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Abstract. We apply an eye-on-hand Robot Vision system for treating
the following three tasks: (a) Tracking objects for obstacle avoidance; (b)
Arranging certain viewing conditions; (¢) Acquiring an object recogni-
tion function. The novelty is the use of so-called compatibilities between
motion features and view sequence features. Under real image forma-
tion, compatibilities are more general and appropriate than exact in-
variants. We demonstrate the usefulness for constraining the search for
corresponding features, for parameterizing correlation matching proce-
dures, and for fine-tuning approximations of appearance manifolds.

1 Introduction

During the late eighties Computer Vision scientists realized that the human
intelligence underlying the perception of the environment is not only based on
views but also on accompanying actions. Since then, cameras have been mounted
on agile devices in order to enable active viewing and study vision in combination
with actions. Although this new paradigm of Robot Vision (or Active Vision)
produced exciting solutions for problems which are too difficult for static vision,
the potential usefulness is far from being fully realized [1].

Our work demonstrates the usefulness of controlled camera movements for
three exemplary applications, i.e. tracking objects for obstacle avoidance, ar-
ranging certain viewing conditions, acquiring an object recognition function. In
this context the theoretical concept of invariance is relaxed into the practical
concept of compatibility. Regarding this, the first attempt has been undertaken
by Binford and Levitt [3], who introduced quasi-invariance under transforma-
tions of geometric features. Our compatibility concept considers more general
transformations, maybe with different types of features prior and after the map-
ping, and considers robot actions as the source of the transformations, and thus
integrates real-world actions and perception.

We focus on compatibilities between 3D motion features and 2D view se-
quence features. Based on visual demonstration, statistical measurements are
taken to evaluate the deviation from the exact invariance and thus specify the
compatibility, which can be used in subsequent online applications. We study
compatibilities for typical sub-tasks of the mentioned applications, i.e. constrain-
ing the search for corresponding features (section 2), parameterizing correlation
matching procedures (section 3), and fine-tuning approximations of appearance



manifolds (section 4). For the applications we used a 6-DOF robot arm (Staubli-
RX90) and a monochrome video camera mounted on the back of the robot hand.
Within a working space of a cube with sidelength 500mm the camera can be
arranged in any position and orientation.

2 Constraining the search for corresponding features

We would like to acquire depth features from a collection of objects, e.g. bottles
and cans in a refrigerator. For this purpose the camera will be translated con-
tinually in front of the objects. Gray value corners can be extracted (e.g. with
SUSAN [7]) and must be tracked along the image sequence. Based on corre-
spondences, shape-from-motion strategies can be applied to obtain the relevant
information. For example, Figure 1 shows two consecutive images (left and mid-
dle) with gray value corners extracted by SUSAN, and the right image depicts
motion vectors at these points. We are interested to restrict the search for cor-
responding corners, i.e. determine an individual disparity range for each corner.

Fig. 1. (a) and (b) Two consecutive images with gray value corners: (c) Image with
motion vectors at the gray value corners.

In an experimentation (offline) phase we put a calibration pattern onto the
ground plane. It depicts a regular distributed set of black dots. Both at nearest
and farthest distance to the ground (i.e. the top and bottom borders of the view-
ing space), the camera makes a certain step of movement, respectively. Motion
vectors for the calibration dots are determined in the images, resulting in two
vector fields V! and V2. Figure 2 shows images of the calibration pattern prior
and after lateral camera translation (at top border of viewing space). The flow
of dots from left to right results in vector field V! (not depicted). Figure 3 just
shows the lengths of motion vectors of V1, which are not constant due to large
image distortions (caused by a lense with small focal length, 4mm). For the
specified camera movement, the two vector fields impose expectations on motion
vectors which can be used later on during the online phase. Let us assume an
image point p; which originates from an arbitrary 3D point within the viewing
space, and assume a step of camera movement as specified according to the cal-
ibration phase. For the image point the angles of the motion vector taken from
V! or V2 are approximately the same. Furthermore, the length of the motion
vector must be in the interval of the relevant lengths given in V! and V2. Con-
sequently, a point p; in the first image and a point ¢; in the second image is a
candidate pair for correspondence, only if the following constraints hold:



(V' (pi)) ~ P(a; — i) = B(V(py)) (1)
L(V(p:) > llaj — pill > LV (pi)) (2)

Symbol @ denotes the angle and L the length of a vector. Just these carefully
selected candidate pairs are taken for applying normalized cross correlation in
order to determine the most appropriate one, as shown in Figure 1 (right image).
The compatibility is represented by the two equations (1) and (2).
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Fig. 2. Calibration pattern prior/after lateral Fig.3. Lengths of mot. vectors
camera translation, flow of dots from left to right. for lateral camera translation.

3 Parameterizing correlation matching procedures

The robot hand including the hand-mounted camera should be arranged in a
certain relation to the object. This can be regarded as a sub-task of a grasping
process or a sub-task leading to optimal viewing of an object. A servoing mech-
anism will be applied which does the arrangement step by step and is based
on continual visual feedback and correlation matching in the series of images.
In section 2 we treated exemplary the case of camera translation, and now we
consider compatibilities for the case of camera rotation. If a camera is rotating
around the optical axis, which is normal to the object surface, then log-polar
transformation (LPT) can be applied to the gray value images [4]. The motiva-
tion is that the transformed object pattern is shifting instead of rotating, which
makes the correlation matching more efficient during the servoing process. Fig-
ure 4 shows two images of an integrated circuit (IC) object under rotation by a
turning angle of 90°. These are two examples from a collection of 24 images taken
under angle offset of 15°, respectively. Figure 5 shows the horizontal translation
of the log-polar transformed pattern of the rotating object.

However, in a view sequence perfect invariance only holds for a flat 2D ob-
ject without any side faces, and a simulated pinhole camera is assumed whose
optical axis must be kept normal to the object surface. In realistic applications,
resampling error occur certainly, the objects are of three-dimensional shape pre-
sumably, the camera objectives may cause unexpected distortions, and possibly
the optical axis is not exact normal to the object surface (misalignment). Be-
cause of these realistic imponderables, certain variations of the LPT patterns
will occur. We are interested in determining the real deviations from invariance
in order to obtain tolerance parameters for correlation matching.
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Fig. 4. Integrated circuit object under rotation by turn- Fig. 5. Horizontal trans-
ing angle 90°. lation of LPT pattern.

By demonstrating sample objects and performing typical camera rotations
relative to the objects, one can make measurements of real deviations from in-
variance, i.e. actual variations of the LPT patterns. Despite of these variations,
it is expected that the manifold of LPT patterns is much more compact and eas-
ier to describe than the original manifold of appearance patterns. For example,
presumably, a single multi-dimensional Gaussian, specified by a center vector
and a certain covariance matrix, may approximate the variation.

For illustration, we perform a simple experiment which is based on histograms
of edge orientations. Specifically, orientations of gray value edges are considered
in order to demonstrate the influence of LPT to a rotating 3D object, i.e. mea-
suring the deviation from pure pattern translation in the log-polar transformed
image. The image library consists of 24 images, as mentioned above. The his-
tograms should be computed from the relevant area of the LPT image containing
the object pattern, respectively. To simplify this sub-task a nearly homogeneous
background has been used such that it is easy to extract the gray value structure
of the IC object. We compute for the extracted LPT patterns a histogram of
gradient angles of the gray value edges, respectively.

Figure 6 (left) shows a histogram determined from an arbitrary image in the
library. The mean histogram is computed from the LPT patterns of the whole set
of 24 images, shown in Figure 6 (middle). Next, we compute for each histogram
the deviation vector from the mean histogram. From the whole set of deviations
once again a histogram is computed, which is shown in Figure 6 (right).
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Fig. 6. (a) Histogram of edge orientations under LPT for one image; (b) Mean his-
togram for several images; (¢) Accumulation of orientation deviations.



This latter histogram can be approximated as a Gaussian with the maximum
value at 0 and the Gaussian turning point approximately at the value ¢ = 5.
Under ideal (simulated) conditions the Gaussian would be an impulse function
with extent 0. However, the real value of ¢ is a measure for the deviation from
perfect invariance. It can be used to parameterize approaches of pattern match-
ing, e.g. specifying thresholds for the coefficient of normalized cross correlation
in order to obtain reasonable matching hypotheses.

4 Fine-tuning manifold approximations for recognition

For the recognition of a scene object in an image we need to have an appropriate
recognition function. This function can hardly be implemented manually and in-
stead should be learned automatically in the task-relevant environment. Based
on a robot-controlled process of taking sample views we can incorporate action-
related information for improving the generalization in the learning mechanism.

Appearance-based object recognition

A holistic learning approach can be applied which is based on 2D appearance
patterns of the relevant objects or response patterns resulting from specific fil-
ter operations. The main interest is to represent or approximate the pattern
manifolds such that an optimal compromise between efficiency, invariance and
discriminability of object recognition is achieved. It is essential to keep these
manifolds as simple as possible, because the complexity is correlated to the time
needed for object recognition. In section 3 we restricted camera poses and move-
ments and thereby reduced the manifold complexity by LPT. However, in this
section we accept general viewing poses. Apart from the efficiency criterion the
recognition function must respond with constant high values for any appearance
of the object (invariance criterion), and must be able to discriminate between
target and other objects (discriminability criterion).

The most popular approach of manifold approximation is based on principal
component analysis (PCA) for a collection of views [5]. This is done for each
object leading to an object-specific Eigenspace, respectively. An unknown view
can be recognized by computing proximity values to the training samples in the
Eigenspaces, and determining the most relevant manifold. An improvement of
this one-nearest-neighbor approach is obtained by applying a clustering approach
for the purpose of generalization. Closely located training samples are clustered
and the clusters approximated as a multi-dimensional Gaussian, respectively.
However, clustering procedures such as ISODATA search for neighboring ele-
ments according to simple metric, and do not consider any inherent topology
between training samples. For example, if training samples are acquired by con-
secutively rotating the camera around the object, then we know in advance that
the pattern variation can be approximated as a one-dimensional course in the
space of patterns. Consequently, the clustering procedure should generate seg-
ments of this course by taking the succession of training views into account. By
imposing a topology onto the collection of sample views, which is obtained from
the process of image taking, we can cluster more adequately.



Role of temporal context in object recognition

In addition to the one-dimensional topology we also take advantage of the tem-
poral continuity of gray values between the views in the image sequence.! For
an object under rotation the temporal continuity can be observed exemplary in
a series of histograms of orientations of gray value edges. Figure 7 shows four
gray value images (a,b,c,d) of a transceiver box which has been rotated slightly
in four discrete steps of 5°. Figure 8 depicts the overlay of four histograms of
edge orientations for these four images (but suppressing the gray values of the
background). The histogram curves move to the right continually under slight
object rotation.? These sequential correlations between consecutive images hold
for small changes in the relation of object and camera. They are considered for
fine-tuning the manifold approximation.
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Fig.7. Four gray value images of a Fig. 8. Overlay of four histograms of edge
transceiver box under rotation in discrete orientations computed for the four images
steps of turning angle 5°. in Figure 7.

Incorporating temporal context for manifold approximation

Let us assume that the clustering is already performed under the constraint of
a one-dimensional topology. This leads to a representative view for each cluster,
respectively, which will be taken as seed views for manifold approximation. A se-
quence of Gaussian basis functionsis used for approximating the one-dimensional
course in the space of patterns. Each seed view is the basis for specifiying the
center of a multi-dimensional Gaussian with the dimension equal to the number
of pixels. Each Gaussian is almost hyper-spherical except for one direction whose
Gaussian extent is stretched. The exceptional direction at the current seed view
is determined on the basis of the difference vector between the previous and the
next seed view. For illustrating the principle, we take two-dimensional points
which represent the seed views. Figure 9 shows a series of three seed views, i.e.

! The importance of temporal context in object recognition is well-known [2].
2 The variation of the accumulation values is due to changing lighting conditions or
due to the appearing or disappearing of object faces.



previous, current and next seed view (X7_;, X7 and X7 ;). At the current seed
view the construction of an elongated Gaussian is depicted. Actually, an ellipse
is shown which represents the contour related to a certain Gaussian altitude.
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Fig. 9. Constructing hyper-ellipsoidal basis functions for time-series of seed vectors.

The Gaussian extent along this exceptional direction must be defined such
that the significant variations between successive seed views are considered. For
orthogonal directions the Gaussian extents are only responsible for taking ran-
dom imponderables into account such as lighting variations. Consequently, the
Gaussian extent along the exceptional direction must be set larger than the ex-
tent along the orthogonal directions. It is reasonable to determine the exceptional
Gaussian extent dependent on the euclidean distance measurement between the
previous and the next seed view. We avoid mathematical details because they are
simple. However, it is worth to mention a similarity of this approach of manifold
approximation with the so-called “oriented particle system” for surface model-
ing, introduced by Szeliski and Tonnesen [8].

Applying the fine-tuned manifold for object recognition

Although our approach is very simple, both efficiency and robustness of the
recognition function increases significantly. The usefulness of constructing elon-
gated Gaussians is illustrated for recognizing the transceiver box in Figure 7.
For learning the recognition function the object is rotated in steps of 10° leading
to 36 training images. All of them are used as seed images (for simplicity). The
computation of gradient magnitudes followed by a thresholding procedure yields
a set of gray value edges for each seed image. From each thresholded seed image
a histogram of edge orientations is computed. A Gaussian basis function (GBF)
network is installed by defining elongated GBF's according to the mentioned ap-
proach. Histograms of the seed images are used as the Gaussian center vectors
and the Gaussians are modified based on previous and next seed histograms (and
applying a user-defined stretching factor). In the GBF network the combination
factors for the Gaussians are determined by the pseudo inverse technique.

For assessing the network of elongated Gaussians, we also construct a net-
work of spherical Gaussians and compare the recognition results computed by
the two GBF networks. The testing views are taken from the transceiver box
but different from the training images. The testing data are subdivided in two
categories. The first category consists of histograms of edge orientations arising
from images with a certain angle offset relative to the training images. Tempo-
ral continuity of object rotation is considered purely. For these situations the



relevant recognition function has been trained particularly. The second category
consists of histograms of edge orientations arising from images with angle off-
set and are scaled, additionally. The recognition function composed of elongated
Gaussians should recognize histograms of the first category robustly, and should
discriminate clearly the histograms of the second category. The recognition func-
tion composed of spherical Gaussians should not be able to discriminate between
both categories due to an increased generalization effect, i.e. accepting not only
the angle offsets but also scaling effects. The desired results are shown in the dia-
grams of Figure 10. By applying the recognition function of spherical Gaussians
to all testing histograms, we can hardly discriminate between the two categories
(left). Instead, by applying the recognition function of elongated Gaussians, we
can define a threshold for discriminating between both categories (right).
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Fig. 10. Confidence values of recognizing an object based on histograms of edge ori-
entations. For testing, the object has been rotated by an offset angle relative to the
training images (result in curve a), or the object has been rotated and the image
has been scaled additionally relative to the training images (result in curve b). (Left)
Curves show the courses under the use of spherical Gaussians, both categories of test-
ing data can hardly be distinguished; (Right) Curves show the courses under the use
of elongated Gaussians, both categories of testing data can be distinguished clearly.

5 Summary and discussion

For an eye-on-hand system we presented three typical applications, i.e. tracking
objects for obstacle avoidance, arranging certain viewing conditions, and acquir-
ing an object recognition function. The concrete tasks have been to constrain
the search for corresponding features, to parameterize correlation matching, and
to fine-tune appearance manifolds. For solving the first task, specific steps of
motion are performed during an experimentation phase in order to acquire con-
straints for motion vectors. By restricting the kind of motion to these specific
ones during the online phase we can exploit the acquired constraints in the search
for correspondences. For solving the second task, a specific course of motion is
performed during an experimentation phase in order to determine real devia-
tions from a theoretical invariance, i.e. the variation of an LPT pattern under



camera rotation. The distribution of deviations has been approximated by a
Gaussian. The Gaussian extent can be used to determine a threshold in proce-
dures which make use of correlation matching. For solving the third task, the
camera is moved step by step for acquiring appearance patterns from an object.
The pattern manifold is fine-tuned by making use of the known one-dimensional
topology and the temporal continuity of the gray-values.

All three examples have in common that specific movements of the camera
lead to certain changes in the images. From an abstract point of view, these
are compatibilities between 3D motion features and 2D view sequence features.
They are approximated during an experimentation phase based on statistical
evaluations. Also, the examples show the usefulness of repeatable actions, i.e.
the pre-specified actions in the experimentation phase must be repeatable in
the application phase. The usefulness is due to the applicability of action-based
information for supporting image processing in the application phase.

Apart form compatibilities for the perception-action cycle, which have been
treated exemplary in this work, we also studied other compatibilities for the
purpose of boundary extraction (published in [6]). The advantage is to reduce
the amount of object-specific knowledge and instead make extensive use of con-
straints which are inherent in the three-dimensional nature of objects and in the
process of image formation. For high-level Robot Vision applications a further
category of compatibility is of interest. It is the compatibility between a delib-
erate plan (e.g. a strategy for solving a task) and the concrete servoing process
(which is based on visual feedback). Generally, a compromise is needed between
plan fulfillment and plan adjustment with the latter being triggered by require-
ments in the observed reality. Our approach of considering such compatibilities
is based on dynamic potential fields (a publication will be prepared soon).
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