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ABSTRACT:

A versatile robot manipulator is based on techniques of com-
puter vision and neural network learning. For grasping objects
four principal tasks have to be done in a cycle — detect the
desired object and the grasping fingers in the images, evaluate
the spatial relationship wrt. grasping stability, choose a more
stable grasping pose (if possible), and move the manipulator to
it. In this work we focus on two subproblems thereof, spec-
ifying the hand—eye coordination and evaluating the grasping
situation. These procedures are based on (nonlinear) functions
which are not known a priori and therefore have to be learned.
We uniformly approximate the required functions by means of
networks of Gaussian Basis Functions (GBF networks). Modify-
ing the number of GBFs and/or the accessory size of the gaus-
sian support changes the quality of the learned function. We
use GBF networks both to specify the hand—eye coordination
and to recognize the grasping situation and show how various
network configurations influence the accuracy and therefore the
usefulness of the function approximations. All experiments are
carried out in real world environments using an industrial robot
manipulator and the computer vision system KHOROS.

INTRODUCTION

The motto of William of Occam, a scholastic of the middle ages, reads as follows:
It’s vain to do with more what can be done with less. This principle, known
as Occam’s Razor (Blumer et al., 1990), is very much alive in neural network
learning. Several theoretically oriented papers study the aspects of learnability
and derive lower and upper bounds on the sample size versus net size needed
such that a function approximation of a certain quality can be expected (Baum
and Haussler, 1990). A sample is a set of input—output pairs ( examples) char-
acterizing the desired function. Most recently, the relationship between sample
compression and probably approximately correct learning (PAC-learnability)
has been discussed (Floyd and Warmuth, 1995). The term PAC-learnability
characterizes a function as learnable if and only if a learning algorithm can be
formulated which produces with a certain expenditure of work a probably ap-
proximately correct function. Based on pre-specified levels for probability and
correctness of a function approximation, we are interested in discovering the



most simply and efficiently applicable representation (Rissanen, 1984).

An approximation scheme leading to a function which is close to the sample
data and meets smoothness constraints is known under the term regularization.
It was shown that regularization principles can be implemented with neural net-
works consisting of an input layer, a layer of hidden nodes and an output layer
(Poggio and Girosi, 1990). Each hidden node is defined by a so—called support
basis function acting as a window in the input space. In our application we
use GBF networks whose basis functions are multidimensional symmetric Gaus-
sians. On account of applying Occam’s Razor to GBF networks it is desirable
to discover the minimum number of GBFs to reach a critical quality for the
function approximation. Our work treats that problem from a practical point
of view by doing real world experiments in vision based robotics. We show the
relationship between net size and/or support size of a GBF network on the one
hand and the quality of the function approximation on the other hand. Various
configurations of GBF networks are applied for eye-hand coordination and for
evaluation of grasping situations. Taking the experimental results into account
we can configure appropriate GBF networks for vision based robot grasping.

EYE-HAND COORDINATION

For grasping an object the end—effector of the robot manipulator has to be moved
into a stable grasping pose. The desired pose (position and orientation) must
be extracted from visual information which will be produced by two cameras.
The camera system is arranged in an appropriate position and orientation for
watching the scene (no physical connection to the robot). Taking stereo images
and detecting the target object in the two images result in two twodimensional
positions representing the centers of gravity (two 2D—vectors). The two positions
are defined in the coordinate systems of the two cameras and will be combined in
a single vector (4D—vector). On the other hand, the end—effector moves within
a 3D working space which is defined in the basis coordinate system of the robot
(the position of the end—effector is a 3D—vector). Thus we need a function trans-
forming the object positions from the coordinate systems of the cameras to the
cartesian coordinate system of the robot (4D—vector = 3D—vector).

The procedure to acquire that function, which determines the eye-hand co-
ordination, is as follows. We make use of a training sample for learning a GBF
network. First the set of GBFs must be configured, and second the combination
factors of the GBFs are computed. We configure the set of GBFs by simply
selecting certain elements from the training sample and using the input parts
(4D—vectors) of the selected examples to define the centers (of the GBFs). The
combination factors for GBF's are computed with the pseudo inverse technique,
leading to least square errors between pre-specified and computed output values.

The prerequisite for running the learning procedure is the existence of a
training sample. To get it, we take full advantage of the robot dexterity. The
end—effector moves in the working space systematically, stops on equidistant
places, and 3D—positions of the end—effector are carefully recorded. These 3D-
vectors are simply provided by the control unit of the robot. Furthermore, at



each stopping place an SSD-based (sum of squared distances) recognition algo-
rithm detects the end—effector bend in the stereo images (see Figure 1) and the
two twodimensional positions are combined to a 4D-vector. Alternative striking
features, e.g. the end—effector tip, could be detected as well. All pairs of 4D-
/3D-vectors are used as training sample for the desired eye-hand coordination.

Based on image coordinates of the end—effector bend the GBF network has
to estimate its 3D position in the robot basis coordinate system. The mean 3D
position error should be as low as possible. The main question of interest is:
How many GBFs and which support sizes are needed to get a certain quality for
the eye-hand coordination? To answer that question four experiments have been
carried out. In the first and second experiment we applied two different numbers
of GBF's exemplarily. The third experiment shows the effect of doubling the
image resolution. Finally, the fourth experiment takes special care for training
the combination weights of the GBFs. In all four experiments we systematical
increase the GBF support size and measure the mean position error.

For each experiment we take a training sample. The working space of the
end—effector underlying the sample is cube—shaped of maximum 300 millimeters
(mm) side length. The GBFs will be spread over a subspace of 4D—vectors
according to certain stopping places of the end—effector. That is, the 4D image
coordinates resulting from the end—effector bend position at a certain stopping
place are used for defining the center of a Gaussian. The following experiments
differ wrt. the size and the use of the training sample. The evaluation of the
resulting GBF network is based on a testing sample. It consists of input—output
pairs from the same working space as above, but definitely the robot fingers
moved in discrete steps of 20 mm. It is assured, that training and testing sample
differ essentially and have only a small number of elements in common.

In the first experiment the manipulator moved in discrete steps of 50 mm
through the working space resulting in a training sample of 7x7x7 = 343 ele-
ments. Every second example is used for defining a GBF (4x4x4 = 64 GBFs),
and the whole training sample for computing the combination weights of the
GBFs. The image resolution is set to 256x256 pixel. Figure 2 shows in curve
(a) the course of mean position error for systematically increasing the support.
As the GBFs become more and more overlapped the function approximation
improves, and the mean position error decreases to a value of about 2.2 mm.

The second experiment differs from the first in that the manipulator moved in
steps of 25 mm. Thus the training sample consists of 13x13x13 = 2197 examples
and every second example is used for defining a GBF (7x7x7 = 343 GBFs).
Figure 2 shows in curve (b) that the mean position error converges to 1.3 mm.

In the third experiment the same configuration was used as before, but the
image resolution is doubled to 512x512 pixels. The accuracy of detecting the fin-
ger bend in the images increases, and the mean position error decreases further.
Figure 2 shows in curve (c) the convergence to error value 1.0 mm.

The fourth experiment takes special care of both the training of weights and
the testing of the resulting GBF network. It is obvious, that at the border of
the working space there is only a one—sided overlap between GBFs. Therefore
the quality of the function approximation can be improved, if a specific subset
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Figure 1: Detecting end—effector in stereo images. Figure 2: Courses of mean position error.

of 4D—/3D-vectors located at the border of the working space will not be taken
into account. In this experiment, the 343 GBFs are spread over the original
working space as before, but for computing combination factors and testing the
GBF network an inner working space of 250 side length is used. Figure 2 shows
in curve (d) that the mean position error decreases to a value of 0.5 mm.

We used GBF networks to learn the mapping from image coordinates in stereo
images into coordinates of a robot manipulator. The main advantage is that
extrinsic and intrinsic camera parameters don’t have to be determined. Rather
we configure a GBF network appropriately, depending on the required accuracy
(e.g. 1 mm). In order to approach the manipulator to a target object, we
detect the target in stereo images, compute the centers of gravity, put the image
coordinates into the GBF network, and compute the relevant robot coordinates.

EVALUATION OF GRASPING SITUATION

Having the manipulator near the object we must fine-tune the pose of the robot
fingers in order to stably grasp the target. Therefore the spatial arrangement
between target and fingers have to be recognized and evaluated wrt. grasping
stability. According to our vision based approach the image depiction of that
arrangement is used to draw conlusions about the grasping stability. Figure 3
shows three images each depicting a target object, two bended robot fingers, and
some other objects. On the left and the right the grasping situation is unstable
because the horizontal part of the two parallel fingers is behind respectively in
front of the target. The grasping situation in the middle image is most stable.
The grasping situations will be evaluated by applying a specific function to
the contents of the relevant image area. To learn that evaluation function a GBF
network is used. The input nodes describe the relevant image area, the hidden
nodes represent a set of typical grasping situations, and the only output node
computes the grasping stability. There are many approaches known in the com-
puter vision literature for describing image contents. In this application we prefer



Figure 3: Three typical arrangements of target object and grasping fingers.

response

1ter

Figure 4: Response of Gabor filter. Figure 5: Overlay of two filter response patterns.

to use the response of a simple filter operation and avoid image segmentation.
Thus we don’t have to bridge the problematic gap between photometric gray
level edges and geometric surface discontinuities (Maxwell and Shafer, 1994).

In line with this concept it would (!) be possible to take the raw gray levels
and use directly the appearance patterns of grasping situations. Unfortunately
these patterns are large—sized and so the efficiency of recognition is low. There-
fore, we are interested in an image operator which concentrates the contents of
a large image area into a smaller patch. The Gabor wavelet filter can be applied
for this purpose (Pauli et al. 1995). For example, Figure 4 shows the response
of an adequately parameterized Gabor filter applied to the left image in Figure
3. Rather than using appearance patterns we take so-called response patterns of
a pre—defined size for evaluating the grasping situation. Specific arrangements
consisting of the fingers and the target result in specific filter response patterns.
For example, Figure 5 shows the overlay of two response patterns which result
by applying the Gabor filter to the left and the middle image in Figure 3 and
selecting the response of the (black) outlined rectangular area.

Unlike the simple application of GBF networks in eye-hand coordination, the
dimension of the evaluation function (for grasping situations) is extremely high.
Definitely, the dimension of the input space is equal to the number of pixels of
the response patterns (the pre—defined size typically has several hundred pixels),



and furthermore the GBFs have to be defined according to this dimension. The
input space of the GBF network is the set of all possible response patterns of the
pre—defined size. Each hidden node only responds significant for a certain subset
of these patterns. The factors combining the GBFs encode values of grasping
stability assigned to typical grasping situations. The output node computes the
definite grasping stability for the grasping situation put into the input layer.

The approach for learning the evaluation function is as follows:
First, we take example images containing various grasping situations. Especially
in our experiment the robot fingers will be moved step by step to the most stable
grasping situation and step by step moved off afterwards. The movement is
photographed in 25 discrete steps (Figure 3 shows three images thereof). Every
second image will be used for training and the images in between for testing.
Second, we apply the Gabor filter to the training images and extract the rectan-
gular area (of pre-specified size) describing the grasping situation. This training
sample of response patterns is used for learning the evaluation function.
Third, according to the approach for learning a GBF network we have to clus-
ter the response patterns with regard to similarity. The ISODATA clustering
procedure is used for this purpose (Schalkoff, 1992, pp. 109-125).
Finally, we determine appropriate combination factors of the GBFs using the
pseudo inverse technique. For that a set of pre-specified stability values must be
assigned to the training sample. Considering the order in which the examples
of grasping situations have been photographed, we define that the course of
stability values should take the form of a bell-shaped parabolic curve. Therefore,
the course of stability value for the ordered set of training examples increases
systematically until the maximum is reached and decreases afterwards.

According to this approach a GBF network can be configured representing an
evaluation function. Four experiments have been carried out by taking different
numbers and /or support sizes of the GBFs. Figure 6 shows in curve (a) and (b)
the course of stability values if we take six GBFs and a small respectively large
support size. Alternatively, the curves (c¢) and (d) in Figure 7 depict the courses
for 13 GBFs and a small respectively large support size. Curve (d) depicts the
best approximation of the evaluation function.

Using such a GBF network for evaluating the grasping situation, the robot
system automatically controls the manipulator in order to reach the optimal
grasping stability.

CONCLUSION

Our approach of vision based robotics uses GBF networks both for eye-hand
coordination and for the evaluation of grasping situations. Furthermore, GBF
networks can be used to learn operators for view independent object recogni-
tion (Pauli, 1996). In numerous experiments it was demonstrated how specific
network configurations influence the accuracy of the function approximation.
Depending on pre-specified limits for the accuracy the GBF networks can be
trained appropriately and then used for online operation.
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Figure 6: Courses of grasping stability. Figure 7: Courses of grasping stability.
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