
Compatibilities for the Pereption-Ation CyleJosef Pauli and Gerald SommerChristian-Albrehts-Universit�at zu KielInstitut f�ur Informatik und Praktishe MathematikPreu�erstra�e 1{9, D-24105 Kiel, Germanywww.ks.informatik.uni-kiel.de/�jpaAbstrat. We apply an eye-on-hand Robot Vision system for treatingthe following three tasks: (a) Traking objets for obstale avoidane; (b)Arranging ertain viewing onditions; () Aquiring an objet reogni-tion funtion. The novelty is the use of so-alled ompatibilities betweenmotion features and view sequene features. Under real image forma-tion, ompatibilities are more general and appropriate than exat in-variants. We demonstrate the usefulness for onstraining the searh fororresponding features, for parameterizing orrelation mathing proe-dures, and for �ne-tuning approximations of appearane manifolds.1 IntrodutionDuring the late eighties Computer Vision sientists realized that the humanintelligene underlying the pereption of the environment is not only based onviews but also on aompanying ations. Sine then, ameras have been mountedon agile devies in order to enable ative viewing and study vision in ombinationwith ations. Although this new paradigm of Robot Vision (or Ative Vision)produed exiting solutions for problems whih are too diÆult for stati vision,the potential usefulness is far from being fully realized [1℄.Our work demonstrates the usefulness of ontrolled amera movements forthree exemplary appliations, i.e. traking objets for obstale avoidane, ar-ranging ertain viewing onditions, aquiring an objet reognition funtion. Inthis ontext the theoretial onept of invariane is relaxed into the pratialonept of ompatibility. Regarding this, the �rst attempt has been undertakenby Binford and Levitt [3℄, who introdued quasi-invariane under transforma-tions of geometri features. Our ompatibility onept onsiders more generaltransformations, maybe with di�erent types of features prior and after the map-ping, and onsiders robot ations as the soure of the transformations, and thusintegrates real-world ations and pereption.We fous on ompatibilities between 3D motion features and 2D view se-quene features. Based on visual demonstration, statistial measurements aretaken to evaluate the deviation from the exat invariane and thus speify theompatibility, whih an be used in subsequent online appliations. We studyompatibilities for typial sub-tasks of the mentioned appliations, i.e. onstrain-ing the searh for orresponding features (setion 2), parameterizing orrelationmathing proedures (setion 3), and �ne-tuning approximations of appearane



manifolds (setion 4). For the appliations we used a 6-DOF robot arm (St�aubli-RX90) and a monohrome video amera mounted on the bak of the robot hand.Within a working spae of a ube with sidelength 500mm the amera an bearranged in any position and orientation.2 Constraining the searh for orresponding featuresWe would like to aquire depth features from a olletion of objets, e.g. bottlesand ans in a refrigerator. For this purpose the amera will be translated on-tinually in front of the objets. Gray value orners an be extrated (e.g. withSUSAN [7℄) and must be traked along the image sequene. Based on orre-spondenes, shape-from-motion strategies an be applied to obtain the relevantinformation. For example, Figure 1 shows two onseutive images (left and mid-dle) with gray value orners extrated by SUSAN, and the right image depitsmotion vetors at these points. We are interested to restrit the searh for or-responding orners, i.e. determine an individual disparity range for eah orner.
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Fig. 1. (a) and (b) Two onseutive images with gray value orners: () Image withmotion vetors at the gray value orners.In an experimentation (o�ine) phase we put a alibration pattern onto theground plane. It depits a regular distributed set of blak dots. Both at nearestand farthest distane to the ground (i.e. the top and bottom borders of the view-ing spae), the amera makes a ertain step of movement, respetively. Motionvetors for the alibration dots are determined in the images, resulting in twovetor �elds V 1 and V 2. Figure 2 shows images of the alibration pattern priorand after lateral amera translation (at top border of viewing spae). The owof dots from left to right results in vetor �eld V 1 (not depited). Figure 3 justshows the lengths of motion vetors of V 1, whih are not onstant due to largeimage distortions (aused by a lense with small foal length, 4mm). For thespei�ed amera movement, the two vetor �elds impose expetations on motionvetors whih an be used later on during the online phase. Let us assume animage point pi whih originates from an arbitrary 3D point within the viewingspae, and assume a step of amera movement as spei�ed aording to the al-ibration phase. For the image point the angles of the motion vetor taken fromV 1 or V 2 are approximately the same. Furthermore, the length of the motionvetor must be in the interval of the relevant lengths given in V 1 and V 2. Con-sequently, a point pi in the �rst image and a point qj in the seond image is aandidate pair for orrespondene, only if the following onstraints hold:



�(V 1(pi)) � �(qj � pi) � �(V 2(pi)) (1)L(V 1(pi)) � kqj � pik � L(V 2(pi)) (2)Symbol � denotes the angle and L the length of a vetor. Just these arefullyseleted andidate pairs are taken for applying normalized ross orrelation inorder to determine the most appropriate one, as shown in Figure 1 (right image).The ompatibility is represented by the two equations (1) and (2).
Fig. 2. Calibration pattern prior/after lateralamera translation, ow of dots from left to right. 0 50 100 150 200 250 300 350 400 450
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Fig. 3. Lengths of mot. vetorsfor lateral amera translation.3 Parameterizing orrelation mathing proeduresThe robot hand inluding the hand-mounted amera should be arranged in aertain relation to the objet. This an be regarded as a sub-task of a graspingproess or a sub-task leading to optimal viewing of an objet. A servoing meh-anism will be applied whih does the arrangement step by step and is basedon ontinual visual feedbak and orrelation mathing in the series of images.In setion 2 we treated exemplary the ase of amera translation, and now weonsider ompatibilities for the ase of amera rotation. If a amera is rotatingaround the optial axis, whih is normal to the objet surfae, then log-polartransformation (LPT) an be applied to the gray value images [4℄. The motiva-tion is that the transformed objet pattern is shifting instead of rotating, whihmakes the orrelation mathing more eÆient during the servoing proess. Fig-ure 4 shows two images of an integrated iruit (IC) objet under rotation by aturning angle of 90Æ. These are two examples from a olletion of 24 images takenunder angle o�set of 15Æ, respetively. Figure 5 shows the horizontal translationof the log-polar transformed pattern of the rotating objet.However, in a view sequene perfet invariane only holds for a at 2D ob-jet without any side faes, and a simulated pinhole amera is assumed whoseoptial axis must be kept normal to the objet surfae. In realisti appliations,resampling error our ertainly, the objets are of three-dimensional shape pre-sumably, the amera objetives may ause unexpeted distortions, and possiblythe optial axis is not exat normal to the objet surfae (misalignment). Be-ause of these realisti imponderables, ertain variations of the LPT patternswill our. We are interested in determining the real deviations from invarianein order to obtain tolerane parameters for orrelation mathing.



Fig. 4. Integrated iruit objet under rotation by turn-ing angle 90Æ. Fig. 5. Horizontal trans-lation of LPT pattern.By demonstrating sample objets and performing typial amera rotationsrelative to the objets, one an make measurements of real deviations from in-variane, i.e. atual variations of the LPT patterns. Despite of these variations,it is expeted that the manifold of LPT patterns is muh more ompat and eas-ier to desribe than the original manifold of appearane patterns. For example,presumably, a single multi-dimensional Gaussian, spei�ed by a enter vetorand a ertain ovariane matrix, may approximate the variation.For illustration, we perform a simple experiment whih is based on histogramsof edge orientations. Spei�ally, orientations of gray value edges are onsideredin order to demonstrate the inuene of LPT to a rotating 3D objet, i.e. mea-suring the deviation from pure pattern translation in the log-polar transformedimage. The image library onsists of 24 images, as mentioned above. The his-tograms should be omputed from the relevant area of the LPT image ontainingthe objet pattern, respetively. To simplify this sub-task a nearly homogeneousbakground has been used suh that it is easy to extrat the gray value strutureof the IC objet. We ompute for the extrated LPT patterns a histogram ofgradient angles of the gray value edges, respetively.Figure 6 (left) shows a histogram determined from an arbitrary image in thelibrary. The mean histogram is omputed from the LPT patterns of the whole setof 24 images, shown in Figure 6 (middle). Next, we ompute for eah histogramthe deviation vetor from the mean histogram. From the whole set of deviationsone again a histogram is omputed, whih is shown in Figure 6 (right).
Fig. 6. (a) Histogram of edge orientations under LPT for one image; (b) Mean his-togram for several images; () Aumulation of orientation deviations.



This latter histogram an be approximated as a Gaussian with the maximumvalue at 0 and the Gaussian turning point approximately at the value � = 5.Under ideal (simulated) onditions the Gaussian would be an impulse funtionwith extent 0. However, the real value of � is a measure for the deviation fromperfet invariane. It an be used to parameterize approahes of pattern math-ing, e.g. speifying thresholds for the oeÆient of normalized ross orrelationin order to obtain reasonable mathing hypotheses.4 Fine-tuning manifold approximations for reognitionFor the reognition of a sene objet in an image we need to have an appropriatereognition funtion. This funtion an hardly be implemented manually and in-stead should be learned automatially in the task-relevant environment. Basedon a robot-ontrolled proess of taking sample views we an inorporate ation-related information for improving the generalization in the learning mehanism.Appearane-based objet reognitionA holisti learning approah an be applied whih is based on 2D appearanepatterns of the relevant objets or response patterns resulting from spei� �l-ter operations. The main interest is to represent or approximate the patternmanifolds suh that an optimal ompromise between eÆieny, invariane anddisriminability of objet reognition is ahieved. It is essential to keep thesemanifolds as simple as possible, beause the omplexity is orrelated to the timeneeded for objet reognition. In setion 3 we restrited amera poses and move-ments and thereby redued the manifold omplexity by LPT. However, in thissetion we aept general viewing poses. Apart from the eÆieny riterion thereognition funtion must respond with onstant high values for any appearaneof the objet (invariane riterion), and must be able to disriminate betweentarget and other objets (disriminability riterion).The most popular approah of manifold approximation is based on prinipalomponent analysis (PCA) for a olletion of views [5℄. This is done for eahobjet leading to an objet-spei� Eigenspae, respetively. An unknown viewan be reognized by omputing proximity values to the training samples in theEigenspaes, and determining the most relevant manifold. An improvement ofthis one-nearest-neighbor approah is obtained by applying a lustering approahfor the purpose of generalization. Closely loated training samples are lusteredand the lusters approximated as a multi-dimensional Gaussian, respetively.However, lustering proedures suh as ISODATA searh for neighboring ele-ments aording to simple metri, and do not onsider any inherent topologybetween training samples. For example, if training samples are aquired by on-seutively rotating the amera around the objet, then we know in advane thatthe pattern variation an be approximated as a one-dimensional ourse in thespae of patterns. Consequently, the lustering proedure should generate seg-ments of this ourse by taking the suession of training views into aount. Byimposing a topology onto the olletion of sample views, whih is obtained fromthe proess of image taking, we an luster more adequately.



Role of temporal ontext in objet reognitionIn addition to the one-dimensional topology we also take advantage of the tem-poral ontinuity of gray values between the views in the image sequene.1 Foran objet under rotation the temporal ontinuity an be observed exemplary ina series of histograms of orientations of gray value edges. Figure 7 shows fourgray value images (a,b,,d) of a transeiver box whih has been rotated slightlyin four disrete steps of 5Æ. Figure 8 depits the overlay of four histograms ofedge orientations for these four images (but suppressing the gray values of thebakground). The histogram urves move to the right ontinually under slightobjet rotation.2 These sequential orrelations between onseutive images holdfor small hanges in the relation of objet and amera. They are onsidered for�ne-tuning the manifold approximation.

Fig. 7. Four gray value images of atranseiver box under rotation in disretesteps of turning angle 5Æ.
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Fig. 8.Overlay of four histograms of edgeorientations omputed for the four imagesin Figure 7.Inorporating temporal ontext for manifold approximationLet us assume that the lustering is already performed under the onstraint ofa one-dimensional topology. This leads to a representative view for eah luster,respetively, whih will be taken as seed views for manifold approximation. A se-quene of Gaussian basis funtions is used for approximating the one-dimensionalourse in the spae of patterns. Eah seed view is the basis for spei�ying theenter of a multi-dimensional Gaussian with the dimension equal to the numberof pixels. Eah Gaussian is almost hyper-spherial exept for one diretion whoseGaussian extent is strethed. The exeptional diretion at the urrent seed viewis determined on the basis of the di�erene vetor between the previous and thenext seed view. For illustrating the priniple, we take two-dimensional pointswhih represent the seed views. Figure 9 shows a series of three seed views, i.e.1 The importane of temporal ontext in objet reognition is well-known [2℄.2 The variation of the aumulation values is due to hanging lighting onditions ordue to the appearing or disappearing of objet faes.



previous, urrent and next seed view (Xsi�1,Xsi and Xsi+1). At the urrent seedview the onstrution of an elongated Gaussian is depited. Atually, an ellipseis shown whih represents the ontour related to a ertain Gaussian altitude.
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Fig. 9. Construting hyper-ellipsoidal basis funtions for time-series of seed vetors.The Gaussian extent along this exeptional diretion must be de�ned suhthat the signi�ant variations between suessive seed views are onsidered. Fororthogonal diretions the Gaussian extents are only responsible for taking ran-dom imponderables into aount suh as lighting variations. Consequently, theGaussian extent along the exeptional diretion must be set larger than the ex-tent along the orthogonal diretions. It is reasonable to determine the exeptionalGaussian extent dependent on the eulidean distane measurement between theprevious and the next seed view. We avoid mathematial details beause they aresimple. However, it is worth to mention a similarity of this approah of manifoldapproximation with the so-alled \oriented partile system" for surfae model-ing, introdued by Szeliski and Tonnesen [8℄.Applying the �ne-tuned manifold for objet reognitionAlthough our approah is very simple, both eÆieny and robustness of thereognition funtion inreases signi�antly. The usefulness of onstruting elon-gated Gaussians is illustrated for reognizing the transeiver box in Figure 7.For learning the reognition funtion the objet is rotated in steps of 10Æ leadingto 36 training images. All of them are used as seed images (for simpliity). Theomputation of gradient magnitudes followed by a thresholding proedure yieldsa set of gray value edges for eah seed image. From eah thresholded seed imagea histogram of edge orientations is omputed. A Gaussian basis funtion (GBF)network is installed by de�ning elongated GBFs aording to the mentioned ap-proah. Histograms of the seed images are used as the Gaussian enter vetorsand the Gaussians are modi�ed based on previous and next seed histograms (andapplying a user-de�ned strething fator). In the GBF network the ombinationfators for the Gaussians are determined by the pseudo inverse tehnique.For assessing the network of elongated Gaussians, we also onstrut a net-work of spherial Gaussians and ompare the reognition results omputed bythe two GBF networks. The testing views are taken from the transeiver boxbut di�erent from the training images. The testing data are subdivided in twoategories. The �rst ategory onsists of histograms of edge orientations arisingfrom images with a ertain angle o�set relative to the training images. Tempo-ral ontinuity of objet rotation is onsidered purely. For these situations the



relevant reognition funtion has been trained partiularly. The seond ategoryonsists of histograms of edge orientations arising from images with angle o�-set and are saled, additionally. The reognition funtion omposed of elongatedGaussians should reognize histograms of the �rst ategory robustly, and shoulddisriminate learly the histograms of the seond ategory. The reognition fun-tion omposed of spherial Gaussians should not be able to disriminate betweenboth ategories due to an inreased generalization e�et, i.e. aepting not onlythe angle o�sets but also saling e�ets. The desired results are shown in the dia-grams of Figure 10. By applying the reognition funtion of spherial Gaussiansto all testing histograms, we an hardly disriminate between the two ategories(left). Instead, by applying the reognition funtion of elongated Gaussians, wean de�ne a threshold for disriminating between both ategories (right).
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Fig. 10. Con�dene values of reognizing an objet based on histograms of edge ori-entations. For testing, the objet has been rotated by an o�set angle relative to thetraining images (result in urve a), or the objet has been rotated and the imagehas been saled additionally relative to the training images (result in urve b). (Left)Curves show the ourses under the use of spherial Gaussians, both ategories of test-ing data an hardly be distinguished; (Right) Curves show the ourses under the useof elongated Gaussians, both ategories of testing data an be distinguished learly.5 Summary and disussionFor an eye-on-hand system we presented three typial appliations, i.e. trakingobjets for obstale avoidane, arranging ertain viewing onditions, and aquir-ing an objet reognition funtion. The onrete tasks have been to onstrainthe searh for orresponding features, to parameterize orrelation mathing, andto �ne-tune appearane manifolds. For solving the �rst task, spei� steps ofmotion are performed during an experimentation phase in order to aquire on-straints for motion vetors. By restriting the kind of motion to these spei�ones during the online phase we an exploit the aquired onstraints in the searhfor orrespondenes. For solving the seond task, a spei� ourse of motion isperformed during an experimentation phase in order to determine real devia-tions from a theoretial invariane, i.e. the variation of an LPT pattern under



amera rotation. The distribution of deviations has been approximated by aGaussian. The Gaussian extent an be used to determine a threshold in proe-dures whih make use of orrelation mathing. For solving the third task, theamera is moved step by step for aquiring appearane patterns from an objet.The pattern manifold is �ne-tuned by making use of the known one-dimensionaltopology and the temporal ontinuity of the gray-values.All three examples have in ommon that spei� movements of the ameralead to ertain hanges in the images. From an abstrat point of view, theseare ompatibilities between 3D motion features and 2D view sequene features.They are approximated during an experimentation phase based on statistialevaluations. Also, the examples show the usefulness of repeatable ations, i.e.the pre-spei�ed ations in the experimentation phase must be repeatable inthe appliation phase. The usefulness is due to the appliability of ation-basedinformation for supporting image proessing in the appliation phase.Apart form ompatibilities for the pereption-ation yle, whih have beentreated exemplary in this work, we also studied other ompatibilities for thepurpose of boundary extration (published in [6℄). The advantage is to reduethe amount of objet-spei� knowledge and instead make extensive use of on-straints whih are inherent in the three-dimensional nature of objets and in theproess of image formation. For high-level Robot Vision appliations a furtherategory of ompatibility is of interest. It is the ompatibility between a delib-erate plan (e.g. a strategy for solving a task) and the onrete servoing proess(whih is based on visual feedbak). Generally, a ompromise is needed betweenplan ful�llment and plan adjustment with the latter being triggered by require-ments in the observed reality. Our approah of onsidering suh ompatibilitiesis based on dynami potential �elds (a publiation will be prepared soon).Referenes1. Aloimonos, Y., Ferm�uller, C.: Analyzing ation representations. Workshop onAlgebrai Frames for the Pereption-Ation Cyle, LNCS 1888 (2000) 1-212. Beker, S.: Impliit learning in 3D objet reognition { The importane of temporalontext. Neural Computation 11 (1999) 347-3743. Binford, T., Levitt, T.: Quasi-invariants { Theory and exploitation. Image Under-standing Workshop (1993) 819-8294. Boldu, M., Levine, M.: A review of biologially motivated spae-variant dataredution models for robot vision. Comp. Vis. and Image Underst. 69 (1998) 170-1845. Murase, H. Nayar, S.: Visual learning and reognition of 3D objets from appear-ane. International Journal of Computer Vision 14 (1995) 5-246. Pauli, J.: Compatibilities for boundary extration, Symp. der Deutshen Arbeits-gem. f�ur Mustererkennung, Informatik aktuell Springer-Verlag (2000) 468-4757. Smith, S., Brady, J.: SUSAN { A new approah to low level image proessing.International Journal of Computer Vision 23 (1997) 45-788. Szeliski, R., Tonnesen, D.: Surfae modeling with oriented partile systems. ACMSIGGRAPH Computer Graphis Annual Conferene (1992) 185-194


