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t. We apply an eye-on-hand Robot Vision system for treatingthe following three tasks: (a) Tra
king obje
ts for obsta
le avoidan
e; (b)Arranging 
ertain viewing 
onditions; (
) A
quiring an obje
t re
ogni-tion fun
tion. The novelty is the use of so-
alled 
ompatibilities betweenmotion features and view sequen
e features. Under real image forma-tion, 
ompatibilities are more general and appropriate than exa
t in-variants. We demonstrate the usefulness for 
onstraining the sear
h for
orresponding features, for parameterizing 
orrelation mat
hing pro
e-dures, and for �ne-tuning approximations of appearan
e manifolds.1 Introdu
tionDuring the late eighties Computer Vision s
ientists realized that the humanintelligen
e underlying the per
eption of the environment is not only based onviews but also on a

ompanying a
tions. Sin
e then, 
ameras have been mountedon agile devi
es in order to enable a
tive viewing and study vision in 
ombinationwith a
tions. Although this new paradigm of Robot Vision (or A
tive Vision)produ
ed ex
iting solutions for problems whi
h are too diÆ
ult for stati
 vision,the potential usefulness is far from being fully realized [1℄.Our work demonstrates the usefulness of 
ontrolled 
amera movements forthree exemplary appli
ations, i.e. tra
king obje
ts for obsta
le avoidan
e, ar-ranging 
ertain viewing 
onditions, a
quiring an obje
t re
ognition fun
tion. Inthis 
ontext the theoreti
al 
on
ept of invarian
e is relaxed into the pra
ti
al
on
ept of 
ompatibility. Regarding this, the �rst attempt has been undertakenby Binford and Levitt [3℄, who introdu
ed quasi-invarian
e under transforma-tions of geometri
 features. Our 
ompatibility 
on
ept 
onsiders more generaltransformations, maybe with di�erent types of features prior and after the map-ping, and 
onsiders robot a
tions as the sour
e of the transformations, and thusintegrates real-world a
tions and per
eption.We fo
us on 
ompatibilities between 3D motion features and 2D view se-quen
e features. Based on visual demonstration, statisti
al measurements aretaken to evaluate the deviation from the exa
t invarian
e and thus spe
ify the
ompatibility, whi
h 
an be used in subsequent online appli
ations. We study
ompatibilities for typi
al sub-tasks of the mentioned appli
ations, i.e. 
onstrain-ing the sear
h for 
orresponding features (se
tion 2), parameterizing 
orrelationmat
hing pro
edures (se
tion 3), and �ne-tuning approximations of appearan
e



manifolds (se
tion 4). For the appli
ations we used a 6-DOF robot arm (St�aubli-RX90) and a mono
hrome video 
amera mounted on the ba
k of the robot hand.Within a working spa
e of a 
ube with sidelength 500mm the 
amera 
an bearranged in any position and orientation.2 Constraining the sear
h for 
orresponding featuresWe would like to a
quire depth features from a 
olle
tion of obje
ts, e.g. bottlesand 
ans in a refrigerator. For this purpose the 
amera will be translated 
on-tinually in front of the obje
ts. Gray value 
orners 
an be extra
ted (e.g. withSUSAN [7℄) and must be tra
ked along the image sequen
e. Based on 
orre-sponden
es, shape-from-motion strategies 
an be applied to obtain the relevantinformation. For example, Figure 1 shows two 
onse
utive images (left and mid-dle) with gray value 
orners extra
ted by SUSAN, and the right image depi
tsmotion ve
tors at these points. We are interested to restri
t the sear
h for 
or-responding 
orners, i.e. determine an individual disparity range for ea
h 
orner.
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Fig. 1. (a) and (b) Two 
onse
utive images with gray value 
orners: (
) Image withmotion ve
tors at the gray value 
orners.In an experimentation (o�ine) phase we put a 
alibration pattern onto theground plane. It depi
ts a regular distributed set of bla
k dots. Both at nearestand farthest distan
e to the ground (i.e. the top and bottom borders of the view-ing spa
e), the 
amera makes a 
ertain step of movement, respe
tively. Motionve
tors for the 
alibration dots are determined in the images, resulting in twove
tor �elds V 1 and V 2. Figure 2 shows images of the 
alibration pattern priorand after lateral 
amera translation (at top border of viewing spa
e). The 
owof dots from left to right results in ve
tor �eld V 1 (not depi
ted). Figure 3 justshows the lengths of motion ve
tors of V 1, whi
h are not 
onstant due to largeimage distortions (
aused by a lense with small fo
al length, 4mm). For thespe
i�ed 
amera movement, the two ve
tor �elds impose expe
tations on motionve
tors whi
h 
an be used later on during the online phase. Let us assume animage point pi whi
h originates from an arbitrary 3D point within the viewingspa
e, and assume a step of 
amera movement as spe
i�ed a

ording to the 
al-ibration phase. For the image point the angles of the motion ve
tor taken fromV 1 or V 2 are approximately the same. Furthermore, the length of the motionve
tor must be in the interval of the relevant lengths given in V 1 and V 2. Con-sequently, a point pi in the �rst image and a point qj in the se
ond image is a
andidate pair for 
orresponden
e, only if the following 
onstraints hold:



�(V 1(pi)) � �(qj � pi) � �(V 2(pi)) (1)L(V 1(pi)) � kqj � pik � L(V 2(pi)) (2)Symbol � denotes the angle and L the length of a ve
tor. Just these 
arefullysele
ted 
andidate pairs are taken for applying normalized 
ross 
orrelation inorder to determine the most appropriate one, as shown in Figure 1 (right image).The 
ompatibility is represented by the two equations (1) and (2).
Fig. 2. Calibration pattern prior/after lateral
amera translation, 
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Fig. 3. Lengths of mot. ve
torsfor lateral 
amera translation.3 Parameterizing 
orrelation mat
hing pro
eduresThe robot hand in
luding the hand-mounted 
amera should be arranged in a
ertain relation to the obje
t. This 
an be regarded as a sub-task of a graspingpro
ess or a sub-task leading to optimal viewing of an obje
t. A servoing me
h-anism will be applied whi
h does the arrangement step by step and is basedon 
ontinual visual feedba
k and 
orrelation mat
hing in the series of images.In se
tion 2 we treated exemplary the 
ase of 
amera translation, and now we
onsider 
ompatibilities for the 
ase of 
amera rotation. If a 
amera is rotatingaround the opti
al axis, whi
h is normal to the obje
t surfa
e, then log-polartransformation (LPT) 
an be applied to the gray value images [4℄. The motiva-tion is that the transformed obje
t pattern is shifting instead of rotating, whi
hmakes the 
orrelation mat
hing more eÆ
ient during the servoing pro
ess. Fig-ure 4 shows two images of an integrated 
ir
uit (IC) obje
t under rotation by aturning angle of 90Æ. These are two examples from a 
olle
tion of 24 images takenunder angle o�set of 15Æ, respe
tively. Figure 5 shows the horizontal translationof the log-polar transformed pattern of the rotating obje
t.However, in a view sequen
e perfe
t invarian
e only holds for a 
at 2D ob-je
t without any side fa
es, and a simulated pinhole 
amera is assumed whoseopti
al axis must be kept normal to the obje
t surfa
e. In realisti
 appli
ations,resampling error o

ur 
ertainly, the obje
ts are of three-dimensional shape pre-sumably, the 
amera obje
tives may 
ause unexpe
ted distortions, and possiblythe opti
al axis is not exa
t normal to the obje
t surfa
e (misalignment). Be-
ause of these realisti
 imponderables, 
ertain variations of the LPT patternswill o

ur. We are interested in determining the real deviations from invarian
ein order to obtain toleran
e parameters for 
orrelation mat
hing.



Fig. 4. Integrated 
ir
uit obje
t under rotation by turn-ing angle 90Æ. Fig. 5. Horizontal trans-lation of LPT pattern.By demonstrating sample obje
ts and performing typi
al 
amera rotationsrelative to the obje
ts, one 
an make measurements of real deviations from in-varian
e, i.e. a
tual variations of the LPT patterns. Despite of these variations,it is expe
ted that the manifold of LPT patterns is mu
h more 
ompa
t and eas-ier to des
ribe than the original manifold of appearan
e patterns. For example,presumably, a single multi-dimensional Gaussian, spe
i�ed by a 
enter ve
torand a 
ertain 
ovarian
e matrix, may approximate the variation.For illustration, we perform a simple experiment whi
h is based on histogramsof edge orientations. Spe
i�
ally, orientations of gray value edges are 
onsideredin order to demonstrate the in
uen
e of LPT to a rotating 3D obje
t, i.e. mea-suring the deviation from pure pattern translation in the log-polar transformedimage. The image library 
onsists of 24 images, as mentioned above. The his-tograms should be 
omputed from the relevant area of the LPT image 
ontainingthe obje
t pattern, respe
tively. To simplify this sub-task a nearly homogeneousba
kground has been used su
h that it is easy to extra
t the gray value stru
tureof the IC obje
t. We 
ompute for the extra
ted LPT patterns a histogram ofgradient angles of the gray value edges, respe
tively.Figure 6 (left) shows a histogram determined from an arbitrary image in thelibrary. The mean histogram is 
omputed from the LPT patterns of the whole setof 24 images, shown in Figure 6 (middle). Next, we 
ompute for ea
h histogramthe deviation ve
tor from the mean histogram. From the whole set of deviationson
e again a histogram is 
omputed, whi
h is shown in Figure 6 (right).
Fig. 6. (a) Histogram of edge orientations under LPT for one image; (b) Mean his-togram for several images; (
) A

umulation of orientation deviations.



This latter histogram 
an be approximated as a Gaussian with the maximumvalue at 0 and the Gaussian turning point approximately at the value � = 5.Under ideal (simulated) 
onditions the Gaussian would be an impulse fun
tionwith extent 0. However, the real value of � is a measure for the deviation fromperfe
t invarian
e. It 
an be used to parameterize approa
hes of pattern mat
h-ing, e.g. spe
ifying thresholds for the 
oeÆ
ient of normalized 
ross 
orrelationin order to obtain reasonable mat
hing hypotheses.4 Fine-tuning manifold approximations for re
ognitionFor the re
ognition of a s
ene obje
t in an image we need to have an appropriatere
ognition fun
tion. This fun
tion 
an hardly be implemented manually and in-stead should be learned automati
ally in the task-relevant environment. Basedon a robot-
ontrolled pro
ess of taking sample views we 
an in
orporate a
tion-related information for improving the generalization in the learning me
hanism.Appearan
e-based obje
t re
ognitionA holisti
 learning approa
h 
an be applied whi
h is based on 2D appearan
epatterns of the relevant obje
ts or response patterns resulting from spe
i�
 �l-ter operations. The main interest is to represent or approximate the patternmanifolds su
h that an optimal 
ompromise between eÆ
ien
y, invarian
e anddis
riminability of obje
t re
ognition is a
hieved. It is essential to keep thesemanifolds as simple as possible, be
ause the 
omplexity is 
orrelated to the timeneeded for obje
t re
ognition. In se
tion 3 we restri
ted 
amera poses and move-ments and thereby redu
ed the manifold 
omplexity by LPT. However, in thisse
tion we a

ept general viewing poses. Apart from the eÆ
ien
y 
riterion there
ognition fun
tion must respond with 
onstant high values for any appearan
eof the obje
t (invarian
e 
riterion), and must be able to dis
riminate betweentarget and other obje
ts (dis
riminability 
riterion).The most popular approa
h of manifold approximation is based on prin
ipal
omponent analysis (PCA) for a 
olle
tion of views [5℄. This is done for ea
hobje
t leading to an obje
t-spe
i�
 Eigenspa
e, respe
tively. An unknown view
an be re
ognized by 
omputing proximity values to the training samples in theEigenspa
es, and determining the most relevant manifold. An improvement ofthis one-nearest-neighbor approa
h is obtained by applying a 
lustering approa
hfor the purpose of generalization. Closely lo
ated training samples are 
lusteredand the 
lusters approximated as a multi-dimensional Gaussian, respe
tively.However, 
lustering pro
edures su
h as ISODATA sear
h for neighboring ele-ments a

ording to simple metri
, and do not 
onsider any inherent topologybetween training samples. For example, if training samples are a
quired by 
on-se
utively rotating the 
amera around the obje
t, then we know in advan
e thatthe pattern variation 
an be approximated as a one-dimensional 
ourse in thespa
e of patterns. Consequently, the 
lustering pro
edure should generate seg-ments of this 
ourse by taking the su

ession of training views into a

ount. Byimposing a topology onto the 
olle
tion of sample views, whi
h is obtained fromthe pro
ess of image taking, we 
an 
luster more adequately.



Role of temporal 
ontext in obje
t re
ognitionIn addition to the one-dimensional topology we also take advantage of the tem-poral 
ontinuity of gray values between the views in the image sequen
e.1 Foran obje
t under rotation the temporal 
ontinuity 
an be observed exemplary ina series of histograms of orientations of gray value edges. Figure 7 shows fourgray value images (a,b,
,d) of a trans
eiver box whi
h has been rotated slightlyin four dis
rete steps of 5Æ. Figure 8 depi
ts the overlay of four histograms ofedge orientations for these four images (but suppressing the gray values of theba
kground). The histogram 
urves move to the right 
ontinually under slightobje
t rotation.2 These sequential 
orrelations between 
onse
utive images holdfor small 
hanges in the relation of obje
t and 
amera. They are 
onsidered for�ne-tuning the manifold approximation.

Fig. 7. Four gray value images of atrans
eiver box under rotation in dis
retesteps of turning angle 5Æ.
a

b

c

d

Fig. 8.Overlay of four histograms of edgeorientations 
omputed for the four imagesin Figure 7.In
orporating temporal 
ontext for manifold approximationLet us assume that the 
lustering is already performed under the 
onstraint ofa one-dimensional topology. This leads to a representative view for ea
h 
luster,respe
tively, whi
h will be taken as seed views for manifold approximation. A se-quen
e of Gaussian basis fun
tions is used for approximating the one-dimensional
ourse in the spa
e of patterns. Ea
h seed view is the basis for spe
i�ying the
enter of a multi-dimensional Gaussian with the dimension equal to the numberof pixels. Ea
h Gaussian is almost hyper-spheri
al ex
ept for one dire
tion whoseGaussian extent is stret
hed. The ex
eptional dire
tion at the 
urrent seed viewis determined on the basis of the di�eren
e ve
tor between the previous and thenext seed view. For illustrating the prin
iple, we take two-dimensional pointswhi
h represent the seed views. Figure 9 shows a series of three seed views, i.e.1 The importan
e of temporal 
ontext in obje
t re
ognition is well-known [2℄.2 The variation of the a

umulation values is due to 
hanging lighting 
onditions ordue to the appearing or disappearing of obje
t fa
es.



previous, 
urrent and next seed view (Xsi�1,Xsi and Xsi+1). At the 
urrent seedview the 
onstru
tion of an elongated Gaussian is depi
ted. A
tually, an ellipseis shown whi
h represents the 
ontour related to a 
ertain Gaussian altitude.
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Fig. 9. Constru
ting hyper-ellipsoidal basis fun
tions for time-series of seed ve
tors.The Gaussian extent along this ex
eptional dire
tion must be de�ned su
hthat the signi�
ant variations between su

essive seed views are 
onsidered. Fororthogonal dire
tions the Gaussian extents are only responsible for taking ran-dom imponderables into a

ount su
h as lighting variations. Consequently, theGaussian extent along the ex
eptional dire
tion must be set larger than the ex-tent along the orthogonal dire
tions. It is reasonable to determine the ex
eptionalGaussian extent dependent on the eu
lidean distan
e measurement between theprevious and the next seed view. We avoid mathemati
al details be
ause they aresimple. However, it is worth to mention a similarity of this approa
h of manifoldapproximation with the so-
alled \oriented parti
le system" for surfa
e model-ing, introdu
ed by Szeliski and Tonnesen [8℄.Applying the �ne-tuned manifold for obje
t re
ognitionAlthough our approa
h is very simple, both eÆ
ien
y and robustness of there
ognition fun
tion in
reases signi�
antly. The usefulness of 
onstru
ting elon-gated Gaussians is illustrated for re
ognizing the trans
eiver box in Figure 7.For learning the re
ognition fun
tion the obje
t is rotated in steps of 10Æ leadingto 36 training images. All of them are used as seed images (for simpli
ity). The
omputation of gradient magnitudes followed by a thresholding pro
edure yieldsa set of gray value edges for ea
h seed image. From ea
h thresholded seed imagea histogram of edge orientations is 
omputed. A Gaussian basis fun
tion (GBF)network is installed by de�ning elongated GBFs a

ording to the mentioned ap-proa
h. Histograms of the seed images are used as the Gaussian 
enter ve
torsand the Gaussians are modi�ed based on previous and next seed histograms (andapplying a user-de�ned stret
hing fa
tor). In the GBF network the 
ombinationfa
tors for the Gaussians are determined by the pseudo inverse te
hnique.For assessing the network of elongated Gaussians, we also 
onstru
t a net-work of spheri
al Gaussians and 
ompare the re
ognition results 
omputed bythe two GBF networks. The testing views are taken from the trans
eiver boxbut di�erent from the training images. The testing data are subdivided in two
ategories. The �rst 
ategory 
onsists of histograms of edge orientations arisingfrom images with a 
ertain angle o�set relative to the training images. Tempo-ral 
ontinuity of obje
t rotation is 
onsidered purely. For these situations the



relevant re
ognition fun
tion has been trained parti
ularly. The se
ond 
ategory
onsists of histograms of edge orientations arising from images with angle o�-set and are s
aled, additionally. The re
ognition fun
tion 
omposed of elongatedGaussians should re
ognize histograms of the �rst 
ategory robustly, and shoulddis
riminate 
learly the histograms of the se
ond 
ategory. The re
ognition fun
-tion 
omposed of spheri
al Gaussians should not be able to dis
riminate betweenboth 
ategories due to an in
reased generalization e�e
t, i.e. a

epting not onlythe angle o�sets but also s
aling e�e
ts. The desired results are shown in the dia-grams of Figure 10. By applying the re
ognition fun
tion of spheri
al Gaussiansto all testing histograms, we 
an hardly dis
riminate between the two 
ategories(left). Instead, by applying the re
ognition fun
tion of elongated Gaussians, we
an de�ne a threshold for dis
riminating between both 
ategories (right).
a

b

a

b

Fig. 10. Con�den
e values of re
ognizing an obje
t based on histograms of edge ori-entations. For testing, the obje
t has been rotated by an o�set angle relative to thetraining images (result in 
urve a), or the obje
t has been rotated and the imagehas been s
aled additionally relative to the training images (result in 
urve b). (Left)Curves show the 
ourses under the use of spheri
al Gaussians, both 
ategories of test-ing data 
an hardly be distinguished; (Right) Curves show the 
ourses under the useof elongated Gaussians, both 
ategories of testing data 
an be distinguished 
learly.5 Summary and dis
ussionFor an eye-on-hand system we presented three typi
al appli
ations, i.e. tra
kingobje
ts for obsta
le avoidan
e, arranging 
ertain viewing 
onditions, and a
quir-ing an obje
t re
ognition fun
tion. The 
on
rete tasks have been to 
onstrainthe sear
h for 
orresponding features, to parameterize 
orrelation mat
hing, andto �ne-tune appearan
e manifolds. For solving the �rst task, spe
i�
 steps ofmotion are performed during an experimentation phase in order to a
quire 
on-straints for motion ve
tors. By restri
ting the kind of motion to these spe
i�
ones during the online phase we 
an exploit the a
quired 
onstraints in the sear
hfor 
orresponden
es. For solving the se
ond task, a spe
i�
 
ourse of motion isperformed during an experimentation phase in order to determine real devia-tions from a theoreti
al invarian
e, i.e. the variation of an LPT pattern under




amera rotation. The distribution of deviations has been approximated by aGaussian. The Gaussian extent 
an be used to determine a threshold in pro
e-dures whi
h make use of 
orrelation mat
hing. For solving the third task, the
amera is moved step by step for a
quiring appearan
e patterns from an obje
t.The pattern manifold is �ne-tuned by making use of the known one-dimensionaltopology and the temporal 
ontinuity of the gray-values.All three examples have in 
ommon that spe
i�
 movements of the 
ameralead to 
ertain 
hanges in the images. From an abstra
t point of view, theseare 
ompatibilities between 3D motion features and 2D view sequen
e features.They are approximated during an experimentation phase based on statisti
alevaluations. Also, the examples show the usefulness of repeatable a
tions, i.e.the pre-spe
i�ed a
tions in the experimentation phase must be repeatable inthe appli
ation phase. The usefulness is due to the appli
ability of a
tion-basedinformation for supporting image pro
essing in the appli
ation phase.Apart form 
ompatibilities for the per
eption-a
tion 
y
le, whi
h have beentreated exemplary in this work, we also studied other 
ompatibilities for thepurpose of boundary extra
tion (published in [6℄). The advantage is to redu
ethe amount of obje
t-spe
i�
 knowledge and instead make extensive use of 
on-straints whi
h are inherent in the three-dimensional nature of obje
ts and in thepro
ess of image formation. For high-level Robot Vision appli
ations a further
ategory of 
ompatibility is of interest. It is the 
ompatibility between a delib-erate plan (e.g. a strategy for solving a task) and the 
on
rete servoing pro
ess(whi
h is based on visual feedba
k). Generally, a 
ompromise is needed betweenplan ful�llment and plan adjustment with the latter being triggered by require-ments in the observed reality. Our approa
h of 
onsidering su
h 
ompatibilitiesis based on dynami
 potential �elds (a publi
ation will be prepared soon).Referen
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