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Vision-based Manipulator Navigationusing Mixtures of RBF Neural NetworksWolfram Blase, Josef Pauli, and J�org BruskeChristian{Albrechts{Universit�at zu Kiel, Institut f�ur InformatikPreusserstrasse 1-9, D-24105 Kiel, GermanyFax: (++49)431560481, Email: jpa@informatik.uni-kiel.de1 Subject of the workIn our behaviour-based robot system a manipulator has been equipped with a monochromatic videocamera, fastened onto the robot hand. Based on image processing and neural network learning thesystem executes goal directed perception-action cycles and thus attains versatile skills. Especiallythis work reports on close range manipulator navigation, i.e. searching collision-free trajectoriesof the robot hand to approach and handle goal objects. Neural network learning with radial basisfunctions (RBFs) is involved twofold. First, a function is learned for reconstructing from theoptical 
ow of detected obstacle points their three-dimensional positions. Second, a function of theinverse manipulator kinematics is learned which is used for describing the non-rigid space occupiedby the agile manipulator. Furthermore, based on the goal position and the continually detectedobstacle positions a vector �eld is created dynamically by using the gradient of RBFs as basis �elds.The vector �eld simulates attracting and repelling forces for navigating the manipulator hand. Toovercome the curse of dimensionality and reach acceptable e�ciency in function learning we appliedmixtures of RBF neural networks and strongly emphasized divide-and-conquer strategies. Theparallel approaches for neural learning (and image processing) are implemented on a four-processorgeneral purpose workstation.2 Learning to reconstruct from optical 
owFor the purpose of online detecting obstacles the camera must be moved through the working space.The SUSAN edge detector [Smith and Brady, 1997] is used for extracting greylevel corners probablyarising from obstacles. Based on corresponding features between two successive images the obstacleposition must be reconstructed into 3D space. The reconstruction function is learned o�ine using ahierarchical mixture of expert (HME) networks [Jordan and Jacobs, 1994] in which RBF networksare arranged in two layers. Figure 1 shows the application of such a mixture of networks forreconstruction from optical 
ow vectors. Each RBF network of the �rst layer is trained for a smallimage area and is used for reconstructing from the optical 
ow therein the depth coordinate Z.Each RBF network in the second layer is trained for a small range of depth, i.e. ranges of Z, and isused for computing the space coordinates X and Y . The merit of this architecture is twofold. First,the non-linearity of the RBFs takes care for the nonlinear type of reconstruction which is due tosigni�cant image distortions. These distortions are a consequence of using a wide-angle objective(lens with small focal length, e.g. 4:2mm) needed in close range navigation for depicting a wideview volume. Second, the module architecture makes it possible to train each network e�cientlyby taking only a small subset of the whole training set into account. The output on each of thetwo layers is calculated by linear combining the respective outputs of a small set of relevant RBFnetworks. The combination factors are supplied by one gating network for each layer (not shownin the Figure), which are pre-speci�ed in our application.1
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under camera motionFigure 1: Hierarchical mixture of RBF networks, e.g. two layers.The reconstruction function frec is learned as follows.1. A sheet of paper depicting a regular distributed set of calibration dots is put at a �xed placeof a ground plane. Beginning in a near position the camera is moving o� the sheet in discretesteps with the optical axis approximately normal to it (e.g. 10 steps of 50mm each). At eachstep an image is taken and the calibration points are extracted. Furthermore these points aredetermined in the coordinate system of the robot hand which is translating step by step.2. For every two successive camera positions the corresponding image positions of the calibrationpoints are associated with the Z coordinates of their 3D positions (i.e. relative to the secondof the two camera positions). A regular grid is de�ned for the image plane and one RBFnetwork created for each grid knot respectively (�rst layer in the HME network). Each RBFnetwork is trained e�ciently by using a small set of calibration points (more conretely usingthe 
ow vectors) located in the neighborhood of the respective grid knot. The ISODATAclustering algorithm is used for de�ning the hidden nodes and a singular value decomposition(SVD) applied for determining the weights.3. For each discrete camera position the image positions of the calibration points are associatedwith the (X; Y ) coordinates of their 3D positions. One RBF network is de�ned with respectto each discrete camera position (second layer of the HME network). These RBF networksare trained (using ISODATA and SVD) by taking the respective associations into account.Let (x1; y1) and (x2; y2) be corresponding positions of an obstacle in the image before and aftercamera motion. The second position is used to determine four neighboring grid knots gm;n; gm+1;n;gm;n+1; gm+1;n+1. The respective RBF networks R1m;n; R1m+1;n; R1m;n+1; R1m+1;n+1 of the �rst HME2



network layer is applied to the optical 
ow (x2�x1; y2� y1). The linear combined output gives thedepth coordinate Z. Just this coordinate is used for selecting two RBF networks R2k; R2k+1 fromthe second layer, which are most sensitive to Z. They are applied to (x2; y2) and the combinedoutput gives the coordinates X and Y of the obstacle.Figure 2 shows two drinks cans (left and middle) and a beer bottle (right) stored in a refrigerator.The manipulator has to approach the goal object (assuming the can in the middle) by bypassing theobstacle objects (left can and bottle). The SUSAN edge detector has extracted a set of interestingpoints (see black dots) arising from the imprints of the three objects. Figure 3 shows for thesedetected image points the 3D reconstruction using the mentioned HME network. The X and Zcoordinates are shown for points on the goal object (G) and obstacle objects (H1 and H2).
Figure 2: Detected grey level corners at two obstacleobjects (left and right) and one goal object (middle). 500
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Figure 3: Reconstructed 3D coordinates X and Z ofdetected points from obstacles (H1;H2) and goal (G).3 Learning the inverse manipulator kinematicsSuppose the manipulator must approach a goal position G, but in close neighborhood an obstacle Hhas been detected. Before approaching the goal it must be determined whether the arm segmentswill probably collide with H (see Figure 4). This is done by just simulating a movement to Gand there describing the occupied space of the manipulator. Figure 5 shows the rotation angle!i and position pi of the joints, and the length li and diameter di of the links. Assuming thatli; di are known a priori and pi are computable from li and !i we easily compute an approximationof the occupied space Vm of the manipulator. Finally it must be checked whether obstacle H iscontained in the virtual manipulator space Vm, and if this is not the case, the manipulator actuallycan appraoch goal G.The only problem is to solve the inverse manipulator kinematics [Craig, 1989], i.e. determinethe mapping of the 3D goal position G = (X; Y; Z) into the relevant vector of rotation angles
 = (!1; � � � ; !n). We build one layer of RBF networks in which each network is responsible for acertain range of Z and in consequence of that the dimension of the input space is reduced into 2D3



by dropping the Z component. Each RBF network is trained with associations between vectorsG and 
, taking only vectors G with relevant Z values into account. The e�ciency of trainingarises by taking for each RBF network only a subset of the whole training samples into account. Inthe application phase we determine for an input vector G those RBF networks whose responsibleranges contain the Z value (e.g. two or more networks), apply these networks to the (X; Y ) tuple,linear combine the respective outputs, and this gives the vector of rotation angles 
. According toour experiments the approximation errors in the rotation angles !i can be reduced to 1� degreesin the mean. Applying forward kinematics this results in a mean positioning error of about 3mmwhich is good enough for checking criteria of obstacle avoidance.
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GFigure 4: Manipulator and simulated obstacle collision. Gωi
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p iFigure 5: Characterizing the manipulator kinematics.4 Dynamic construction of a force vector �eldThe manipulator must navigate towards a goal position while avoiding obstacles. This is done bydynamically constructing a vector �eld of simulated forces [Mussa-Ivaldi and Giszter, 1992]. Thegoal position is the center of an attractor �eld, i.e. in a working space all discretized points specifythe origin of a vector which is directed towards the goal (Figure 6, left). As the manipulator beginsto move from an arbitrary position it will be attracted from the forces in the goal. Whenever thevision system detects an obstacle a repellor �eld is created at that position (Figure 6, middle). Thesummation of attractor and repellor �eld results in appropriate forces, i.e. the manipulator will bepushed o� and thus bypasses the obstacle for approaching the goal (Figure 6, right).The attractor �eld is simply de�ned by vectors of unique length �.AFG(P ) := � (G� P )k G� P k (1)The repellor �eld is de�ned by computing the gradient of a negated radial basis function centeredat an obstacle position. ��(P;H) := �exp(�k P �H k2�2 ) (2)RFH(P ) := @��(P;H)@P = 2(P �H)��(P;H) (3)The unknown � value of the gaussian is computed by considering a desired minimal distance fromthe obstacles and taking the (small) inaccuracy of reconstruction into account.4



Figure 6: Attractor �eld for the goal object (left), two repellor �elds for two obstacle objects (middle), summationof both �elds (right).In order to exploratory navigate towards the goal position the manipulator is moving step by step,and the vision component is detecting obstacles. In these cases repellor basis �elds are constructed,and the force vector �eld is changed dynamically. During the process locally a set of null vectorscan arise which is similar to a local minimum in a potential �eld. These places are simply treatedas obstacles, i.e. putting repellor �elds there in order to generate repellent forces. The emergingvector �eld implicit represents a trajectory towards the goal position. For globally exploring thescene the navigation is repeated for di�erent starting positions and thus an overall force vector �eldis constructed which implicit represents trajectories towards the goal position starting arbitrarily.5 SummaryMixtures of RBF neural networks have been used for vision-based manipulator navigation. A two-layer mixture of RBF networks is appropriate for reconstructing 3D positions of obstacles especiallyfor the case of signi�cant image distortions which result from wide-angle objectives. A one-layermixture of RBF networks is involved for e�ciently solving the inverse manipulator kinematics,which is important for computing the occupied space of the manipulator. A force vector �eld isconstructed dynamically by detecting obstacles and placing repellor �elds, which are speci�ed bythe gradient of negated RBFs.ReferencesJ. Craig. Introduction to Robotics. Addison-Wesley Publishing Company, Massachusetts, 1989.M. Jordan and R. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation,6:181{214, 1994.F. Mussa-Ivaldi and S. Giszter. Vector �eld approximation { A computational paradigm for motor controland learning. Biological Cybernetics, 67:491{500, 1992.S. Smith and J. Brady. SUSAN: A new approach to low level image processing. International Journal ofComputer Vision, 23:45{78, 1997. 5


