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Abstract. We apply techniques of computer vision and neural netwogknieg to get a versatile robot
manipulator. All work conducted follows the principle oftanomous learning from visual demonstration. The
user must demonstrate the relevant objects, situatiodfractions, and the robot vision system must learn from
those. For approaching and grasping technical objecte fmiacipal tasks have to be done — calibrating the
camera-robotcoordination, detecting the desired ohbjebtiimages, and choosing a stable grasping pose. These
procedures are based on (nonlinear) functions, which ar&mawn a priori and therefore have to be learned.
We uniformly approximate the necessary functions by nétwaf gaussian basis functions (GBF networks).
By modifying the number of basis functions and/or the siz¢hefgaussian support the quality of the function
approximation changes. The appropriate configurationamkd in the training phase and applied during the
operation phase. All experiments are carried out in realdrapplications using an industrial articulation robot
manipulator and the computer vision system KHOROS.

Keywords: Radial basis function networks, learning from visual destmtion, camera—robot calibration,
approaching and grasping objects, recognition of objest®ignition of geometric relations.

1. Introduction

We have equipped a robot manipulator with a vision systenadéonomous grasping and
assembling technical objects. The vision system deals twithsub—tasks, recognizing
the target object in the image and evaluating the stabilitgrasping situations. The
transformation of the image coordinates of a target objeot3D coordinates for the robot
is based on the representation of the camera—robot cotiatina

The robot vision system must recover those partial scererirdtion from the image,
which is indispensable needed to recognize and maniputatsbgect (see principles of
purposive visionin (Aloimonos, 1993)). For example, objecognition hasto be grounded
on features, which discriminate between the target objedtather objects and can be
extracted from the image easily. Furthermore, for appetdpmrasping a target object, we
are interested in features, which describe or evaluateithation under the criterion of
grasping stability (Cutkosky, 1989).

We have implemented a vision system, which is constructioriae sense, that operators
for recognizing target objects can be learned for the actoalronment. The operators
are based o) appearance patternsf the relevant objects sesponse patterngsulting
from specific filter operations. The most closely related kvfmr object recognition
is from (Murase & Nayar, 1995), who describe a method dppearance based object
recognition An appearance manifold of the target object must be aadjbiyehanging the
object view angle systematically and taking images in @igcsteps. Based on the most
relevant eigenvectors of the covariance matrixKlaehunen—Loeve transforie used for
compressing the manifold. As a linear reduction of the disi@mtakes place, the approach
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is only suitable when the data are approximate linear disteid. Alternatively, we show
the use of networks of gaussian basis functions (GBF netsyfokappearance based object
recognition. The approach allowshanlinear dimension reductioand does not assume
linear constrained appearance manifolds. By carefullgagting and configuring basis
functions, an optimal operator can be learned, which caig a compromise between the
invariance and reliability criterion.

Our approach can be used as well for recognizing and evafugtiasping situations.
Based on visual information the manipulator will be servizeithie most stable grasping pose
in order to grasp the target object finallBimilar to (Kamon, Flash, & Edelman, 1994),
we use visual information for grasping, but in oppositiotieir work, we avoid to extract
geometric data explicitely and instead leave the geomedtia implicit in the appearance
manifold of grasping situations. By refraining from imaggmentation, there is no need
to bridge the problematic gap between photometric gray kxlges and geometric surface
discontinuities (Maxwell & Shafer, 1994). For graspingeutip the3 > geometric shape is
not required in full detail (exemplary pointed out in (Trohj Leonardis, & Ade, 1994)),
and according to that, we only extract the necessary infooméor evaluating the grasping
stability.

We not only use GBF networks for recognizing target objeot$ grasping situations
but also for learning the camera—robot coordination. Theaaenetwork implicit repre-
sents three blocks of information: the intrinsic camerapprtes, the geometric relation
between camera and robot, and the attributes for recotisigube position of an object
from stereo image coordinates into robot coordinates. Wlysuhe relation between D
space coordinates ad image coordinates is written linear by projective transfation
(Faugeras, 1993). However, this is not acceptable forioetyaes of camera objectives
(e.g., lenses of small focal length). By spreading more gjandasis functions into critical
areas of the input space, we can better approximate the-iopytut mapping and hence
take care for nonlinearities in the projective transfoliorat

On account of applying the principle of minimum descriptiength (Rissanen, 1984) to
configuring the neural networks, it is desirable to discdtierminimum number of basis
functions for a certain critical quality of the function apgimation. Our work treats that
problem from a practical point of view by doing real world eximents with the robot
vision system. We show the relationship between net sizepa@t size on the one hand
and theoverfitting versus overgeneralizing conflat the other hand.

Section 2 introduces the regularization principle for fime approximation and derives
from that the definition of GBF networks. Furthermore, theraach for learning the
basis functions and accompanying combination factorsssrideed. Section 3 illustrates
the procedure for camera—robot coordination and explaimstb apply GBF networks for
learning and representing that relationship. Section ésgan overview to the approach
of learning image operators, which are needed to recogmizeett objects or grasping
situations. Sections 5 and 6 present experiments on lgaimiage operators for object
recognition under varying viewing conditions. This is innfamt for typical real world
applications of object grasping. In section 7, the systeapfdied to learning to recognize
grasping situations (geometric relation between the réibgers and a target object) with
the intention of evaluating the grasping stability. Settiosummarizes and discusses the
work.
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2. Regularization principles and GBF networks

An approach for function approximation is needed, whichlbeagrounded on sample data
of the input—output relation. The function approximatidrosld fit the sample data to
meetcloseness constraingd should generalize over the sample data to sreebthness
constraints Neglecting the aspect of generalizing leads¥erfitted functionsotherwise,
neglecting the fitting aspect leadsdwergeneralized functionsdence, both aspects have
to be combined to get a qualified function approximation. Tgularization approach
incorporates both constraints and determines such a éimbti minimizing a functional
(Poggio & Girosi, 1990).

Let S := {(p;, m)|(pi, ) € (R™ x R);i=1,---, N} be the sample data representing
the input—output relation of the function that we want tor@pmate. The functional in
equation (1) consists of@oseness terrand asmoothness termvhich are combined by a
factor A expressing relative importance of each.

N
H(f) = (3 (ri = FG)) + A P I (1)
i=1
The first term computes the sum of squared distances betweeatesired and the actual
outcome of the function. The second term incorporates areffitial operator” for
representing the smoothness of the function.
Under some pragmatic conditions (see again (Poggio & Gii@80)) the solution of the
regularization functional is given by equation (2).

N
F0) =Y uGilp, i) )
i=1

The basis function&; aregaussiansspecified for a limited range of definition, and having
p; as the centers. Based on the non-shiffadssian support functioty, we get the
N versionsG; by shifting the center of definition through the input spazehe places
p1, -+, pn. The solution of the regularization problem is a linear camation ofgaussian
basis functiongsee equation (2)).

The number of GBFs must not be equal to the number of sampl€s fnis of interest
to discover the minimum number of GBFs, which are neededactra critical quality for
the function approximation. Instead of using the vecidrs - -, px for defining GBFs,
we cluster them intal/ sets (withld/ < N) striving simultaneous for minimizing the
variances within and maximizing the distances between ¢t &~rom each set a mean
vectoré;, i € {1,---, M}, is selected (or computed). A procedure similar to the error—
based SODATA clustering algorithrim (Schalkoff, 1992, pp. 109-125) is used. Initially,
the algorithm groups the vectors by using the stan#anheananethod. Then, clusters
exhibiting large variances are split in two, and clusters thre too close together are
merged. Next, K-means is reiterated taking the new clustewsaccount. This sequence
is repeated until no more clusters are split or merged.

Each typical vectot; specifies the center of the definition range of a GBF.

2
20'j

G5 (7, ¢;) = exp(
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The functionG; computes a similarity value between the vecaipand a new vectop.
The similarity is affected by the pre—specified parametemvhich determines thsupport
sizeand shape of the GBF. It is intuitive clear, that the rangegefifiition of the functions
G; must overlap to a certain degree in order to approximate ébegnition function
appropriately. The overlap between the GBFs is just detezdby the parametess. The
linear combination of GBFs (reduced set) is defined by thofae;.

M

F0) =) w5, ) 4)

j=1

The approach for determining appropriate combinatiorofads as follows. First, thé/
basis functions will be applied to thé vectorsp; of the training set. This results in a matrix
A of similarity values withV rows and}M columns. Second, we define airdimensional
vectorh comprising the desired output values for tkidraining vectors. Third, we define
a vectorw, which comprises the unknown combination factefs - - -, wys of the basis
functions. Finally, the problemis to solve the equatin = h for the vectori. According
to (Press, Teukolsky, & Vetterling, 1992, pp. 671-675) wepate the pseudo inverse of
A and determine the vectar directly.

Al = (AT 4)~1 AT, W= Ath (5)

As opposed to the particular specification of the sample 8lasa alternative input—output
relation could be defined such that the output part is itsedaor instead of a scalar. In
that case, we simply compute a specific set of combinaticdoifaof the GBFs for each
dimension respectively.

In summary, equations (3) and (4) define an approximatioasehwhich can be used for
relevant functions of camera—robot calibration, objecbgmition and situation recognition.
The approximation scheme is popular in the neural netwdekdiure under the term
regularization neural networkBishop, 1995, pp. 164-191), and we will call@BF
networkto emphasize the gaussians. A GBF network consists of art iaper, a layer
of hidden nodes and an output layer. The input layer and olagar represent the input
and output of the function approximation, the nodes of tidelén layer are assigned to the
GBFs.

We will realize in the applications of the next sectionsttG8F network learning is a
method, which helps to overcome the seribigs problenin high-level machine learning
(Utgoff, 1986) and parameter estimation (Press, Teukp&hietterling, 1992). Actually,
it is the biological inspired dynamic structure of the netkvito be changed and controlled
on the basis of error feedback (Bruske & Sommer, 1995), wigitshthe learning method
go beyond pure function approximation.

3. Camera-robot coordination

For grasping an object, the end-effector of the robot mdatpuhas to be moved into a
stable grasping pose. The desired pose (position and ati@mt must be extracted from
visual information, which will be produced by two camerafieTcamera system is put up
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in an appropriate position and orientation for observirgggbene (no physical connection
to the robot). By taking stereo images and detecting thetaigject in the two images, we
obtain two two-dimensional positions representing theéersrof gravity (twd D vectors).
The two positions are defined in the coordinate systems ofwthecameras and will be
combined in a single vectod D vector). On the other hand, the end-effector moves within
a 3D working space, which is defined in the basis coordinate systethe robot (the
position of the end-effector is @D vector). Hence, we need a function for transforming
the object positions from the coordinate systems of the casrte the cartesian coordinate
system of the robot(D vector— 3D vector).

Traditionally, this functionis based on principles of setriangulation by taking intrinsic
parameters (of the camera) and extrinsic parameters {diegcthe camera—robot relation)
into account (Faugeras, 1993). Complicated equationmsigsteould have to be solved to
compute these parameters, and probably the resulting peeaualues would be inaccurate
due to error propagation. As opposed to that, we use GBF mietwo learn the mapping
from stereo image coordinates into coordinates of a robatpaéator. There are two good
reasons for this approach. First, the intrinsic and extiparameters will not be computed
explicitely, because the coordinate mapping from sterexgis to the robot manipulator is
determined in a direct way without intermediate resultscod, by varying number and
parametrization of the gaussian basis functions duringrdieing phase, the accuracy of
the function approximation can be improved as desired.

The procedure for determining the camera—robot coordinasias follows. We make use
of training samples for learning a GBF network. First, thea$eGBFs is configured, and
second, the combination factors of the GBFs are computedcoigure the set of GBFs
by simply selecting certain elements from the training dasyand using the input parts
(4D vectors) of the selected samples to define the centers ofBits.GThe combination
factors for the GBFs are computed with the pseudo inversmigae, which results in least
square errors between pre-specified and computed outpgtsval

The prerequisite for running the learning procedure is #igt@nce of training samples.
To obtain them, we take full advantage of the robot agilitheTend-effector moves in
the working space systematically, stops on equidistarteglaand3 D positions of the
end-effector are carefully recorded. The&de vectors are supplied by the control unit of
the robot. Furthermore, at each stopping pla@&s®—-base@sum of squared distances)
recognition algorithm detects the end-effector bend irsteeeo images (see Figure 1) and
the two two-dimensional positions are combined té/a vector? All pairs of 4 D-3D
vectors are used as training samples for the desired carobr-eoordination.

Based on image coordinates of the end-effector bend, ther@B#ork has to estimate
its 3D positionin the robot basis coordinate system. The n3éaposition error should be
as low as possible. The main question of interesHisw many GBFs and which support
sizes are needed to obtain a certain quality for the camerdet coordination?To answer
that question, four experiments have been carried out.dffitst and second experiment,
we applied two different numbers of GBFs exemplarily. Thiedtlexperiment shows the
effect of doubling the image resolution. Finally, the fdueixperiment takes special care
for training the combination weights of the GBFs. In all f@xperiments, we systematic
increase the GBF support size and evaluate the mean positimm
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Figure 1. The stereo images show the robot hand with parallel jaw fsig&rSSD-based recognition algorithm
has been used to localize the finger bends. This is illusttayea white square including a central dot.

We take training samples for each experiment. The workirgasmwf the end-effector
(underlying the samples) is cube—shaped of maximi0tnm (millimeters) side length.
The GBFs will be spread over a subspaceldf vectors in correspondence to certain
stopping places of the end-effector. That is, 4tieimage coordinates (resulting from the
position of the end-effector bend at a certain stoppingg)lace used for defining the center
of a gaussian basis function. The following experimenttedifith regard to the size and
the usage of the training samples. The application of thdtieg GBF networks is based
on testing samples. They consist of input—output pairs flleensame working space as
above, where the robot fingers moves in discrete step@&mafn. Itis assured, that training
and testing samples differ for the most part, i.e., have ardgnall number of elements in
common.

In the first experiment, the manipulator moved in discregpstof50mm through the
working space, which resultihx 7 x 7 = 343 training samples. Every second sample is
used for defining a GBF(x 4 x 4 = 64 GBFs), and all training samples for computing
the combination weights of the GBFs. The image resoluticsetsto256 x 256 pixel.
Figure 2 shows in curve (a) the course of mean position eaointreasing the support
systematically. Asthe GBFsbecome more and more overlappddnction approximation
improves, and the mean position error decreases to a valsoot2.2mm.
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The second experiment differs from the first in that the malaifor moved in steps of
25mm, i.e., 13 x 13 x 13 = 2197 training samples. All samples are used for computing
the GBF weights, and every second sample for defining a GBF{ x 7 = 343 GBFs).
Figure 2 shows in curve (b), that the mean position error eayes tal .3mm.

In the third experiment the same configuration has been usée@fare, but the image
resolution was doubled 12 x 512 pixels. The accuracy of detecting the finger bend in
the images increases, and hence the mean position errag ehtheffector bend reduces
once again. Figure 2 shows in curve (c) the convergence t¢oetuel .0mm.

The fourth experiment takes special care of both the trgiafrveights and the testing of
the resulting GBF network. Obviously, there is only a orsedioverlap between GBFs at
the border of the working space. Hence, the quality of thetion approximation can be
improved, if a specific subset 81 vectors, which is located at the border of the working
space, will not be taken into account. In this experimerg,3t8 GBFs are spread over
the original working space as before, but an inner workiragspf250mm side length is
used for computing combination factors and for testing tB&@etwork. Figure 2 shows
in curve (d) that the mean position error decreases to a @hluémm.
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Figure 2. The curves show the mean position error versus the sigma Bs@Bder four different conditions. (a)
Small GBF number, low image resolution. (b) Large GBF numlberimage resolution. (c) Large GBF number,
highimage resolution. (d) Experiment (c) and avoiding agpnation errors at working space border. Generally,
the error decreases by increasing the sigma, and the lagy&BF number or the higher the image resolution the
smaller the position error.
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Based on these experiments, we configure the GBF networklsata desired accuracy
for 3D positions can be reached (e.g.0.5mm). During the application phase, first, the
target object must be detected in the stereo images andritex ofgravity computed from
that. Second, the twd/) coordinate vectors are put into the GBF network for computin
a3D position. Finally, the robot hand will move to thab position.

4. Learning operators for recognition

For approaching and/or grasping an objectitsdepiction has to be detected in the stereo
images. An object can be recognized in a certain image arapgiying a specific function

to the signal structure of that area. The output ofrdemgnition functiorcan be defined

as a real value betwednand 1, which encodes the confidence, that a certain object is
depicted in the image area. Unfortunately, by changing iewing angle of the cameras
the appearance of an object changes. Regardless of vagiaylevel structure of theD
pattern of a target object, the recognition function shamwdriant compute values near to

1. On the other hand, the recognition function should compatees near to for image
areas depicting any other object or situation.

Regularization neural networks are used for learning aptesenting the recognition
function. The input node represents the input pattern ofrélsegnition function. The
hidden nodes are defined By support functions, and all these will be applied to the input
pattern. This hidden layer approximates the appearancéotthaf the target object, and
hence the whole network can be used as recognition funcftmmoutput node computes the
recognition value by a weighted combination of results eapfifom the support functions.
The input space of the regularization network is the set bpassible patterns of the
pre-defined size, but each hidden node responds significdytfar a certain subset of
these patterns. Unlike simple applications of regulaidrahetworks, in this application
of object recognition the dimension of the input space isemiely high (i.e., equal to the
pattern size of the target object, e.th,x 15 = 225 pixel).

The approach for learning a recognition function is presetimt Table 1.

Table 1.Learning a recognition function.

1. We take sample images containing the object, which hae tedognized at a later date. The
samples differ from each other by a systematic change ofiéve sonditions.

2. Optionally, we apply specific filters to the image, in ordegnhance or express certain properties
(see section 7).

3. From each ofthe (filtered) sample images, we extract d seathngular area having the relevant
object inside. The generated set of training patterns id#sis for learning the recognition
function (i.e., the GBF network).

4. According to the approach for learning a GBF network, wst firave to cluster the training
patterns with regard to similarity.

5. Finally, we determine appropriate combination factdithe GBFs by least squares fitting using
thepseudo inverse technique
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Steps (1), (2), and (3) will be illustrated in the section®ie The approaches of steps
(4) and (5) have been described in section 2.

The learned operator for object recognition is defined by & G&work. The collection
of GBFs is based on a set of typical patterns (appearancerps)t The support of the
GBFs specifies the generalizing ability for applying therapar to new patterns of the
object (not included in the training set). The question aéiast is: How many GBFs
are needed and which size of the support is appropriate fbusb object recognition?
The robustness will be defined by incorporatingiavariancecriterion and aeliability
criterion. The invariance criterion strives for an operagchich responds nearly equal for
any appearance pattern of the target object. The reliloiliterion aims at an operator,
which clearly discriminates between the target object amdaher object or situation.
Regions of the appearance space, which represent viewgeaiftelother than the target
object or any background area, should be given low confidealces.

We will experimental demonstrate a conflict in trying to nmakde both criterions simul-
taneously. Hence, related to the overfitting/overger@rajidilemma (discussed above)
a compromise is needed. By changing the number and the swgipoof the GBFs, we
show the invariance and reliability performance of rectignifunctions.

5. Object recognition under arbitrary view angle

For learning an appropriate operator, we must take sampdgem of the target object
under several view angles. We turn the object by using a nzetturntable and acquire
orientation-dependentappearance patterns (size of jeet@atternd s x 15 = 225 pixel).
Figure 3 shows a subset of eight patterns from an overakciidin of32. The collection is
devided into a training and a testing set comprisifigpatterns each. The training set has
been taken by equidistant turning angle2®f degrees, and the testing set differs by an
offset of 10 degrees. Therefore, both in the training and testing setotientation of the
object varies in discrete steps over the rang&sofdegrees.

HEOEHBONE

Figure 3. The target object is shown under eight equidistant turnimgess. The patterns are used to learn an
operator for object recognition under arbitrary view angle

The collection of GBFs and their combination factors willlearned according to the
approach of section 2. By modifying the number and/or th@etipf the GBFs, we obtain
specific GBF network operators.

In the first experiment, a small support has been chosenhirijalies a spare overlap of
the GBFs. By choosing, 4, 8, and16 GBFs respectively, four variants of GBF networks
will be defined to recognize the target object. Figure 4 shbe$our accompanying curves
(), (b), (c), (d) of confidence values, which are computedfylying the GBF networks
to the target object of the test images. The more supportifurgare used, the higher
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the confidence values for recognizing the target. The comfielealues vary significantly
when rotating the object, and hence the operators are haxdisiant.
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Figure 4. Different GBF networks are tested for object recognitiomlemarbitrary view angle. The network
outputis a confidence value, that a certain image patch icarttee object. The curves (a), (b), (c), (d) show the
results under changing view angle using networks,df, 8, 16 GBFs respectively. The more GBFs, the higher
the confidence value. Due tesaall GBF sigmahe operators aneot invariantunder changing views.

The second experiment differs from the first in that a largepsut of the GBFs has
been used, which implies a broad overlap. Figure 5 showsdaves of confidence va-
lues, which are produced by the new operators. The invagiariterion improves and the
confidence nearly takes the desired vdlu&aking only thénvariance aspedhto account,
the operator characterized by many GBFs and large suppbs isest (curve (d)).

The third experiment incorporates thediability criterion into object recognition. An
operator is reliable, if the recognition value computedtfer target object is significant
higher than those of other objects. In the experiment, wéyahp operators to the target
object and to three test objects (outlined in Figure 6 by evhéictangles). Based dié
GBFs as support functions, we systematic increase the siygdoe in6 steps. Figure 7
shows four curves related to the target object and the tlestebjects. If we enlarge the
support of the GBFs and apply the operators to the targetplfen a slight increase of
the confidence values occurs (curve (a)). If we enlarge thpatiin the same way and
apply the operators to the test objects, then the confideslces increase dramatically
(curves (b), (c), (d)). Consequently, the curves for theabgects approach the curve for
the target object. Increasing the support of the GBFs mdiesperator more and more
unreliable. However, according to the first experimentsrangasing support makes the
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Figure 5. Similar experiments like the one in Figure 4. Howevdarge sigma valuef the GBFs has been used.
The learned operators respamehrly invariantunder varying view angles.

Figure 6. The image shows a certain view of the target object (in a bedthingle) and three test objects (in fine
rectangles). The GBF network for object recognition shaigitct the target objectin this set of four candidates.



12 JOSEF PAULI

.05

a (b)
©
©)

value
0.40 0.60 0.80
\ \ \

Conf idence

.20

.00

K \ \ \
5 15 25 35 45 55

Sigma of Gaussian

Figure 7. Six GBF networks have been constructed each with equal GB#bet but with different sigma values.
Each GBF network has been applied to the image patch of thettabject and to the patches of the three test
objects. The GBF network computes a confidence value, thgigttch contains the target object. The curvesshow
the confidence values versus the sigma values of the GBFstafdnet object (curve (a)) can be discriminated
from the test objects (curves (b),(c),(d)) quite good by GEEvorks of small sigma values. However, for larger
sigma values the discriminating power decreases.

operator more and more invariant with regard to object oaitéon. Hence, a compromise
has to be made in specifying an operator for object recagniti

6. Object recognition for arbitrary view distance

For learning an appropriate operator, we must take samlgamof the target object under
several spatial distances between object and camera.eR8glrows on the left the image
of a scene with the target object and other objects, takeerumdypical object—camera
distance. On the right, a collection of training patterns depicts the target object, which
has been taken under a systematic decrease of the cameréefuth in 11 steps. The
effect is similar to decreasing the object—camera distaiite size of the object pattern
changes fromb x 15 pixel to65 x 65 pixel. Since each training pattern encodes essential
information, we define for each a single GBF (avoiding cltistg. The combination
factors of the GBFs are determined as before.

A further collection of1 0 test images has been acquired, which differs from the trgini
set by using intermediate values of the camera focal lenyghconstructed three operators
for object recognition by taking small, middle, and largepaort of the GBFs (Figure 9).
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Figure 8. On the left, an image of a whole scene has been taken inclddetarget object. On the right, a
collection of 11 images is taken just from the target objexter systematic increase of the inverse focal length.
The effect is similar to decreasing the object-cameraniigta This collection of images is used to learn an
operator for object recognition under arbitrary view diste.
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Figure 9. Three GBF networks are tested each with equal GBF humbedjffering by small, middle, and large
sigma value. Each network is applied to the target objetbitest images, which differ from each other in the
size of the depicted object, i.e., in the view distance. Tétevork output gives a confidence value, that the image
patch contains the target object. For small or middle sigahaes (curves (a), (b)) the learned operators are hardly
invariant under changing view distance. For a large signizeM@urve (c)) an invariance is reached.
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In the first experiment, these operators have been appli¢detdarget object of the
test images. In curve (a) the confidence values are shownetmgnizing the target
object by taking a small support into account. The confidertee differs significantly
when changing the object—camera distance and is far away fine@ desired valué.
Alternatively, if we use a middle support value, then thefimence values approach to
and the smoothness of the curve is improved (curve (b)).lllgjlae use of a large support
value will lead to invariant recognition values neartfcurve (c)).

In the second experiment, we investigate the reliabilitiedion for the three operators
from above. The operators will be applied to all objects eftést image (image on the left
in Figure 8), and the highest confidence value of recognftasito be selected. Of course,
itis expected to obtain the highest recognition value froetarget object. For comparison,
Figure 10 once again depicts (equal to Figure 9) the confelealties of applying the three
operators to the target object (curves (a), (b), (c)).
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Figure 10. The curves (a), (b), (c) of Figure 9 are shown, which are thpudwf three GBF networks (differing

by the sigma value), when applied just to the patch of thestawbject under varying view distance. In order to
consider the reliability of these values for discrimingttarget and other objects the three GBF networks has been
applied further to the patches of other objects under varyiew distance. The left image of Figure 8 shows all
these objects under a certain view distance. Each GBF nletweonputes for each object patch an output value
and the maximum of these values is taken. Repeating thigguwe for all three GBF networks and for all view
distances yield the curves (al), (b1), (c1). For a small aigatue, the curves (a) and (al) are equal, for a middle
sigma value the curve (b1) surpasses curve (b) sometimes. [&@e sigma value the curve (c1) surpasses curve
(c) quite often. Generally, the higher the sigma value the teliable the GBF network for object recognition.

If we apply the operator with large support value to all obgeaf the test images, then
frequently we obtain higher confidence values for objedtethan the target object (see
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curve (cl)). In those cases, the operator fails to localieetérget object. Alternatively,
the operator with middle support values meets the reltghdliterion better (curve (b1)
rarely surpasses curve (b)). Finally, the operator withlssugpport values localizes the
target object in all test images. The highest confidenceegatre computed just for the
target object (curve (a) and curve (al) are identical). déotigain the invariance/reliability
conflict.

7. Recognition of grasping situations

So far, we have demonstrated the use of GBF networks forgieagnition. The approach

is well suited for the recognition of situations, which d#ise spatial relations between
objects. We will exemplary illustrate specific operators&rognizing grasping situations.
A grasping situation is defined to be most stable, if the taobgect is located between the
fingers entirely. Figure 11 shows three images, each degiettarget object, two bended
grasping fingers, and some other objects. On the left anddhg the grasping situation

is unstable, because the horizontal part of the two parfiigérs is behind respective in
front of the target object. The grasping situation in thediedmage is most stable. For
learning to recognize grasping stability, we moved the téihgers step by step to the most
stable situation and step by step moved off afterwards. Tévement is photographed in
25 discrete steps. Every second image will be used for traiamgthe images in between
for testing.

Figure 11. Three typical images of grasping situations are shown. &fi@hd the right grasping situations are
unstable, the grasping situation in the middle is stableiogdther, a sequence 8 training images is used,
which depict first the approaching of the gripper to the mtaile grasping situation and then the departure from
it. This image sequence is used to learn GBF networks fouatialy the stability of grasping situations.

For learning operators, it would be possible to acquiredagpearance patterns contain-
ing not only the target object, but also certain parts of ttasing fingers. However, the
efficiency of recognition decreases iflarge-sized pastara used. Afilterisneeded for col-
lecting signal structure from a large environment into alsimeage patch. For this purpose,
the approach in (Pauli, Benkwitz, & Sommer, 1995) used aywbcbmbination of two or-
thogonal directe@abor wavelet function@ee fundamentals in (Rioul & Vetterli, 1991)).
Figure 12 shows the overlay of two response patterns, byeqgpbuch a filter to the
left and the middle image in Figure 11 and selecting the nespof the (black) outlined
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rectangular area. A specific relation between grasping fingied target object results in a
specific filter response.

40

respomnse
20 30

Filter

10

Figure 12. The product combination of two orthogonal directed Gaborelet functions can be applied to the
image patch of grasping situations. This filter respondsifipgo certain relations between target object and
grasping fingers. The overlay of the filter response patteynswo different grasping situations are shown.

According to that, we can represent the finger—object meldiy filter responses and avoid the difficult extraction
of symbolic features.

Based on filter response patterns, a GBF network can be teBongituation recognition.
The desired operator should compute a sm@attabolic curveof stability values for the
course oR5 grasping situations. For the experiment, we specified mpayators by taking
different numbers and/or support sizes of GBFs into accoligiure 13 shows the course
of stability values for two operators. The best approxioatian be reached using a large
number and large support of GBFs (see curve (b)).

8. Summary, discussion, and future work

Our approach of vision based robotics uses GBF networksfoottamera—robot coordi-

nation and for object or situation recognition. In varioype&riments, it was demonstrated,
how specific network configurations influence the qualityte function approximation.

Depending on pre-specified thresholds for the quality, tB& @etworks can be trained

appropriately and then be used for online operation.
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Figure 13.Based on a sequencenf training images (which contain the approaching to and tipardare from
the target object), two GBF networks have been learned. diffey mainly by a small respective high number
of GBFs, i.e., from thd 3 grasping situations a small respective high number of efesire constructed. This
image sequence is used for learning a parabolic curve opygstability where the maximum should be reached
for the middle image of the sequence. Then each GBF netwaykibed to a succession ®$ different grasping
situations depicting once again the approaching and depaihe images include both tha training situations
and 12 test situations. If using a network with small GBF numbeerthhe resulting course (a) of grasping
stability is not the desired one. However, the course (h)ltieg from the network with high GBF number is a
good approximation of the desired parabolic curve. It candssl for appropriate evaluating grasping situations.

The procedure for camera—robot coordination combine®ttagks, which are treated
usually separately. Those are determining the camera pseesn determining the geo-
metric relation between camera and robot, and based onrdtahstructing the position
of an object from the stereo image coordinates into robotdinates. Unfortunately, in
this three-step procedure inaccuracies in parameterasbimpropagate through the steps,
which lead to errors in positioning the robot gripper. As opgd to that, our approach
computes in one step just the relevant control vector farstg the robot gripper. In this
sense, the work is similar to (Martinetz & Schulten, 1993wwhver with the distinction,
that they define as control vector the combination of joirgles. We prefer the cartesian
position and orientation of the gripper and rely on the isgarobot kinematics, which is
solved quite good in our industrial robot.

Usually, the relation betweehD space coordinates ald image coordinates is written
linear as projective transformation. Thisis true for aralggnhole camera and approximate
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true for a real camera lens with large focal length, but neeptable for small focal
length. For the lattef3 D straight lines do not project intdD straight lines, because the
transformation is nonlinear and leads to arcs. Howeverecambjectives with small focal
length are able to depict a large working space, which isdeatale in our applications. In
our approach of using GBF networks, we can take care for soilinearities by spreading
more gaussian basis functions into critical areas of thatiapace.

We have presented an approach for object recognition, wdoels not require a priori
knowledge of the three—dimensional geometric shapesrrftizely, the knowledge about
objects is grounded in photometric appearance. As a coasequthe operator for object
recognition must be learned on the basisanf gray levels or elementary filter responses
Again a regularization network is used for representinglaaching the operator.

It is implemented with gaussian basis functions but any robiedl-shaped parabolic
function is possible as well. The strength of applying therténg process to raw image
data or filter responses is, that the GBF networks can gérnerabm a large amount
of data. However, if data compression would be done prioe#oriing (e.g., computing
symbolic values based on image segmentation), then gasiotizor generalization errors
are unavoidable. Similary, the approach of (Ballard & Wixsb993) for object recognition
also avoids image segmentation. A collectiortekrable filterss applied, each responding
specific to certain orientations of the gray level edges. @ynig care for view variations
and distances, they represent for each object a set of fgponse vectors, which serve
as a model base for object recognition. However, a clugierirsimilar model vectors to
reduce the number is not treated in their work (as opposedritGBF network approach).

Our robotvision system for object recognition has to bestéigito the actual environment
in order to reach autonomy. By doing experiments prior todplication stage (like the
one presented in this work), we can later make use of theddamrognition functions.
During the training stage, the regularization factor (sgeation (1)) is controlled by the
number and the support size of the basis functions. Variondigurations reflect the
well-known invariance/reliability conflictin object recognition. Increasing the support
and/or increasing the number of GBFs makes the operatobjecbrecognition invariant
but unreliable. In order to reachcertain degree of discriminabilitipetween the target
object and other objects, the claim for strict invariance teebe reduced intapproximate
invariance Therefore, a further goal of doing experiments prior todbelication stage
is to discover an appropriate compromise between invagiamnd reliability of object
recognition.

The greatest strength of our approach to object or situagoagnition is the ability
to learn (approximate) invariants undeal world changes Usual methods for invariant
pattern recognition (Wood, 1996) have the constraint ttiegpermitted transformations are
acting on the patterns directly. As opposed to that, in thegeition of three-dimensional
objects one has to deal with changing view directions, vistadces, object background,
illuminations and maybe further imponderable changes.cElghe pattern transformations
are much more complicated, because they originate fromwaddl changes. Fortunately,
our experiments proved, that approximate invariants cateémed with regularization
networks.

Further work is done on learning trajectories for the rokatdy so that the gripper can
approach a target object along a desired route (Paschkeilk P297). For the purpose
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of demonstration, the operator uses the control panel tertte gripper in discrete steps
to intermediate positions of the desired trajectory. Aestetamera system records this
sequence, and a neural network based vision system regctissirsmoott3 D trajectory.
This trajectory serves as an example for a generic classajgctories having variable
starting position and orientation.

Allwork conducted is in line with the principle of first demstmating the relevant objects,
situations, and/or actions, and then learning from thosethe experiments in this work,
the user demonstrated the coordination between the camdrgha robot, the relevant
target object under several viewing conditions, and ségeazping situations. The system
learned the camera—robot coordination, and learned t@néo® the target object and to
move appropriately to reach the most stable grasping positi

However, a drawback of this approach is that a large numtieaioing examples have to
be acquired to learn appropriate things. Active learniggathms can address this problem
by taking only those object views or visuomotor associatiomo account, which haven't
been experienced so far. In the work of (Salganicoff, Ungd@ajcsy, 1996) an interval
estimation technique is combined with classification tresstruction for this purpose. A
further strategy to reduce the costs of gathering trainiagrples is to exploit general
principles of image formation. A priori known invariantscelid be used directly instead
of learning them with training samples. For example, undgspective projection the
intersection of lines is invariant and the parallelism ipraximate invariant. Based on a
robust technique for line extraction (e.g., Hough transfation (Leavers, 1993)), we can
make use of these invariants to localize polyhedral ohjects

In future work, more advanced recognition functions aresadgred in the framework of
GBF networks. It is our intention to automatically learn tagiances of an object but take
the known invariances into account. For example, image lta@ be used for locating and
describing the silhouette of an object, and then the legrafiproach for object recognition
can be applied only within the silhouette. This strategy goad basis for dealing with
object occlusions or objects with cluttered backgroundrréhily, our approach will be
embedded in an image-based robot servoing architectustdmatically execute advanced
robot tasks in complicated scenes.

9. Facilities

Sun Enterprise E4000 (4 UltraSparc processors), TRCgisigtive binocular head,
Staubli—-Unimation RX-90 robot arm (see Figure 14).

The offline training phase needs about 60 minutes for: pyttie camera system in ap-
propriate relation to the robot, taking relevant picturesif objects and grasping situations,
learning the camera—robot coordination, and learning pieeadors for object and situation
recognition. In online operation aboultsecond is needed for a cycle of image taking,
object/situation recognition and moving the robot hand alkincrement in the direction
of the most stable grasping pose.

Acknowledgement: | am grateful to G. Sommer for very useful discussions.
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Figure 14. The image shows the robot arm and the binocular head, whightheen used for the experiments of
this work.

Notes

1. Tactile sensing is inevitable for a fine-tune of the robahdh but will not be considered in this paper
(Shimoga, 1996).

2. Alternative features could be detected as well, e.g etitkeffector tip.
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