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Robots are now employed to carry out well-defined tasks in customized static environments, often at a high speed and an

astonishing level of precision. However, these robots usually depend totally in their actions on a detailed control scheme

developed in advance during an off-line planning phase. Due to recent progress in electronics and computing power,

in control and agent technology, and in computer vision and machine learning, the development of autonomous robots

capable of solving high-level deliberate tasks in natural environments can now be approached seriously. This article

provides essential vision- and learning-related aspects for developing autonomous camera-equipped robot systems.

1 Introduction

There is no generally accepted methodology for developing
embedded systems such as autonomous camera-equipped
robot systems. Development is based on pre-specified mod-
els which are difficult to obtain for various applications due
to complexity and imponderables of the environmental world.
For designing and developing autonomous camera-equipped
robot systems we propose a methodology which is based on
libraries of learning tools and architecture patterns [26]. In
an experimental phase prior to the application phase, one
must demonstrate relevant objects, critical situations, and
purposive situation-action pairs. Then the learning tools are
responsible for acquiring image operators and mechanisms
of visual feedback control. The learned functions are de-
ployed and thereby adapting generic modules into concrete
ones, i.e. specializing the architecture patterns, which leads
to task-solving competences in the real environment.

Sections 2 and 3 characterize Robot Vision and Au-
tonomous Camera-Equipped Robot Systems, with the for-
mer being an integral part of the latter. Sections 4 and
5 introduce essential components involved in Robot Vision,
i.e. compatibilities and manifolds, which must be learned for
the actual application. Section 6 treats the development of
task-solving competences by making use of and specializing
dynamic vector fields and architecture patterns.

2 Robot Vision

According to Ballard and Brown [2], Computer Vision is the
construction of explicit, meaningful descriptions of physical
objects from images. However, current Computer Vision sys-
tems (in industrial use) only work well for specific scenes
under specific imaging conditions. New design principles for
more general and flexible systems are necessary in order to
overcome to a certain extent the large gap between wishful
thinking and reality. These principles can be summarized
briefly by animated attention, purposive perception, visual
demonstration, learning compatibilities, learning manifolds,
signal-response transformations, and feedback analysis. The

succinct term Robot Vision is used for systems which take
these principles into account.

Animated vision by attention control

It is assumed that most of the three-dimensional vision-
related applications must be treated by analyzing images
at different viewing angles and/or distances [1]. Through
exploratory controlled camera movement the system gath-
ers information incrementally, i.e. the environment serves
as external memory from which to read on demand. This
paradigm of animated vision also includes mechanisms of se-
lective attention and space-variant sensing [7]. Generally, a
two-phase strategy is involved consisting of attention control
and detailed treatment of the most interesting places [35].
This approach is a compromise for the trade-off between ef-
fort of computations and sensing at high resolution.

Purposive visual information

Only that information of the environmental world must be
extracted from the images which is relevant for the vision
task. The type of that information can be of quantitative
or qualitative nature. In various sub-tasks of a Robot Vi-
sion task different information is useful, e.g. color informa-
tion for tracking robot fingers, and geometric information
for grasping objects. The minimalism principle emphasizes
to solve the task by using features as basic as possible [17],
i.e. avoiding time-consuming, erroneous data abstraction
and high-level image representation.

Symbol grounding by visual demonstration

Models, which represent target situations, will only prove
useful if they are acquired in the same way or under the
same circumstances, as when the system perceives the scene
in real application [11]. It is important to have a close re-
lation between physically grounded task specifications and
the appearance of actual situations. Furthermore, it is eas-
ier for a person to specify target situations by demonstrat-
ing examples instead of describing visual tasks symbolically.
Therefore, visual demonstration overcomes the necessity of
determining quantitative theories of image formation.

Compatibility between geometry and photometry
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In the imaging process, certain compatibilities hold between
the (global) geometric shape of the object surface and the
(local) gray value structure in the photometric image [20].
However, there is no one-to-one correspondence between
surface discontinuities and extracted gray value edges, e.g.
due to texture, uniform surface color, or lighting conditions.
Consequently, qualitative compatibilities must be exploited,
which are generally valid for certain classes of regular objects
and certain types of camera objectives, in order to bridge the
global-to-local gap of representation.

Compatibilities versus manifolds

Compatibilities are general constraints in the process of im-
age formation which do hold more or less under task-relevant
or accidental variations of the imaging conditions [26, pp.
25-99]. Based on learned degrees of compatibilities, one
can choose those image operators together with parametriza-
tions, which are expected to be most adequate for treating
the underlying task. On the other hand, significant variations
of image features are represented as manifolds. They may
originate from changes in the spatial relation among robot ef-
fectors, cameras, and environmental objects. Learned man-
ifolds are the basis for acquiring image operators for task-
relevant object or situation recognition [22].

Learning signal-response transformations

The signal coming from the imaging process must be trans-
formed into 2D or 3D features, whose meaning and role de-
pend on the task at hand, e.g. serving as motor signal for
robot control, or serving as symbolic description for a user.
This transformation must be learned on the basis of samples,
as there is no theory for determining it a priori. The signal
can be regarded as a point in an extremely high-dimensional
space, but only a very small fraction of the signal space,
i.e. small signal sub-space, is relevant and will be approxi-
mated through the samples of the transformation [24]. From
the mathematical point of view, the basic matter of learning
consists of degrees of compatibilities and approximations of
manifolds (see previous subsection). These are the founda-
tion for obtaining the signal-response transformations [10].

Feedback-based autonomous image analysis

The analysis algorithms used for signal transformation re-
quire the setting or adjustment of parameters [30], such as
segmentation thresholds. A feedback mechanism is needed
to reach autonomy instead of adjusting the parameters inter-
actively. A cyclic process of quality assessment, parameter
adjustment, and repeated application of the algorithm can
serve as backbone of an automated system.

For the vast majority of vision-related tasks only Robot
Vision systems (as opposed to specialized Computer Vision
systems) can provide pragmatic solutions. The possibility of
camera control and selective attention should be exploited
for resolving ambiguous situations and for completing task-
relevant information. The successful execution of the visual
task is critically based on autonomous learning from visual
demonstration. The online adaptation of visual procedures
takes possible deviations between learned and actual aspects
into account. Learning and adaptation are biased under gen-

eral compatibilities between geometry and photometry of im-
age formation, which are assumed to hold for a category of
similar tasks and a category of similar camera objectives.

3 Autonomous Camera-Equipped

Robot Systems

Advanced robot systems are under development which will
be equipped with a sensor or camera system for perceiving
the environmental scene. Based on perception, the sensor
or camera system must impart to the robot an impression of
the situation wherein it is working, and thus the robot can
take appropriate actions for more flexibly solving a task. Au-
tonomous robot systems can not emerge by simply combin-
ing results from research on Artificial Intelligence and Com-
puter Vision. Research in both fields concentrated on re-
constructing symbolic models and reasoning about abstract
models, which was quite often irrelevant due to unrealistic
assumptions. Instead of that, an intelligent system must
interface directly to the real world through perception and
action. This challenge can be handled by considering four
basic characteristics (adopted from Brooks [6]), i.e. situated-
ness, embodiment, emergence, and competence. Taking the
four basic characteristics into account, autonomous robot
systems must be designed according to a layered behavioral
organization, and developed and deployed with the use of
learning mechanisms.

Behavioral organization

Each behavior is based on an activity producing subsystem,
featuring sensing, processing, and acting capabilities. The
organization of behaviors begins on the bottom level with
very simple but complete subsystems, and follows an in-
cremental path ending at the top-level with complex au-
tonomous systems. In this layered organization, all behav-
iors have permanent access to the specific sensing facility
and compete in gaining control over the effector or coop-
erate or being sequenced for realizing high-level tasks. In
order to achieve a reasonable global behavior, a ranking of
importance is considered for all behaviors, and only the most
important ones have a chance to become active. The rele-
vant behavior or subset of behaviors are triggered on occa-
sion of specific sensations in the environment. For example,
the obstacle-avoiding behavior must become active before
collision, in order to guarantee the survival of the robot,
otherwise the original task-solving behavior would be active.

Learning-based development

The development of a (semi-) autonomous camera-equipped
robot must be grounded on an infrastructure, based on which
the system can acquire and/or adapt task-relevant compe-
tences autonomously. This infrastructure consists of techni-
cal equipment to support the presentation of real world train-
ing samples, various learning mechanisms for automatically
acquiring function approximations, and testing methods for
evaluating the quality of the learned functions. Accordingly,
for developing autonomous camera-equipped robot systems
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one must first demonstrate relevant objects, critial situa-
tions, and purposive situation-actions pairs in an experimen-
tal phase prior to the application phase. Second, the learn-
ing mechanisms are responsible for acquiring image opera-
tors and mechanisms of visual feedback control based on su-
pervised experiences in the task-relevant, real environment.
Apart from supervised approaches, competences are also ac-
quired by reinforcement learning mechanisms and others.

Role of robots in camera-equipped systems

In camera-equipped systems the robots can be used for two
alternative purposes leading to a robot-supported vision sys-
tem (robot-for-vision tasks) or to a vision-supported robot
system (vision-for-robot tasks). In the first case, a purposive
camera control is the primary goal. For the inspection of ob-
jects, factories, or processes, the cameras must be agile for
taking appropriate images. A separate actuator system, i.e.
a so-called robot head, is responsible for the control of exter-
nal and/or internal camera parameters. In the second case,
cameras are fastened on a stable tripod (e.g. eye-off-hand
system) or fastened on an actuator system (e.g. eye-on-hand
system), and the images are a source of information for the
primary goal of executing robot tasks autonomously. For
example, a manipulator may handle a tool on the basis of
images taken by an eye-off-hand or an eye-on-hand system.
In both cases, a dynamic relationship between camera and
scene is characteristic, e.g. inspecting situations with active
camera robots, or handling tools with vision-based manip-
ulator robots. For more complicated applications the cam-
eras must be separately agile in addition to the manipulator
robot, i.e. having a robot of its own just for the control of the
cameras. For those advanced arrangements, the distinction
between robot-supported vision system and vision-supported
robot system no longer makes sense, as both types are fused.

4 Learning compatibilities

By eliciting fundamental principles underlying the process of
image formation, one can make use of a generic bias, and
thus reduce the role of object-specific knowledge for struc-
ture extraction and object recognition in images [23, pp. 26-
30]. Theoretical assumptions (e.g. projective invariants)
concerning the characteristic of image formation which can
be proven nicely for simulated pinhole cameras, generally do
not hold in practical applications. Instead, realistic quali-
tative assumptions (compatibilities) must be learned in an
offline phase prior to online application.

Regularities under geometric projection

Shapes of objects should be described by features which are
invariant under geometric projection and change of view. Ex-
amples are so-called regularity features, such as parallelism
and symmetry of boundary lines, inherent in the shape of
many natural or man-made objects. The importance of reg-
ularities is two-fold. First, the perceptual organization of line
segments into complex two-dimensional constructs, which
originate from the surface of three-dimensional objects, can
be based on invariant shape regularities. For example, sim-
ple constructs of parallel line segment pairs, sophisticated

constructs of repeated structures, or rotational symmetries
are used. Second, invariant shape regularities are constant
descriptions of certain shape classes and, therefore, can be
used as indices for recognition [31]. A real camera, however,
executes a projective transformation in which shape regulari-
ties are relaxed in the image, e.g. three-dimensional symme-
tries are transformed into two-dimensional skewed symme-
tries [12]. More generally, projective quasi-invariants must
be considered instead of projective invariants [3].

By demonstrating sample objects including typical regu-
larities and visually perceiving the objects using actual cam-
eras, one makes measurements of real deviations from regu-
larities (in the image), and thus learn the degree of compat-
ibility of regularities under geometric projection.

Object surface and photometric invariants

Approaches for recognition and/or tracking of objects in im-
ages are confronted with variations of the gray values, caused
by changing illumination conditions. The object illumination
can change directly with daylight and/or the power of light
bulbs, or can change indirectly by shadows arising in the spa-
tial relation between effector, camera, and object. The prob-
lem is to convert color values or gray values, which depend
on the illumination, into descriptions that do not depend
on the illumination. However, solutions for perfect color
constancy are not available in realistic applications [8], and
therefore approximate photometric invariants are of interest.
For example, normalizations of the gray value structure by
standard or central moments of second order can improve
the reliability of correlation techniques [32].

By demonstrating sample objects under typical changes
of the illumination one can make measurements of real devi-
ations from exact photometric invariants, and thus learn the
degree of compatibility of object surface and photometric
invariants.

Geometric and photometric image features

The general assumption behind all approaches of object de-
tection and boundary extraction is that three-dimensional
surface discontinuities should have corresponding gray value
edges in the image. Based on this, a compatibility between
the geometric and photometric type of object representa-
tion must hold in the image. For example, the orientation
of an object boundary line in the image must be similar to
the orientation of a gray value edge of a point on the line
[27]. A further example, the junction angle of two boundary
lines must be similar to the opening angle of the gray value
corner at the intersection point of the lines. The geometric
line features are computed globally in an extended patch of
the image, and the photometric edge or corner feature are
computed locally in a small environment of a point. Con-
sequently, by the common consideration of geometric and
photometric features one also verifies the compatibility be-
tween global and local image structure.

By demonstrating sample objects including typical edge
curvatures and extracting geometric and photometric image
features, one can compare the real measurements and learn
the degree of compatibility of geometric and photometric
image features.
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Motions in space and changes in view sequence

In an autonomous camera-equipped robot system, the spa-
tial relation between camera(s) and object(s) changes con-
tinually. The task-solving process could be represented by a
discrete series of changes in this spatial relation, e.g. one
could consider the changing relations for the task of mov-
ing the robot hand of a manipulator towards a target object
while avoiding obstacle objects. Usually, there are different
possibilities of taking trajectories subject to the constraint
of solving the task. A cost function must be used for deter-
mining the cheapest course. Beside the typical components
of the cost function, i.e. distance to goals and obstacles, it
must also include a measure of difficulty of extracting and
tracking task-relevant image features. This aspect is directly
related with the computational effort of image sequence anal-
ysis and, therefore, has influence on the real-time capability
of an autonomous robot system. By constraining the possi-
ble camera movements appropriately, the flow vector fields
originating from scene objects are easy to represent. For
example, a straight camera movement parallel over a plane
face of a three-dimensional object should reveal a uniform
flow field at the face edges. A further example, if a camera
is approaching an object or is rotating around the optical axis
which is normal to the object surface, then log-polar trans-
formation can be applied to the gray value images. The
motivation lies in the fact that during the camera move-
ment, simple shifts of the transformed object pattern occur
without any pattern distortions [5]. However, in the view
sequence these invariants only hold for a simulated pinhole
camera whose optical axis must be kept accurate normal to
the object surface while moving the camera.

By demonstrating sample objects and executing typical
camera movements relative to the objects, one can make
measurements of real deviations from uniformity of the flow
field in original gray value or in transformed images, and thus
learn the degree of compatibility between 3D motions and
changes in 2D view sequences [33].

Invariants are special cases of compatibilities

In classical approaches of Computer Vision, invariants are
constructed for a group of transformations, e.g. by eliminat-
ing the transformation parameters [21]. In real applications,
however, the actual transformation formula is not known,
and for solving a certain robot task only a relevant subset of
transformations should be considered (possibly lacking char-
acteristics of a group). The purpose of visual demonstra-
tion is to consider the real corporeality of robot and camera
by learning realistic compatibilities (involved in the imaging
process) instead of assuming non-realistic invariants. Math-
ematically, a compatibility must be attributed with a statisti-
cal probability distribution, which represents the probabilities
that certain degrees of deviation from a theoretical invariant
might occur in reality. Gaussian probability distributions may
be considered, and based on that, the Gaussian extent value
σ can be used to define a confidence value for the adequacy
of a theoretical invariant. The lower the value of σ, the
more confident is the theoretical invariant, i.e. the special
case of a compatibility with σ equal to 0 characterizes a
theoretical invariant. In an experimentation phase, the σ

values of interesting compatibilities are determined by visual
demonstration and learning, and in the successive application
phase, the learned compatibilities are used in various image
operators and servoing cycles. This methodology of acquir-
ing and using compatibilities replaces the classical concept
of non-realistic, theoretical invariants.

The first attempt of relaxing invariants has been under-
taken by Binford and Levitt, who introduced the concept of
quasi-invariance under transformations of geometric features
[3]. The compatibility concept in our work is a more general
one, because more general transformations can be consid-
ered, maybe with different types of features prior and after
the mapping.

5 Learning manifolds

Besides the concept of compatibilities we have in the
paradigm of Learning-Based Robot Vision also the concept
of manifolds. Manifolds of features play a central role in
acquiring functions for object or situation detection in the
images (i.e. localization, classification, identification). Ad-
ditionally, there are manifolds of signal-response associations
which may combine attributes extracted from images and
steering signals for robots. They represent associations be-
tween image and environment respectively robot effector.

Feature manifolds for situation detection

For the detection of situations in an image, i.e. in answer
to the question “Where is which situation ?”, one must ac-
quire models of target situations in advance. There are two
alternatives for acquiring such model descriptions. In the
first approach, detailed models of 3D target situations and
projection functions of the cameras are requested from the
user, and from that the relevant models of 2D target situ-
ations are computed [16]. In many real world applications,
however, the gap between 2D image and 3D world situa-
tions is problematic, i.e. it is difficult, costly, and perhaps
even impossible to obtain realistic 3D models and realistic
projection functions.1 In the second approach, descriptions
of 2D target situations are acquired directly from image fea-
tures based on visual demonstration of 3D target situations
and learning of feature manifolds under varying conditions
[22]. For many tasks to be carried out in typical scenes, this
second approach is preferable, because actual objects and
actual characteristics of the cameras are considered directly
to model the 2D target situations. A detection function
must localize meaningful patterns in the image and classify
or evaluate the features as certain model situations. The
number of task-relevant image patterns is small in propor-
tion to the overwhelming number of all possible patterns
[28], and therefore a detection function must represent the
manifolds of relevant image features implicitly.

1Recent approaches of this kind use more general, parametric
models which express certain unknown variabilities, and these are
verified and fine-tuned under the actual situations in the images
[18]. With regard to the qualitativeness of the models, these new
approaches are similar to the concept of compatibilities in our
work, as discussed above.
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In the following we use the term feature in a general
sense (for easy reading). An image pattern or a collection
of elementary features extracted from a pattern will simply
be called a feature. What we really mean by a feature is a
vector or even a complicated structure of elementary (scalar)
attributes.

Learning feature manifolds of classified situations

The classification of a feature means assigning it to those
model situation whose feature manifold contains the relevant
feature most probably, e.g. recognize a feature in the image
as a certain object [25]. Two criteria should be considered
simultaneously, robustness and efficiency, and a measure is
needed for both criteria in order to judge different feature
classifiers. For the robustness criterion, a measure can be
adopted from the literature on statistical learning theory [34]
by considering the definition of probably approximately cor-
rect learning (PAC-learning). A set of model situations is said
to be PAC-learned, if a maximum percentage E of features is
classified erroneous which holds at least with the probability
P . Robustness can be defined reasonably by the quotient of
P by E, i.e. the higher this quotient, the more robust is the
classifier. It is conceivable that high robustness requires an
extensive amount of attributes for describing the classifier.
In order, however, to reduce the computation effort of classi-
fying features, a minimum description length of the classifier
is prefered [29]. For the obvious conflict between robustness
and efficiency a compromise is needed.

By demonstrating appearance patterns of classified situ-
ations, one can experimentally learn several versions of clas-
sifiers and finally select the ones which carry out the best
compromise between robustness and efficiency.

Learning feature manifolds of scored situations

Task-relevant changes of 3D spatial relations between effec-
tor, camera(s), and/or object(s) must be controlled on the
basis of information extracted from the stream of images,
e.g. assessing (scoring) consecutive 2D situations relative to
the 2D goal situation. The intermediate situations are con-
sidered as discrete steps in a course of scored situations up to
the main goal situation [13]. Classified situations (see above)
are a special case of scored situations with just two possible
scores, e.g. values 0 or 1. In the continual process of robot
servoing, e.g. for arranging, grasping, or viewing objects, the
differences between consecutive 2D situations in the images
must correlate with certain changes between consecutive 3D
spatial relations. Geometry-related features in the images
include histograms of edge orientation, results of line Hough
transformation, responses of situation-specific Gabor filters,
etc. Feature manifolds must characterize scored situations,
e.g. the gripper is 30 percent off from the optimal grasping
situation. A course of scored situations is said to be PAC-
learned, if a maximum deviation D from the actual score is
obtained which holds at least with probability P .

By demonstrating appearance patterns of scored situa-
tions, the system learns several versions of scoring functions
and finally selects the best ones according to the PAC-based
evaluation. Gaussian basis function networks and principal
component analysis may serve as basic mathematical tools
for manifold approximation [4]. By exploiting the coherence

of consecutive situations one can approximate the relevant
manifolds more accurately which improves the robustness of
the scoring functions (respectively recognition functions).

Learning environment-effector-image associations

The effector interacts with a small environmental part of
the world. For manipulating or inspecting objects in this
environment, their coordinates must be determined relative
to the effector. Furthermore, the transformation between the
effector coordinate system and the coordinates in the image
coordinate system must be determined [14]. The relevant
function can be learned automatically by controlled effector
movement and observation of a calibration object.

For an eye-off-hand system, the gripper of a manipula-
tor can be used as calibration object which is observed by
cameras without physical connection to the robot arm. The
gripper is steered by a robot program through the working
space, and the changing image and manipulator coordinates
of it are used as samples for learning the relevant function.

For an eye-on-hand system the camera(s) is (are) fas-
tened on the actuator system for controlling inspection or
manipulation tasks. A natural or artificial object in the envi-
ronment of the actuator system serves as calibration object.
First, the effector is steered by the operator (manually using
the control panel) into a certain relation to this calibration
object, e.g. touching it or keeping a certain distance to it.
In this way, the goal relation between effector and an ob-
ject is stipulated, something which must be known in the
application phase of the task-solving process. Specifically, a
certain environmental point will be represented more or less
accurately in actuator coordinates. Second, the effector is
steered by a robot program through the working space, and
the changing image coordinates of the calibration object and
position coordinates of the effector are used as samples for
learning the relevant function (self-calibration using defined
motion).

These strategies of learning environment-effector-image
associations are advantageous in several aspects. First, by
controlled effector movement, the relevant function of coor-
dinate transformation is learned directly, without computing
the intrinsic camera parameters and avoiding artifical coordi-
nate systems (e.g. external world coordinate system). Sec-
ond, the density of training samples can easily be changed by
different discretizations of effector movements. Third, a nat-
ural object can be used instead of an artificial calibration pat-
tern. Fourth, task-relevant goal relations are demonstrated
instead of modeling them artificially. The learned function is
used for transforming image coordinates of objects into the
coordinate system of the actuator system.

6 Development of task-solving

competences

The dynamical systems theory seems to be a powerful frame-
work for commonly representing and performing the design-
ing, the implementation, and the application phase of vision-
based robot competences. Learning and planning procedures
are applied for aquiring task-relevant functions based on
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measurement compaigns performed in the real environment.
Furthermore, generic modules are prepared which serve as
architecture patterns or frameworks for certain categories of
tasks. The outcome of the designing and implementation
phase is a configuration of task-specific modules. These re-
alize deliberate strategies, parameterized control procedures,
and situation detection functions for solving in the successive
application phase the underlying, specific task.

Dynamic vector field framework

The variable relation between robot effectors and environ-
mental objects can be represented by vectors with variable
tail positions, head positions, directions, and lengths, ac-
cording to the changing position of effectors and objects. A
vector-based representation, as applied in the dynamical sys-
tems theory, plays an important role in autonomous robot
systems. A layered configuration of dynamic vector fields
may uniformly represent deliberate strategies (determined in
the designing phase) on the one hand and perception-action
cycles (occuring in the application phase) on the other hand.
Therefore, a seamless transition between designing and ap-
plication phase and an uniform integration of reactive and
deliberate robot competences can be achieved. A typical
task is the navigation of an effector towards target objects
while avoiding obstacle objects. Attractor vector fields are
virtually put at the positions of target objects, and repellor
vector fields are virtually placed at the positions of obstacle
objects [19, pp. 295-355]. By summarizing all contributing
vector fields we obtain useful hypotheses of goal-directed,
obstacle-avoiding navigation trajectories. If target and ob-
stacle positions are read out offline from maps and the effec-
tor position is simulated, then the related vector field is of
type deliberate. On the other hand, if at least the effector
position is acquired online from cameras in a perception-
action cycle, then the related vector field is of type reactive.

Generic modules as patterns for system development

Different combinations of various types of deliberate and
reactive vector fields can be used for configuring a set of
generic modules [26, pp. 171-253]. The generic modules
serve as library of architecture patterns from which to finally
implement task-specific modules in order to simplify system
development for a specific robotic task. This methodology is
similar to the use of general design patterns for the develop-
ment of object-oriented software products [9]. However, we
propose application-specific design patterns, i.e. architecture
frameworks, for the development of autonomous, camera-
equipped robot systems.2 As a result of several case stud-
ies on solving high-level, deliberate tasks (using autonomous
camera-equipped robot systems) we have discovered three
categories of generic modules. First, the instructional mod-
ules are based solely on deliberate vector fields and are re-
sponsible for robotic actions without any visual feedback con-
trol. Second, the behavioral modules deploy reactive vector
fields and possibly are also based on deliberate vector fields,
and thus combine deliberate strategies with visual feedback

2Recently, architecture frameworks have been proposed for
multi-agent systems [15].

control. Third, the monitoring modules are responsible for
supervising the task-solving process.

These generic modules must be adapted by considering
specific implementations and setting specific parametriza-
tions in order to obtain task-specific modules.

7 Conclusion

We presented aspects for designing and developing advanced
robot systems for solving high-level, cognitive tasks. Au-
tonomous camera-equipped robot systems should be de-
signed and developed with learning techniques for exploit-
ing task-relevant and environment-related knowledge. More
concretely, the matter of learning consists of compatibilities
and manifolds which represent realistic variations of certain
features and associations. Architecture patterns and frame-
works simplify the system development by adapting generic
modules into task-specific modules.

Striving for fully autonomous camera-equipped robot
systems seems to be hopeless and ridiculous. However,
pattern- and learning-based development tools can help to
produce flexible systems at high degrees of sophistication,
which should be really useful for solving complex tasks in
natural environments.
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