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Abstract. This work focusses on boundary detection of target objects
by extracting configurations of straight lines. Hough transformation is
used as basic voting technique for extracting the image lines. To find the
appropriate peaks in the bin array of the Hough transform and thus esti-
mating the line parameters a three-step procedure is involved. First, the
Hough transform is constrained appropriately by the local orientations
of grey level edges. Second, the global histogram of edge orientations is
used to more or less emphasize certain parts in the Hough image. With
these two modifications of the standard Hough transform we incorporate
principles of orientation consensus and thus sharpen the peaks in the
parameter space. Third, parallelism as a quasi-invariant of perspective
projection is used to apply a sophisticated search strategy. Throughout
the approach no specific object models but only basic principles of the
imaging process are involved in extracting the boundary lines.

1 Introduction

In many applications of computer vision it is sufficient to describe the scene
objects by polyhedral approximations, e.g. in vision based robot grasping [2].
For reconstructing the line frame it is indispensible to detect features like edges,
corners or line segments in the image arising from the surface of an object. For
example, the authors in [3] extract relevant image lines by using model lines and
fitting the image gradients to the model gradients. The model lines are computed
based on the two-dimensional projection of discontinuities between the faces of
a 3D polyhedral model. The next task is to associate those line segments in the
image that arise from an individual object. The authors in [7] extract the outer
border of an object (silhouette) by using typical techniques of edge detection,
contour following and polygonal approximation. The key 1dea is then to make use
of perspective invariants for deducing the interior boundary lines of the object.
For example, under affine imaging conditions the parallelism of 3D lines of a
polyhedra must also hold between the projected lines in the image. Accordingly,
certain lines of the outer border of a rectangular solid appear with the same
orientation in the interior of the solid silhouette.

We implemented a system for computing from an image the two-dimensional
boundary line configuration which arises from the three-dimensional border lines
of a scene object. Principles of orientation consensus and projective invariance
are applied but unlike the cited papers no specific object models are involved.



A modified Hough transformation is used as basic voting technique for deter-
mining lines. In contrast to usual line regression the Hough transformation [4]
can lead to a robust estimation of the line parameters which are not distorted by
outliers in the edge image. Each line corresponds to a peak in the Hough space
of line parameters. The most important problem is to find especially those peaks
which describe the boundary lines of an individual object. Our paper presents an
approach for finding these sets of appropriate peaks. For the purpose of demon-
stration a rectangular solid is used, but the system is applicable more generally.
The procedure for sharpening the peaks is useful for any polyhedral object. The
strategy for searching the peaks works for any parallelepiped having two parallel-
ograms as top and bottom faces and four parallelograms as side faces. It is easily
conceivable to implement further strategies in order to extract the boundary of
other object shapes.

2 Edge orientation based Hough transformation

First step: Computing local orientations and gradient magnitudes

For purpose of illustration we take a subimage where a target object is located
in (see Figure 1, left). Let X be the set of coordinate tupels p = (21, 22) of
this subimage ;. We regard every point in the subimage as edge point and
determine the local orientation O4(p). A standard approach is used by combining
four differently oriented 2D—-Gaborfunctions which respond sensitively only to
certain directions of the edges. We take the energy of the complex response
to measure the strength of edges along a certain direction [1]. The choice of
orientations is 0°, 45°, 90°, and 135°, which means that the filters respond most
sensitive to edges whose orientations are colinear to the given angles. Let the
energy of the complex response of four filters be Ei(p), E2(p), E3(p), Fa(p) at
each point. The energies are multiplied with the cosine of the doubled angle and
added up, and this procedure is repeated with the sine of the doubled angles
(symbols C and S for cosine and sine in the formula below). From the two
results we compute the arcus tangens (symbol At in the formula below) taking
the quadrant of the coordinate system into account and do simple exception
handling at singularities. For determining the orientation of the edge we have to
multiply the factor —0.5 and if the resulting angle is negative then we add .
The orientation is in radian values between between 0 and m where the turning
direction is clockwise.! Finally, by normalization we transform the orientation
into a discrete angle degree of the integer set {0,--- 179}.

Bi(p)C(0°) + Ea(p)C(90°) + E5(p) C(180%) + B4 (p) C(270%) = Ev(p)— Es(p) (1)
E1(p)S(0%) + Eo(p)S(90°) + E3(p)S(180°) 4+ Ea(p)S(270°) = Eo(p) — Ea(p) (2)

a(p) = At(E2(p) — Ea(p), E1(p) — E3(p)) (3)

! The approach for computing the local edge orientation plays only a secondary role
in the paper and therefore the proof of correctness is omitted here.
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O4(p) = round((O,4(p)/7) % 180) (5

The specific choice of filter orientations reveal considerable simplifications in (1)
and (2). Figure 1 (middle) shows the edge orientation O4(p) for each point of
the image I;. The degrees are encoded as grey values reaching from black (0
degree) to white (180 degree).

Parallel to this procedure we compute the gradient magnitude of the image
patch, detect edges by setting a threshold, and thus compute a binary image
Iy (see Figure 1, right). Let X, C X be the subset of those coordinate tupels p
where the gradient magnitude surpasses the threshold. Then we have the defini-
ton Ip(p) = 1 for every p € X, and I(p) = 0 elsewhere.

Fig. 1. Subimage with target object (left), orientation image for the edges (middle),
binary image after setting a threshold to gradient magnitudes (right).

Second step: Computing orientation-selective Hough transformation
It is easily proven that edge points which lie along a line satisfy

L(p,q) .= 21l xC(¢) + 22 x S(¢) — r, L(p,q) =0, (6)

where p = (x1,22) and ¢ = (r,¢). The two parameters r and ¢ of a two-
dimensional real parameter space Q specify a line as follows: Parameter r is the
distance from the image center to the line along a direction normal to line. The
value reaches from gd to +T“l, where ¢d i1s the length of the image diagonal.
Parameter ¢ i1s the angle of this normal direction to the 1 axis and reaches
from 0 to 180 in angle degrees. We prefer this line representation because no
singularities arise for vertical or horizontal lines.

The real parameter space () is partitioned into a set @ of bins and accord-
ingly each bin § € @ specifies a collection of lines with similar positions » and
orientations ¢. In our case we have a rectangular partition of bins with id ver-
tical stripes and 180 horizontal stripes. The Hough transformation counts for
each bin how many edges in the image lie along the lines specified by the bin.

Definition 1: The Standard Hough Transformation SHT : Q — [0, oo) of the
binary image I, : X — {0, 1} relative to the line representation L : X X Q —
[0, 00) is defined by

SHT(q) =#{pe X | In(p) = 1, and for some ¢ €7 holds : L(p,q) =0} (7)



For reasons of discretization each bin is encoded by a single point in the
parameter space. Therefore the bin array will be approximated by a matrix (the
Hough image) of id columns and 180 rows and a point ¢ = (r, ¢) is defined by
the index r of the column and the index ¢ of the row.

Figure 2 shows the Hough image resulting from the SHT of the binary image
I in Figure 1 (right). We are interested in a Hough image with sharp peaks in
order to easy locate the peaks and thus reliable estimate the line parameters.
Unfortunately Figure 3 which depicts a selected patch of the Hough image in
three dimensions (see rectangle in Figure 2) shows wide-spread maxima from
which 1t 1s difficult to detect the relevant peaks. Obviously, all edges near or on
a line cause the Hough transform to not only increase the content of the relevant
bin but also many in its neighborhood.
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Fig. 2. Standard Hough Transform. Fig.3. SHT, top patch in 3D.

It’s true making the partitioning of the parameter space more fine-grained
would improve the accuracy, but in this case the performance time for computing
the Hough transform increases. In order to avoid this trade-off we make use of
the orientation image. The idea is to use the orientation O4(p) at an edge point
and accumulate only the appropriate bin and furthermore those bins in a small
neighborhood which are determined by a tolerance band.

Proposition 1: The orientation ¢ of a line is approximately identical to the
orientation O4(p) of an edge point p = (x1,22) on the line, if the edge point
arises from a 3D boundary line of the object:

21 x C(Og(x1,22)) + 22 % S(Og(x1,22)) — r ~ 0 (8)

Due to inaccuracies in the imaging process and the computation of edge orien-
tation we include a tolerance band Aa for O,.

Definition 2: The Orientation-selective Hough Transformation OHT : Q —
[0,00) of the binary image I : X — {0, 1} relative to the line representation

L:X x @ —1[0,00) is defined by
OHT(q) =#{p e X | I(p) = 1,and for some q = (r,$) € 7 holds :

A A
Lip,g) =0, and = == < Oulp) <6+ -} (9)



Figures 4 and 5 show the effect of the OHT for the top patch in Figure 2. In
order to realize the improvement with regard to sharpening the peaks the profiles
must be compared to the SHT in Figure 3. Two examples of tolerance bands for
the edge orientations has been used, Aa = 9, and Aa = 3 angle degrees. The
result is that the smaller the tolerance band the sharper the peaks, and therefore
the value of Aa proves to be important.
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Fig.4. Orientation-selective Hough Fig.5. Orientation-selective Hough
Transform, large tolerance band for Transform, small tolerance band for
edge orientation. edge orientation.

Each peak in the Hough image of the OHT defines the parameters of a line
of grey level edges in the image. This is the basis for building the boundary line
configuration (BLC) of the target object. We are concerned with two problems.
First, only those lines are of interest which arise from the surface of the target
object. Unfortunately, there are many imponderables like shading, surface tex-
ture, partial occlusion, etc. causing spurious lines or deletion of essential lines
from the object surface. Second, each peak in the Hough image represents an
unbounded line. But we are interested in the bounded line segments which be-
long to the BLC of the target object. The first problem is handled in the next
sections, for the second problem we refer to the work in [5].

3 Projective quasi-invariants of parallelepipeds

In this situation more cognitive information has to meet the low level process.
Concretely, in order to extract the relevant peaks in the Hough image we make
use of knowledge about the scene objects for which the BLC is requested. As
opposed to using specific models for certain target objects we consider geometric
invariants for general object shapes. We show exemplarily how to incorporate
projective quasi-invariants of parallelepipeds for computing their BLCs. For pur-
pose of demonstration the rectangular solid (shown in Figure 1, left) is used,
which is a specific parallelepiped.

It is well known for the perspective projection of an ideal pinhole camera



that an image point (z1, 22) from a 3D scene point (y1, 42, y3) is computed by

xl = E ,x2 = g ,
y3 y3
where f is the distance between the center of perspectivity and the projection
plane. Furthermore, 1t is known that parallel lines in 3D are no longer parallel
after perspective projection into the image according to the equations of (10).2
Fortunately, for certain imaging conditions the parallelism is quast-invariant
under perspective projection.
Definition 3: Let § be the allowed deviation from parallelism in angle degrees.
Two lines with the values ¢ and ¢- of the angle parameter are J-approzimate
parallel, iff

(10)

3

ll¢1 — ol <6 (11)

The parallelism is a d-quasi-invariant iff parallel lines in 3D are §-approximate
parallel after perspective projection.

Notice that in the Hough image the bins of a row indicate the occurrence of
parallel image lines of a certain orientation.

Proposition 2: For imaging conditions, in which the parallelism is a §-quasi-
invariant of the perspective projection, parallel lines in 3D occur as peaks in the
Hough image being located within a horizontal stripe of height 4. The peaks in
a stripe indicate d-approximate parallel lines in the grey level image.

To get an impression for that, we describe the imaging condition for taking
the picture in Figure 1, left). The distance between the camera and the target
object was about 400mm, and the lense of the objective was of 12mm focal
length. Figure 6 shows nine peaks in the Hough image each one indicating a
boundary image line of the target object. We realize three groups in horizontal
stripes and each stripe contains three peaks. The vertical variation of the peaks
in a horizontal stripe gives the deviation from parallelism. For the mentioned
imaging condition it is at most 15 angle degrees.

In order to reliably extract the relevant peaks as depicted in Figure 6 we
make use of the parallelism quasi-invariant. This leads to extracting the BLC of
the rectangular solid.

4 Extracting the BLC of parallelepipeds

First step: Emphasizing Hough peaks using the edge orientation histogram
In section 2 the orientation-selective Hough transformation has been introduced
and the important role of the tolerance band for edge orientations was demon-
strated. In order to reduce the role of this tolerance band and/or to sharpen the
peaks in the Hough image nevertheless we apply a further transformation.
According to proposition 1 there is a consensus between the orientation of a
grey level edge and the orientation of the line through the edge point. Further-
more 1t was stated in proposition 2 that parallel object lines are quasi-parallel

2 Except for lines parallel to the projection plane.
# The user must set this parameter depending on the shape of the target objects.



in the image. Therefore, if we count the grey level edges of a certain orientation
we get the number of points lying on parallel image lines of this orientation. On
the other hand in the Hough image a certain row indicates a certain orientation
of parallel image lines. Therefore, by multiplying a Hough row with the number
of grey level edges of the orientation specified by the index of the row, we can
more or less emphasize the bins of this row.

According to that we compute a global histogram of edge orientations from
all points in the binary image (in Figure 1, right). The histogram counts the
number of edges respective for the orientations and is defined in the interval D
between 0 and 180 angle degrees. Figure 7 shows the Edge Orientation Histogram
for the image in Figure 1 (middle).
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Definition 4: Let D be the partition of D into 180 unit intervals and deD.
The Edge Orientation Histogram FOH : D — [0,00) of the orientation image
0, : X —[0,180] is defined by

EOH(d) =#{p€ X | Ou(p) € d} (12)

For combining the OHT with the EOH we realize that the Hough image
consists of 180 rows and the histogram is a vector of 180 components. A row
of index ¢ in the Hough image contains hints for the occurrence of image lines
of orientation ¢ and the component of index ¢ of the histogram vector contains
the number of edges having orientation ¢. In order to weight the row values of a
certain orientation by the number of edges of the same orientation we transform
the histogram vector into a diagonal matrix and multiply it with OHT.

Definition 5: The Weighted Orientation-selective Hough Transformation
(WOHT) is defined by

WOHT = Diag(EOH) x OHT, (13)

where Diag(FOH) is a diagonal (180x180)-matrix whose diagonal elements are
the vector components of the Edge Orientation Histogram (EOH), and OHT is
the (180 x id)-matrix of the Hough image.



Figures 8 and 9 show the effect of the WOHT by taking as tolerance band
for the edge orientations Aa = 9 and Aa = 3 angle degrees. We realize that the
role of this parameter has been reduced significantly because both results look
similar. A result is reached which is similar (or even better) to applying OHT
with Aa = 3 angle degrees (compare Figures 8 and 9 with Figure 5).
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Fig.8. WOHT, large tolerance band. Fig.9. WOHT, small tolerance band.

Second step: Peak detection by using the parallelism quasi-invariant

In the case of a parallelepiped one typically looks at three plane faces, and
these are represented by three classes of line segments, where each class con-
sists of three d-approximate parallel lines. Based on this insight the search of
the relevant peaks is easy. We are searching for the global maximum peak and
thus determine the first relevant horizontal stripe. Within the stripe two other
maximum peaks must be detected. Then the stripe 1s erased completely and in
this modified Hough image we look for the next global maximum. This defines
the second relevant stripe in which we once again detect two further maximum
peaks. Repeating the procedure for the third stripe we finally have nine relevant
maxima as shown in Figure 6. The lines belonging to the maxima are depicted
in Figure 10 on top of the greylevel image. We realize for each line the touch
with a part of the object boundary.

Fig.10. Lines for Fig.11. Lines under Fig.12. Lines for a com-
rectangular solid. solid occlusion. plicated object.



5 Summary and Discussion

We presented an approach for extracting line configurations from an image to
describe the boundary of objects. The standard Hough transform for estimating
line parameters has been modified with the purpose of sharpening the peaks. For
this the consensus principle of edge-line-orientation was taken into account. The
perspective quasi-invariant of parallelism is used for locating the appropriate set
of Hough peaks which describes the boundary lines of an individual object.

Using these fundamental principles we succeeded in extracting relevant image
structures even in scenes for which specific object models are not available. The
approach also works if the rectangular solid is under partial occlusion (simulated
in Figure 11). More complicated objects can be handled as well, e.g. objects
whose shape partially differ from a parallelepiped and additionally may have a
non-homogeneous greylevel structure on the surface (see Figure 12).

The work should be continued by making use of other geometric invariants
which are valid for more complicated objects. An example is the incidence in-
variance of perspective projection, e.g. the intersection points of 3D object lines
must transform in crossing points of image lines. In [5] it is shown how to use
this principle to fine-tune the line parameters. Further photometry/geometry
consensus principles must be realized, for example to determine especially those
segments of the lines which build up the boundary line configuration of the ob-
ject (see again [5]). Finally, criteria for testing the validity of invariances and
consensus principles are needed, e.g. more detailed plausibility criteria for the
set of located peaks in the Hough image. This is useful if we have a degenerate
view of an object or interior boundary lines are not available due to missing
greylevel contrast between the object faces.
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