must be learned such that equation (1) holds more or less
for patterns of the target object and clearly not holds for patterns of counter
situations. Solely small deviations from the ideal orbit are accepted for target
patterns and large deviations are expected for counter patterns. The degree of
deviation is controlled by a parameter .

| f™(A,Z) | <y (2)

The function ™ can be squared and transformed by an exponential function
in order to obtain a value in the unit interval.

F9(A, Z) = exp (- ™ (A, Z)?) 3)

If function f& yields value 0, then vector Z is infinite far away from the orbit,
else if function f&! yields value 1, then vector Z belongs to the orbit. Equa-
tion (1) can be replaced equivalently by

! Our work in [6] replaces the concept of invariance realistically by the concept of
compatibility.



19A,z) =1 (4)

For reasons of consistency, we also use the exponential function to transform
parameter ¢ into ¢ in order to obtain a threshold for proximities, i.e. { :=
exp (—4?). With this transformations, we replace equation (2) equivalently by

A, Z) > ¢ (5)

3 Concept of canonical frames and ellipsoid basis function

Learning a recognition function requires the estimation of parameter vector A
based on measurement vectors Z. However, for an appearance-based approach
to recognition the input space is high-dimensional as it consists of patterns,
and frequently, also the parameter vector is high-dimensional. Consequently,
first we project the high-dimensional space in a low-dimensional subspace (so-
called canonical frame), and then we do the learning therein. The construction
of canonical frames is based on so-called seed images which are representative
for the object. The learning procedure is based on a coarse-to-fine strategy in
which the coarse part does the subspace construction and is responsible for global
aspects in the manifold of patterns. The subsequent refinement step treats local
aspects in the manifold by taking more specific object views or counter situations
into account, i.e. so-called wvalidation views.

We impose three requirements to canonical frames. First, the implicit func-
tion will be defined in the canonical frame and should have a simpler description
than in the original frame. Second, equation (4) must hold perfectly for all seed
images which are represented as vector Z, respectively. Therefore, the param-
eters A are invariant features of the set of all seed images. Third, the implicit
function should consider generalization biases as treated in the theory of Machine
Learning [10, pp. 349-363]. For example, according to the enlarge-set bias and
the close-interval bias, the implicit function must respond continuous around the
seed vectors and must respond nearly invariant along certain courses between
successive seed images (in the space of images). The minimal-risk bias avoids
hazardous decisions by preferring low degrees of generalization.

An appropriate canonical frame together with a definition of the implicit
function can be constructed by principal component analysis (PCA). Remark-
ably, we use PCA for interpolating a small set of seed images by a hyper-ellipsoid
function. As all seed images are equal significant we avoid approximations in or-
der not to waste essential information. Based on the covariance matrix of the
seed images, we take the normalized eigenvectors as basis vectors. The represen-
tation of a seed image in the canonical frame is by Karhunen-Loéve erpansion
(KLE). Implicit function fi™ is defined as a hyper-ellipsoid in normal form with
the half-lengths of the ellipsoid axes defined dependent on the eigenvalues of the
covariance matrix, respectively. As a result, the seed vectors are located on the
orbit of this hyper-ellipsoid, and invariants are based on the half-lengths of the
ellipsoid axes.



4 Construction of canonical frame and ellipsoid basis
function

Let 2 := {X?|X? € R™;i = 1,---,I} be the vectors representing the seed
images of an object. Based on the mean vector X°¢ the covariance matriz C is
obtained by

1
Cim 7 M-MT; M= (X;— X%, X - X) (6)

We compute the eigenvectors ey, - - -, ey and eigenvalues A1, - -+, A\; (in decreasing
order). The lowest eigenvalue is equal to 0 and therefore the number of relevant
eigenvectors is at most (I — 1) (this statement can be proved easily). The I
original vectors of {2 can be represented in a coordinate system which is defined
by just (I — 1) eigenvectors ej,---,er—; and the origin of the system. KLE
defines the projection/representation of a vector X in the (I — 1)-dimensional
eigenspace.

X = (i'la"'azﬁI—l)T = (61,"',81_1)T . (X _XC) (7)

Based on PCA and KLE we introduce the (I — 1)-dimensional hyper-ellipsoid
function.

I—-1 .
™A, Z) = (2 %) 1 ®)

Measurement vector Z := X is defined according to equation (7). Parameter
vector A := (ky,---,Kk7_1)] contains parameters k;, which are taken as half-
lengths of the ellipsoid axes in normal form and are defined as

k=T —=1)-N 9)

For the special case of assigning the KLE-represented seed vectors to Z, respec-
tively, we can prove that equation (1) holds perfectly for all seed vectors.? All
seed vectors are located on the orbit of the hyper-ellipsoid defined above, and
therefore, the half-lengths are an invariant description for the set of seed vectors.
The question of interest is twofold, (i) why use ellipsoid interpolation, and (ii)
why use PCA for constructing the ellipsoid?

Ad (i): The hyper-ellipsoid considers the enlarge-set and the close-interval
biases, as demonstrated in the following. Let us assume three points X7, X3, X3
in 2D, visualized as black disks in the left diagram of Figure 1. The 2D ellipse
through the points is constructed by PCA. The right diagram of Figure 1 shows
a constant value 1 when applying function f¢¢ (as defined in equations (8) and
(3)) to all orbit points of the ellipse. Therefore the generalization comprises all
points on the ellipse (close-interval bias). The degree of generalization can be
increased furthermore by considering the threshold ¢ and accepting for f&* small

2 The proof is given in the Appendix.



deviations from 1. The relevant manifold of points is enlarged, as shown by the
dotted band around the ellipse in Figure 1 (enlarge-set bias).

X2

Fig. 1. (Left) Input space with three particular points from which a 2D ellipse is defined
by PCA, small deviations from this ellipse are constrained by an inner and an outer
ellipse; (Right) Result of function e along the ellipse, which is constant 1, accepted
deviations are indicated by horizontal lines with offset F(.

Ad (ii): In general, more than I points are necessary for fitting a unique
(I — 1)-dimensional hyper-ellipsoid. PCA determines the first principal axis by
maximizing the variances which are obtained by an orthogonal projection of the
sample points on hypothetical axes, respectively. Actually, this is the constraint
which makes the fitting unique. Figure 2 shows two examples of ellipses fitting
the same set of three points, the left one was determined by PCA, and the right
one was fitted manually. As expected, the variance on the right is lower than on
the left, which is measured along the dashed axes, respectively. Exemplary, it is
also observed in the figure that the maximum variance (on the left) implies a
minimal size of the ellipsoid. The size of the ellipsoid manifold correlates with the
degree of generalization, and therefore, PCA produces moderate generalizations
by avoiding large ellipsoids (minimal-risk bias).

5 Fine approximation based on validation views

The manifold defined by the hyper-ellipsoid must be refined in order to con-
sider the discriminability criterion of recognition functions. We take an ensemble
of walidation views X% into account (different from the ensemble of validation
views) which in turn is subdivided into two classes. The first class X' (positive)
of validation views is taken from the target object additionally and the second
class X" (negative) is taken from counter objects or situations. Depending on
certain results of applying the implicit function f&? to these validation views we
specify spherical Gaussians and combine them appropriately with the implicit
function. The purpose is to obtain a modified orbit which includes target views
and excludes counter views.
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Fig. 2. Ellipses fitted through three points; (Left) Ellipse determined by PCA, showing
first principal axis, determined by maximizing the variance; (Right) Ellipse determined
manually with less variance along the dashed axis.

For each validation view X% € X*PUX™" the function fC1 yields a measure-
ment of proximity n; to the hyper-ellipsoid orbit.

n; = f9(A, X3) (10)

For n; = 0 the view X7 is far away from the orbit, for n; = 1 the view belongs
to the orbit. There are two cases for which it is reasonable to modify the implicit
function. First, maybe a view of the target object is too far away from the orbit,
i.e. X§ € X" and n; < (. Second, maybe a view of a counter situation is too
close to the orbit, i.e. X7 € X*™ and n; > (. In the first case the modified func-
tion should yield a value near to 1 for validation view X7, and in the second case
should yield a value near to 0. Additionally, we would like to reach generalization
effects in the local neighborhood (in the space of views) of the validation view.
The modification of the implicit function takes place by locally putting a spheri-
cal Gaussian ij ¢ into the space of views, then multiplying a weighting factor to
the Gaussian, and finally adding the weighted Gaussian to the implicit function.
The mentioned requirements are reached with the following parameterizations.
The center vector of the Gaussian is defined as X?}.

9%) = exp (- 11X - X3 (1)

For the two cases we define the weighting factor w; dependent on ;.

we = { 1—mn; : first case (target patterntoo far away from orbit) (12)
i =

—n; : second case (counter pattern too closeto orbit)



The additive combination of implicit function and weighted Gaussian yields
a new function for which the orbit has changed, and in particular meets the
requirements for the validation view X = X7 In both cases, the Gaussian value
is 1, and the specific weight plays the role of an increment respective decrement
to obtain the final outcome 1 for the case X7 € AP respective 0 for vector
X% € X" The coarse-to-fine strategy of learning can be illustrated graphically
(by recalling and modifying Figure 1). The course of proximity values obtained
along the ellipse is constant 1 (see Figure 3, left and right), and along a straight
line passing the ellipse perpendicular, the course of proximity values is a Gaussian
(see left and middle).
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Fig. 3. (Left) Ellipse through three seed vectors and perpendicular straight line across
the ellipse; (Middle) Gaussian course of proximity values along the straight line; (Right)
Constant course of proximity values along the ellipse.

The first example considers a counter vector, 7.e. X§ € X", which is too
near to the ellipse. A Gaussian f® is defined with XY as center vector, and
weight wy defined by 72. Based on the additive combination of implicit function
and weighted Gaussian the value decreases locally around point X3. Figure 4
(left and middle) shows the effect along the straight line passing through the
ellipse, i.e. the summation of the two dashed Gaussians results in the bold curve.
Figure 4 (left and right) shows the effect along the ellipse, i.e. the constancy is
disturbed locally, which is due to diffusion effects originating from the added
Gaussian.

The second example considers an additional view from the target object,
i.e. Xy € X'P, which is far off the ellipse orbit. The application of f&% at X}
yields n3. A Gaussian is defined with vector Xthken as center vector, and the
weighting factor ws is defined by (1 — 73). The combination of implicit function
and weighted Gaussian is constant 1 along the course of the ellipse (for this
example), and additionally the values around Xére increased according to a
Gaussian shape (see Figure 5).
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Fig. 4. (Left) Ellipse through three seed vectors and perpendicular straight line through
a counter vector located near to the ellipse; (Middle) Along the straight line the positive
Gaussian course of proximity values is added with the shifted negative Gaussian orig-
inating from the counter vector, such that the result varies slightly around 0; (Right)
Along the ellipse the values locally decrease at the position near the counter vector.
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Fig. 5. (Left) Ellipse through three seed vectors and perpendicular straight line through
a further target vector located far off the ellipse; (Middle) Along the straight line the
positive Gaussian course of proximity values is added with the shifted positive Gaussian
originating from the target vector, such that the result describes two shifted Gaussians;
(Right) Along the ellipse the values are constant 1.

6 Construction of recognition functions

The recognition function f"° is defined as sum of implicit function and linear
combination of Gaussians.

J
Fre(X) = fOUA,X) + Y w; - f7(X) (13)

Jj=1
Vector X represents an unknown view which has to be recognized. Parameter
vector A is determined during the coarse approximation phase, and the set



of Gaussians is constructed during the fine approximation phase. Factor 7 for
specifying the extent of the Gaussians is obtained by the Levenberg-Marquardt
algorithm [7, pp. 683-688].

This coarse-to-fine strategy of learning can be applied to any target object
which we would like to recognize. If k € {1,---, K} is the index for a set of target
objects, then recognition functions f;°¢, with k& € {1,---, K}, can be learned
as above. The final decision for classifying an unknown view X is by looking
for the maximum value computed from the set of recognition functions f7°¢,
ke{l,---,K}.

[ re

k* := arg ke{ml,z-i-?fK} (X)) (14)
For taking images under controlled viewing conditions, i.e. viewing angle or
distance, the camera can be mounted on a robot arm and moved in any desired
pose. The simplest strategy for selecting seed views is a regular discretization
of the space of possible viewing poses. The selection of validation views may be
done in a similar way, but considering pose offsets for views of the target objects
and also taking images from counter situations. Several improvements for these
strategies are conceivable, and the most important one concerns the treatment of
validation views. For example, the fine approximation phase may be performed
iteratively by checking for every validation view the necessity for modifying
the emerging recognition function. Actually, we must install a new Gaussian
only in the case of facing a recognition error according to the decision criterion
given in equation (14). Every validation view is considered as a candidate, and
only if the view is critical then the refinement may take place dynamically. This
sophisticated strategy reduces the description length of the recognition function.
Other interesting work has been reported belonging to the paradigm of active
learning in which random or systematic sampling of the input domain is replaced
by a selective sampling [1]. This paper doesn’t focus on this aspect.

7 Experiments with the coarse-to-fine strategy of
learning

The primary purpose is to obtain a recognition function for a target object of
three-dimensional shape, which can be rotated arbitrary and can have different
distances from the camera. According to this, both the gray value structure and
the size of the target pattern varies significantly. Three objects are considered
which look similar between each other, i.e. integrated circuit, chip carrier, bridge
rectifier. Figure 6 shows a subset of three images from each object, respectively.
Different sets of seed and validation ensembles will be used for learning. Exem-
plary, we only present the recognition results for the integrated circuit. A set
of 180 testing images is taken which differs from the training images in offset
values of the rotation angle and in the size of the patterns, as shown by three
overlays in Figure 7.



Fig. 6. Three seed images from three objects, respectively.
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Fig. 7. Overlay between a training image and three testing images.

We determine recognition results, first by using a l-nearest-neighbor ap-
proach, second by applying a coarse manifold approximation, and third compare
them with those recognition results obtained from our coarse-to-fine strategy of
learning. The approaches have in common that in a first step a testing pattern
is projected into three canonical frames (CF's), which are the eigenspaces of
the three objects, respectively. The second step of the approaches is the charac-



teristic one. In the first approach (CF;nn, INN for I-Nearest-Neighbor) the
recognition of a testing view is based on the proximity to all seed views from all
three objects, and the relevant seed view determines the relevant object. In the
second approach (CFgrr, ELL for proximity to ELLipsoids) the recognition of
a testing view is based on the proximity to the three hyper-ellipsoids defined
in the canonical frames, respectively. In the third approach (CFggy, EGN for
proximity to Ellipsoids extended with Gaussian Networks), the recognition of a
testing view is based on a refinement of the coarse approximation of the pattern
manifold by considering counter views with a network of GBFs, i.e. our favorite
coarse-to-fine approach of learning. For validation views we simply take the seed
views of the other objects, respectively. The decision for recognition is based on
equation (14).

We make experiments with different numbers of seed views and thus obtain
canonical frames of different dimensionality. Exemplary, 6, 12, 20, and 30 seed
views are used which give dimension 5, 11, 19, and 29 of the canonical frames
(denoted by NSy, NSy, NS3, NSy, respectively, NS for Number of Seed views).
Table 1 shows the results, i.e. the numbers of recognition errors, when applying
the three approaches and taking four different dimensions into account. Ap-
proach CFgry clearly surpasses CF;nn, and our favorite approach CFggy is
clearly better than the other two. The course of recognition errors of CFggn, by
increasing the dimension, shows the classical conflict between over-generalization
and over-fitting. That is, the number of errors decreases significantly when in-
creasing the dimension from N.S; to NSz, and remains constant or even increases
when increasing the dimension further from NS5 to NS3 or to N.S4. Therefore,
it is convenient to take the dimension NS, for the recognition function as com-
promise, which is both reliable and efficient. Qualitatively, all our experiments
showed similar results (we omit to present them in this paper).

| Errors ||N51|N52|N53|N54|
CFinn|| 86 | 59 | 50 | 49
CFprr|[32] 3 |14 ] 18
CFranl|| 24 1 2 3

Table 1. Recognition errors for a testing set which consists of 180 elements. The
approaches of object recognition have been trained alternatively with 6, 12, 20, or 30
seed vectors, for the CFggn approach we take into account additionally 12, 24, 40, or
60 validation vectors.

According to the last row in Table 1 a slight increase of the number of
recognition errors occurs when raising the number of seed views beyond a certain
threshold, e.g. 20 or 30 seed views in our experiments. Therefore, the advantage
of considering generalization biases (mentioned in Section 3) is weakened to a
certain extent. This undesired finding is due to the fact that each new seed view
will lead to an additional dimension and thus will cause a redefinition of the



canonical frame. The generalization induced by the higher dimensional hyper-
ellipsoid may become more and more hazardous.

A more sophisticated approach is needed which increases the dimension on
the basis of several (instead of just one) additional seed views. However, the
purpose of this work has been to demonstrate the advantageous role of gen-
eralization biases in neural network learning, which is obtained by combining
Gaussian basis funtion networks with hyper-ellipsoidal interpolations.

8 Discussion

The work presented a learning paradigm for appearance-based recognition func-
tions. Principal component analysis (PCA) and Gaussian basis function networks
(GBFN) are combined for dealing with the trade-off between efficiency, invari-
ance, and discriminability. PCA is used for incorporating generalization biases
which is done by a hyper-ellipsoid interpolation of seed views. GBFN is respon-
sible for making the recognition function discriminative which is reached by a
dynamic installation of weighted Gaussians for critical validation views. The
combined set of training views is sparse which makes the learning procedure
efficient and also results in a minimal description length. Apart from that, the
discriminability of the learned recognition functions is impressive.

The presented learning paradigm is embedded in our methodology of devel-
oping Robot Vision systems. It works in combination with Active Vision strate-
gies, i.e. we must exploit the agility of a camera in order to constrain the pos-
sible camera-object relations and thus reduce the complexity of the manifold.
Specifically controlled camera movements enable the incorporation of further
constraints, e.g. space-time correlations, log-polar invariants, which make the
manifold construction more sophisticated.

We may extend the iterative learning procedure such that also canonical
frames are constructed dynamically. This would be in addition to the dynamic
installation of Gaussians. The purpose is to find a compromise between the
dimension of canonical frames and the number of Gaussians, i.e. keep the product
of both numbers as low as possible to reach minimum description length. The
mentioned concept is a focus of future work.

Appendix

Let a hyper-ellipsoid be defined according to Section 4.

Theorem All seed vectors X§ € (2,i € {1,---,1I} are located on the hyper-
ellipsoid.

Proof. There are several (I — 1)-dimensional hyper-ellipsoids which interpolate
the set 12 of vectors, respectively. PCA determines the principal axes ey, ---,er_1
of a specific hyper-ellipsoid which is subject to maximization of projected vari-
ances along candidate axes. For the vectors in {2 we determine the set 2 of



KLE-transformed vectors X; := (#i1,--,&i1-1)T, i € {1,---,I}. All vectors in
2 are located on a normal hyper-ellipsoid with constant Mahalanobis distance h
form the origin. With the given definition for the half-lengths we can show that
h is equal to 1, which will prove the theorem.

For the vectors in {2 the variance v; along axis e;, [ € {1,---,I — 1} is given
by v =% - (27, + --- + 27,). The variances v; are equal to the eigenvalues ;.
For each vector Xi we have the equation m’;l + -+ % = h, because the
vectors are located on a normal hyper-ellipsoid. Replacin_g k] in the equation

by the expression {7 - (iu + fﬁ%,z) yields the following equation 1 -

A2 52
(# 4+ 4 zi+1) = h. Summing up all these equations for

jf,l—"_"'-"_i%,l 23’1_14_...4_@%1_1
i €{1,---,I} yields the equation ﬁ -(I = 1) =1I- h, which results in h = 1.

qg.e.d.
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