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Abstract

In the context of vision based robotics our work focusses on the recog-
nition of target objects for object grasping. The objects are arbitrarily
shaped, and the viewing position and orientation of the camera is ar-
bitrary as well. Due to various imponderables it i1s hard to geometrical
model all relevant 3D object shapes and all effects of perspective pro-
jection. Therefore 3D model based approaches for object recognition
are unfavorable in our robot application. Rather we use typical 2D
appearance patterns of the target object which will be learned in a
training phase. To acquire training patterns the turning angle of the
object and the focal length of the camera lens must be changed sys-
tematically. A multidimensional Gaussian is defined for each typical
pattern and used as basis function (GBF) for computing similarities to
certain image patches. By appropriate linear combination of the GBFs
we get a smart operator for recognizing the target object (regardless
of object turn or distance). Using various GBF configurations we ex-
pound the trade—off between invariance and reliability of recognition.

1 Introduction

We have equiped a robot manipulator with a vision system for autonomously
grasping and arranging target objects. The vision system deals with two sub—tasks,
recognizing the relevant object in the image and evaluating the stability of grasping
situations. It is trivially accepted, that vision systems have to be purposive for
solving a certain task (Aloimonos [1]) in order to avoid useless expenditure of
work. Taking this principle into account, we must recover the kind of partial scene
information indispensable needed to recognize and manipulate an object.

For example, object recognition has to be grounded on features which discrim-
inate between the target object and other objects and furthermore are easy to
extract from the image. Obviously, geometric features describing the exact 3D
shape would be sufficient for object recognition. However, in order to compute the
geometric features one has to bridge the problematic gap between photometric
gray level edges and geometric surface discontinuities (Maxwell and Shafer [4]).
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Thus it is advantageous to discover basic features which are computed directly
from raw gray levels or filter responses and avoiding image segmentation.

Similarily, for the second sub-task which consists of manipulating an object
the 3D shape 1s not required in full detail. Rather having parallel-jaw grippers
mounted we only must determine opposite grasping areas which are nearly parallel.
Furthermore for object arranging only the alignment areas of the relevant objects
have to be detected. Therefore specific operators are needed for evaluating the
relationship between the target object and the grasping fingers (or other objects).
Both for the recognition and manipulation task we don’t have to reconstruct the
target object in detail.

This work focusses on the recognition of target objects by taking the mentioned
principle into account. We implemented a vision system which is constructional in
the sense that operators for recognizing target objects can be learned for the actual
environment. The operators are based on 2D appearance patterns of the relevant
objects or response patterns resulting from specific filter operations. The most
closely related work is from (Murase and Nayar [5]) who describe a method for
appearance based object recognition. An appearance manifold of the target will be
acquired by systematically changing the object turning angle and taking images in
discrete steps. Based on the most important eigenvectors of the covariance matrix
the Karhunen—Loeve transform is used for compressing the manifold. Because a
linear reduction of the dimension takes place the approach is suitable only when
the data are sufficiently linearly distributed (Joutsensalo and Miettinen [3]).

Alternatively, we show the use of networks of gaussian basis functions for ap-
pearance based object recognition. The approach allows a nonlinear dimension
reduction and does not assume linear constrained appearance manifolds. By care-
fully spreading and configuring basis functions an optimal operator can be learned
which carries out a compromise between the invariance and reliability criterion.

2 Regularization networks for recognition

Recognition of an object in a certain image area is executable by applying a specific
function to the signal structure of the area. The output of that recognition function
can be defined as a real value between 0 and 1 which encodes the confidence that a
certain object is depicted in the image area. Unfortunately, by changing the pose
(position or viewing angle) of the cameras the appearance of the objects changes.
Regardless of variable size or variable graylevel structure of the 2D pattern of a
target object the recognition function should invariantly compute values near to
1. On the other hand, the recognition function should compute values near to 0
for image areas depicting any other object or situation.

We need a scheme for approximating the recognition function based on sample
data of the input—output relation. The function should fit the sample data to meet
closeness constraints and should generalize over the sample data to meet smooth-
ness constraints. Neglecting the aspect of generalizing leads to overfitted functions,
otherwise, neglecting the fitting aspect leads to overgeneralized functions. Thus
both aspects have to be combined to get a qualified function approximation. The
reqularization approach (Poggio and Girosi [8]) incorporates both constraints and
determines such a function by minimizing a functional.
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Let S = {(p;,ri) € (R™ x R)|i =1,---, N} be the sample data representing the
input—output relation of the function that we want to approximate. The functional
(1) consists of a closeness term and a smoothness term which are combined by a
reqularization factor A expressing relative importance.

N
H(f) = (Q_(ri = F7)°) + A PFIP? (1
i=1
The first term computes the sum of squared distances between the desired and
the actual outcome of the function. The second term incorporates a differential
operator P for describing the smoothness of the function.
Under some pragmatic conditions (see again [8]) the solution of the regulariza-
tion functional is given by equation (2).

N
F(7) =) w5, 57) (2)
i=1
The basis functions G; are specified for a limited range of definition having p; as
the center. Based on a general window function G we get the N versions G; by
shifting the center of definition through the input space to the places pi,---, py.
The several versions are called support functions due to the local range of defini-
tion. Equation (2) says that the solution of the regularization problem is a linear
combination of (typically nonlinear) support functions.

In our application the sample data S consist of image patterns p; and recog-
nition values r;. Each pattern represents the signal structure of a certain image
area and will be formulated by a vector taking a specific order into account. The
dimension n of such a vector is equal to the pixel number of a pre—defined pattern
size which typically can be a few hundreds up to a few thousands. The recog-
nition value r; is a real scalar between 0 and 1. Based on the sample data S a
recognition function f,. has to be acquired which is based on support functions
and combination factors. We define the support functions as multidimensional
symmetric gaussians (Gaussian Basis Functions, GBFs) in which the dimension
is again equal to the pixel number of the patterns.

The number of GBFs could (1) be equal to the number of samples in S. In that
case the center of each GBF would be defined by the patterns p;. On account of
applying principles of the minimum description length (MDL, Rissanen [10]) it is
of interest to discover the minimum number of support functions needed to reach
a critical quality of the function approximation. The actual motivation for incor-
porating the MDL principle is to get a recognition function which is efficiently
applicable (see below). Rather than using the patterns pi,---,px for defining
GBFs we cluster the patterns into M groups — with M < N — according to simi-
larity and compute typical patterns ¢i, - - -, cir. Each typical pattern ¢ is used for
defining a GBF by taking the pattern as the center of the definition range.

_||ﬁ_63 ||2) (3)
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The function G; computes a value of similarity between the typical pattern ¢; and
a new pattern p. The specification of similarity is affected by the pre—specified
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parameter ¢; which determines the support size and shape of the GBF. It is intu-
itively clear that the ranges of definition of the support functions G; must overlap
to a certain degree in order to approximate the recognition function appropriately.
The overlap between the GBFs is just determined by the parameters o;. The
combination of the GBFs is defined by the factors wj;.

1) = Y- w,Gy(7,6) ()

Equations (3) and (4) define the scheme for all recognition functions to be discussed
in this work.

Currently, the mentioned approximation scheme is popular in the neural net-
work literature under the terms GBF network or regularization network (Bishop
[2, pp. 164-191]). A regularization network consists of an input layer, a layer
of hidden nodes and an output layer. In our application the input layer and the
output layer consist of one node respectively, and the number of hidden node is
equal to the number of GBFs. The layer of hidden nodes approximates the ap-
pearance manifold of the target object and therefore the whole network can be
used as recognition function. The input node represents the input pattern of the
recognition function. The hidden nodes are defined by the M support functions
and all these will be applied to the input pattern. The output node computes the
recognition value by a weighted combination of results coming from the support
functions. The input space of the regularization network is the set of all possible
patterns of the pre—defined size but each hidden node only responds significant
for a certain subset of these patterns. Unlike simple applications of regularization
networks, in our application (of object recognition) the dimension of the input
space 1s extremely high.

3 Learning operators for recognition

The approach for learning a recognition function is as follows:

(i) We take sample images containing the object which has to be recognized at
a later date. The samples differ from each other due to a systematic change of
the view conditions. (ii) Optionally, we apply specific filters to the image in order
to enhance or express certain properties (see section 6). (iii) From each of the
(filtered) sample images we extract a small rectangular area having the relevant
object inside. The generated set of training patterns is the basis for learning the
recognition function (that is, the GBF network). (iv) According to the approach
for learning a GBF network we first have to cluster the training patterns with
regard to similarity. (v) Finally, we determine appropriate combination factors of
the GBFs by least squares fitting using the pseudo inverse technique.

Steps (i), (ii), and (iii) will be illustrated in the sections below. Step (iv) is
implemented as follows. We use a clustering approach which is similar to the error—
based ISODATA clustering algorithm in Schalkoff [11, pp. 109-125]. The algorithm
initially groups the patterns using the standard K-means method. Then, clusters
exhibiting large variances are split in two, and clusters that are too close together
are merged. Next, K-means is reiterated taking the new clusters into account.
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This sequence is repeated until no more clusters are split or merged. The allowed
variances within a cluster can be controlled by specific parameters.

Also step (v) needs further explanation. First, a set of M support functions
will be applied to each pattern p; of a set of N training patterns. This results in a
matrix A of similarity values with N rows and M columns. Second, we define an
N-dimensional vector A of desired output values. E.g., the GBF network has to
compute constantly the recognition value 1 for each training pattern. Third, we
define a vector w which comprises the unknown combination factors wy,---, wys
of the support functions. Finally, the problem is to solve the equation Aw = h for
the vector @. According to Press et al. [9, pp. 671-675] we compute the pseudo
inverse of A and determine the vector « directly.

A% = (AT A)71AT W= A#h (5)

The learned operator for the recognition of an object is defined by a GBF
network. The collection of GBFs is based on a set of typical patterns (appearance
patterns). The support of the GBFs specifies the generalizing ability for applying
the operator to new patterns of the object (not included in the training set). The
question of interest is: How many GBFs are needed and what size of the support
is appropriate for robust object recognition? The robustness will be defined by
incorporating an invariance criterion and a reliability criterion. The invariance
criterion strives for an operator which responds nearly equal for any appearance
pattern of the target object. The reliability criterion aims at an operator which
clearly discriminates between the target object and any other object or situation.
Regions of the appearance space which represent views of objects other than the
target object or any background area should be given low confidence values.

We will experimentally demonstrate a conflict in trying to maximize both
criterions simultaneously. Therefore related to the overfitting/overgeneralizing
dilemma (discussed above) a compromise is needed. By changing the number and
the support size of the GBFs we show the invariance and reliability performance of
recognition functions. Section 4 presents experiments on object recognition under
arbitrary view angle, section 5 deals with object recognition under arbitrary view
distance. Finally, section 6 discusses the approach and mentions future work.

4 Object recognition under arbitrary view angle

For learning an appropriate operator we actually must take sample images of the
target object under several view angles. Due to a momentary lack of camera mo-
bility we instead turn the object and acquire turn—dependent appearance patterns
(size of the object patterns: 15x15 = 225 pixel). Figure 1 shows a subset of eight
patterns from an overall collection of 32. The collection i1s devided into a training
and a testing set comprising 16 patterns each. The training set has been taken by
equidistant turning angles of 22.5 degree and the testing set differs by an offset of
10 degree. Therefore, both in the training and testing set the turn of the object
changes in discrete steps over the range of 360 degree.
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Fig. 1. Varying turning angle of the target object.

The collection of GBFs and their combination factors will be learned according
to the approach of section 3. By modifying the number and/or the support of the
GBFs we get specific operators. In the first experiment a small support has been
chosen which results in a spare overlap of the GBFs. Four variants of operators will
be defined for recognizing the target by choosing 2, 4, 8 and 16 GBFs respectively.
Figure 2 shows four curves ((a), (b), (c), (d)) of confidence values computed by
applying the operators to the target object of the test images. The more support
functions are used, the higher the confidence values for recognizing the target. The
confidence values vary significant when changing the turning angle of the object,
and therefore the operators are hardly invariant.

The second experiment differs from the first in that a large support of the GBFs
has been used leading to a broad overlap. Figure 3 shows once again four curves
of confidence values produced by the new operators. Consistently, the invariance
criterion improves and the confidence nearly takes the desired value 1. Taking only
the invariance aspect into account, the operator characterized by many GBFs and
large support is the best (see curve (d) in Figure 3).
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The third experiment incorporates the reliability criterion into object recog-
nition. An operator is reliable; if the recognition value computed for the target
object is significant higher than those of other objects. In the experiment we apply
the operators to the target object and to three test objects (outlined in Figure 4 by
white rectangles). Based on 16 GBFs as support functions we define 6 operators
by systematically increasing the support in 6 steps.

Figure 5 shows four curves dedicated to the target and the three test objects.
If we enlarge the support of the GBFs and apply the operators to the target object
a slight increase of the confidence values occurs (curve (a)). If we enlarge the sup-
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port in the same way and apply the operators to the test objects the confidence
values increase dramatically (curves (b), (c), (d)). Consequently, the curves for
the test objects approach the curve for the target object. Increasing the support
of the GBFs makes the operator more and more unreliable (overgeneralization).
However, according to the first experiments an increasing support makes the op-
erator more and more invariant with regard to object turn (overfitting). Thus a
compromise has to be made in specifying an operator for object recognition.

(@

®)
©
@

Confidence value
o.20 0.40 o.60 0.80
1 1 1 1

I I I
s 55

s 25 35 P
Sigma of Gaussian
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lined by fine rectangles). GBF network, increasing support.

5 Object recognition for arbitrary view distance

For learning an appropriate operator we actually must take sample images of the
target object under several spatial distances between object and camera. Due to
the lack of camera mobility we instead change the focal length of the lens in order to
reach similar projection effects. A small (large) focal length leads to a large (small)
size of the object pattern in the image. Figure 6 shows on the left the image of
an experimental scene (depicting the target object and other objects) taken under
a mean focal length. On the right a collection of 11 training patterns depicts the
target object which has been taken under a systematic decrease of the focal length
in 11 discrete steps. The size of the object pattern changes from 15x15 pixel to
65x65 pixel. Each training pattern encodes essential information and therefore we
don’t have to build clusters. Accordingly, for each training pattern a single GBF
is defined. The combination factors of the GBFs are determined as before.

A further collection of 10 test images has been acquired which differs from the
training set by using intermediate values of focal length. We constructed three
operators for object recognition taking small, middle, and large support of the
GBFs. In the first experiment these operators have been applied to the target of
the test images. Figure 7 shows in curve (a) the confidence values for recognizing
the target object taking a small support into account. The confidence value differ
significantly by changing the focal length and is far away from the desired value 1.
Alternatively, if we use a middle support the confidence values have approached
to 1 and the smoothness of the curve improved (curve (b)). Finally, using a large
support will lead to invariant recognition values near to 1 (curve (c)).
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Fig. 6. Scene for object recognition (left), target object under varying focal length (right).

In the second experiment we investigate the reliability criterion for the three
operators from above. The operators will be applied to all objects of the test image
(image on the left in Figure 6), and the highest confidence value of recognition has
to be selected. Of course, it is expected to get the highest recognition value from
the target object. Figure 8 once again depicts (equal to Figure 7) the confidence
values of applying the three operators to the target object (curves (a), (b), (c)).
Furthermore, if we use the operator of large support for all objects of the test
images we frequently get higher confidence values for objects other than the target
object (see curve (cl)). In those cases the operator fails to localize the target
object. Alternatively, applying the operator of middle support will improve the
realibility criterion (curve (b1) rarely surpasses curve (b)). Finally, the operator of
small support localizes the target object in all test images. The highest confidence
value will be computed just for the target object (curve (a) and curve (al) are

identical).
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6 Discussion

We have presented an approach for object recognition which does not require a
priori knowledge of the three~dimensional geometric shapes. Rather the knowledge
about objects is grounded in photometric appearance. As a consequence, the
operator for object recognition must be learned on the basis of raw gray levels
or elementary filter responses. The vision system for object recognition has to
be adjusted to the actual environment in order to reach autonomy. By doing
experiments prior to the application stage (like the one presented in this work) we
can later make use of the learned recognition functions.

For representing and learning the operator a regularization network 1s used. In
our application it is implemented with gaussian basis functions (GBFs) but any
other bell-shaped parabolic function is possible as well. The regularization factor
(see equation (1)) is controlled by the number and the support size of the ba-
sis functions. Various configurations reflect the well-known invariance/reliability
conflict in object recognition (see Figures 3 versus 5, and 7 versus 8).

Increasing the support (and/or increasing the number) of GBFs makes the
operator for object recognition invariant but unreliable. In order to reach a certain
degree of discriminability between the target object and other objects the claim for
strict invariance has to be reduced to appozimate invariance. Therefore, a further
goal of doing experiments prior to application stage is to discover an appropriate
compromise between invariance and reliability of object recognition.

The greatest strength of the approach is the ability to learn (approximate) in-
variants under real world changes. Usual methods for invariant pattern recognition
(Wood [12]) have the constraint that the permitted transformations are acting di-
rectly on the patterns. As opposed to that in the recognition of three-dimensional
objects one has to deal with changing view directions, view distances, object back-
ground, illuminations and maybe further imponderable changes. Therefore the
pattern transformations are much more complicated because they originate from
real world changes. Fortunately, our experiments proved, that approximate invari-
ants can be learned with regularization networks.

The approach is generic in several aspects. First, invariants can be learned for
any imaginable real world changes. For example, in (Pauli et al. [7]) we demon-
strated the robust object recognition under varying object background and varying
illumination. Second, the approach can also be applied to filtered images rather
than raw images. For example, by using the output of a bandlimited filter we can
learn a reliable recognition function which is specific to certain signal frequencies
(to recognize certain shapes or textures). Third, the appearance based approach
can not only be applied to object recognition but also to situation recognition. For
example, in (Pauli [6]) we evaluated the stability of grasping situations based on
the recognition of the relationship between the target object and the robot fingers.

Usually the problem of object recognition comes in combination with object
localization in the image. Due to place limitation we don’t mention the approach
and therefore the interested reader is recommended to (Pauli et al. [7]).

In future work we will develop strategies for combining several invariants.
Recognition functions have to be learned which are robust with regard to more
complicated real world changes.
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Facilities

Sun SPARCstation 10/40, TRC-Bisight active binocular head, Staubli-Unimation

RX-

90 robotic arm, computer vision system KHOROS.
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