
GBF NETWORK ARCHITECTURESFOR ROBOT VISIONJOSEF PAULIChristian{Albrechts{Universit�at, Institut f�ur Informatik,Preusserstrasse 1-9, D{24105 Kiel, GermanyABSTRACT:A versatile robot manipulator is based on techniques of com-puter vision and neural network learning. For grasping objectsfour principal tasks have to be done in a cycle | detect thedesired object and the grasping �ngers in the images, evaluatethe spatial relationship wrt. grasping stability, choose a morestable grasping pose (if possible), and move the manipulator toit. In this work we focus on two subproblems thereof, spec-ifying the hand{eye coordination and evaluating the graspingsituation. These procedures are based on (nonlinear) functionswhich are not known a priori and therefore have to be learned.We uniformly approximate the required functions by means ofnetworks of Gaussian Basis Functions (GBF networks). Modify-ing the number of GBFs and/or the accessory size of the gaus-sian support changes the quality of the learned function. Weuse GBF networks both to specify the hand{eye coordinationand to recognize the grasping situation and show how variousnetwork con�gurations inuence the accuracy and therefore theusefulness of the function approximations. All experiments arecarried out in real world environments using an industrial robotmanipulator and the computer vision system KHOROS.INTRODUCTIONThe motto of William of Occam, a scholastic of the middle ages, reads as follows:It's vain to do with more what can be done with less. This principle, knownas Occam's Razor (Blumer et al., 1990), is very much alive in neural networklearning. Several theoretically oriented papers study the aspects of learnabilityand derive lower and upper bounds on the sample size versus net size neededsuch that a function approximation of a certain quality can be expected (Baumand Haussler, 1990). A sample is a set of input{output pairs ( examples) char-acterizing the desired function. Most recently, the relationship between samplecompression and probably approximately correct learning (PAC{learnability)has been discussed (Floyd and Warmuth, 1995). The term PAC{learnabilitycharacterizes a function as learnable if and only if a learning algorithm can beformulated which produces with a certain expenditure of work a probably ap-proximately correct function. Based on pre{speci�ed levels for probability andcorrectness of a function approximation, we are interested in discovering the



most simply and e�ciently applicable representation (Rissanen, 1984).An approximation scheme leading to a function which is close to the sampledata and meets smoothness constraints is known under the term regularization.It was shown that regularization principles can be implemented with neural net-works consisting of an input layer, a layer of hidden nodes and an output layer(Poggio and Girosi, 1990). Each hidden node is de�ned by a so{called supportbasis function acting as a window in the input space. In our application weuse GBF networks whose basis functions are multidimensional symmetric Gaus-sians. On account of applying Occam's Razor to GBF networks it is desirableto discover the minimum number of GBFs to reach a critical quality for thefunction approximation. Our work treats that problem from a practical pointof view by doing real world experiments in vision based robotics. We show therelationship between net size and/or support size of a GBF network on the onehand and the quality of the function approximation on the other hand. Variouscon�gurations of GBF networks are applied for eye{hand coordination and forevaluation of grasping situations. Taking the experimental results into accountwe can con�gure appropriate GBF networks for vision based robot grasping.EYE{HAND COORDINATIONFor grasping an object the end{e�ector of the robot manipulator has to be movedinto a stable grasping pose. The desired pose (position and orientation) mustbe extracted from visual information which will be produced by two cameras.The camera system is arranged in an appropriate position and orientation forwatching the scene (no physical connection to the robot). Taking stereo imagesand detecting the target object in the two images result in two twodimensionalpositions representing the centers of gravity (two 2D{vectors). The two positionsare de�ned in the coordinate systems of the two cameras and will be combined ina single vector (4D{vector). On the other hand, the end{e�ector moves withina 3D working space which is de�ned in the basis coordinate system of the robot(the position of the end{e�ector is a 3D{vector). Thus we need a function trans-forming the object positions from the coordinate systems of the cameras to thecartesian coordinate system of the robot (4D{vector =) 3D{vector).The procedure to acquire that function, which determines the eye{hand co-ordination, is as follows. We make use of a training sample for learning a GBFnetwork. First the set of GBFs must be con�gured, and second the combinationfactors of the GBFs are computed. We con�gure the set of GBFs by simplyselecting certain elements from the training sample and using the input parts(4D{vectors) of the selected examples to de�ne the centers (of the GBFs). Thecombination factors for GBFs are computed with the pseudo inverse technique,leading to least square errors between pre-speci�ed and computed output values.The prerequisite for running the learning procedure is the existence of atraining sample. To get it, we take full advantage of the robot dexterity. Theend{e�ector moves in the working space systematically, stops on equidistantplaces, and 3D{positions of the end{e�ector are carefully recorded. These 3D-vectors are simply provided by the control unit of the robot. Furthermore, at



each stopping place an SSD{based (sum of squared distances) recognition algo-rithm detects the end{e�ector bend in the stereo images (see Figure 1) and thetwo twodimensional positions are combined to a 4D-vector. Alternative strikingfeatures, e.g. the end{e�ector tip, could be detected as well. All pairs of 4D{/3D{vectors are used as training sample for the desired eye{hand coordination.Based on image coordinates of the end{e�ector bend the GBF network hasto estimate its 3D position in the robot basis coordinate system. The mean 3Dposition error should be as low as possible. The main question of interest is:How many GBFs and which support sizes are needed to get a certain quality forthe eye{hand coordination? To answer that question four experiments have beencarried out. In the �rst and second experiment we applied two di�erent numbersof GBFs exemplarily. The third experiment shows the e�ect of doubling theimage resolution. Finally, the fourth experiment takes special care for trainingthe combination weights of the GBFs. In all four experiments we systematicalincrease the GBF support size and measure the mean position error.For each experiment we take a training sample. The working space of theend{e�ector underlying the sample is cube{shaped of maximum 300 millimeters(mm) side length. The GBFs will be spread over a subspace of 4D{vectorsaccording to certain stopping places of the end{e�ector. That is, the 4D imagecoordinates resulting from the end{e�ector bend position at a certain stoppingplace are used for de�ning the center of a Gaussian. The following experimentsdi�er wrt. the size and the use of the training sample. The evaluation of theresulting GBF network is based on a testing sample. It consists of input{outputpairs from the same working space as above, but de�nitely the robot �ngersmoved in discrete steps of 20 mm. It is assured, that training and testing sampledi�er essentially and have only a small number of elements in common.In the �rst experiment the manipulator moved in discrete steps of 50 mmthrough the working space resulting in a training sample of 7x7x7 = 343 ele-ments. Every second example is used for de�ning a GBF (4x4x4 = 64 GBFs),and the whole training sample for computing the combination weights of theGBFs. The image resolution is set to 256x256 pixel. Figure 2 shows in curve(a) the course of mean position error for systematically increasing the support.As the GBFs become more and more overlapped the function approximationimproves, and the mean position error decreases to a value of about 2.2 mm.The second experiment di�ers from the �rst in that the manipulator moved insteps of 25 mm. Thus the training sample consists of 13x13x13 = 2197 examplesand every second example is used for de�ning a GBF (7x7x7 = 343 GBFs).Figure 2 shows in curve (b) that the mean position error converges to 1.3 mm.In the third experiment the same con�guration was used as before, but theimage resolution is doubled to 512x512 pixels. The accuracy of detecting the �n-ger bend in the images increases, and the mean position error decreases further.Figure 2 shows in curve (c) the convergence to error value 1.0 mm.The fourth experiment takes special care of both the training of weights andthe testing of the resulting GBF network. It is obvious, that at the border ofthe working space there is only a one{sided overlap between GBFs. Thereforethe quality of the function approximation can be improved, if a speci�c subset



Figure 1: Detecting end{e�ector in stereo images. (a)

(b)
(c)

(d)Figure 2: Courses of mean position error.of 4D{/3D{vectors located at the border of the working space will not be takeninto account. In this experiment, the 343 GBFs are spread over the originalworking space as before, but for computing combination factors and testing theGBF network an inner working space of 250 side length is used. Figure 2 showsin curve (d) that the mean position error decreases to a value of 0.5 mm.We used GBF networks to learn the mapping from image coordinates in stereoimages into coordinates of a robot manipulator. The main advantage is thatextrinsic and intrinsic camera parameters don't have to be determined. Ratherwe con�gure a GBF network appropriately, depending on the required accuracy(e.g. 1 mm). In order to approach the manipulator to a target object, wedetect the target in stereo images, compute the centers of gravity, put the imagecoordinates into the GBF network, and compute the relevant robot coordinates.EVALUATION OF GRASPING SITUATIONHaving the manipulator near the object we must �ne-tune the pose of the robot�ngers in order to stably grasp the target. Therefore the spatial arrangementbetween target and �ngers have to be recognized and evaluated wrt. graspingstability. According to our vision based approach the image depiction of thatarrangement is used to draw conlusions about the grasping stability. Figure 3shows three images each depicting a target object, two bended robot �ngers, andsome other objects. On the left and the right the grasping situation is unstablebecause the horizontal part of the two parallel �ngers is behind respectively infront of the target. The grasping situation in the middle image is most stable.The grasping situations will be evaluated by applying a speci�c function tothe contents of the relevant image area. To learn that evaluation function a GBFnetwork is used. The input nodes describe the relevant image area, the hiddennodes represent a set of typical grasping situations, and the only output nodecomputes the grasping stability. There are many approaches known in the com-puter vision literature for describing image contents. In this application we prefer



Figure 3: Three typical arrangements of target object and grasping �ngers.
Figure 4: Response of Gabor �lter. Figure 5: Overlay of two �lter response patterns.to use the response of a simple �lter operation and avoid image segmentation.Thus we don't have to bridge the problematic gap between photometric graylevel edges and geometric surface discontinuities (Maxwell and Shafer, 1994).In line with this concept it would (!) be possible to take the raw gray levelsand use directly the appearance patterns of grasping situations. Unfortunatelythese patterns are large{sized and so the e�ciency of recognition is low. There-fore, we are interested in an image operator which concentrates the contents ofa large image area into a smaller patch. The Gabor wavelet �lter can be appliedfor this purpose (Pauli et al. 1995). For example, Figure 4 shows the responseof an adequately parameterized Gabor �lter applied to the left image in Figure3. Rather than using appearance patterns we take so-called response patterns ofa pre{de�ned size for evaluating the grasping situation. Speci�c arrangementsconsisting of the �ngers and the target result in speci�c �lter response patterns.For example, Figure 5 shows the overlay of two response patterns which resultby applying the Gabor �lter to the left and the middle image in Figure 3 andselecting the response of the (black) outlined rectangular area.Unlike the simple application of GBF networks in eye{hand coordination, thedimension of the evaluation function (for grasping situations) is extremely high.De�nitely, the dimension of the input space is equal to the number of pixels ofthe response patterns (the pre{de�ned size typically has several hundred pixels),



and furthermore the GBFs have to be de�ned according to this dimension. Theinput space of the GBF network is the set of all possible response patterns of thepre{de�ned size. Each hidden node only responds signi�cant for a certain subsetof these patterns. The factors combining the GBFs encode values of graspingstability assigned to typical grasping situations. The output node computes thede�nite grasping stability for the grasping situation put into the input layer.The approach for learning the evaluation function is as follows:First, we take example images containing various grasping situations. Especiallyin our experiment the robot �ngers will be moved step by step to the most stablegrasping situation and step by step moved o� afterwards. The movement isphotographed in 25 discrete steps (Figure 3 shows three images thereof). Everysecond image will be used for training and the images in between for testing.Second, we apply the Gabor �lter to the training images and extract the rectan-gular area (of pre-speci�ed size) describing the grasping situation. This trainingsample of response patterns is used for learning the evaluation function.Third, according to the approach for learning a GBF network we have to clus-ter the response patterns with regard to similarity. The ISODATA clusteringprocedure is used for this purpose (Schalko�, 1992, pp. 109-125).Finally, we determine appropriate combination factors of the GBFs using thepseudo inverse technique. For that a set of pre-speci�ed stability values must beassigned to the training sample. Considering the order in which the examplesof grasping situations have been photographed, we de�ne that the course ofstability values should take the form of a bell{shaped parabolic curve. Therefore,the course of stability value for the ordered set of training examples increasessystematically until the maximum is reached and decreases afterwards.According to this approach a GBF network can be con�gured representing anevaluation function. Four experiments have been carried out by taking di�erentnumbers and/or support sizes of the GBFs. Figure 6 shows in curve (a) and (b)the course of stability values if we take six GBFs and a small respectively largesupport size. Alternatively, the curves (c) and (d) in Figure 7 depict the coursesfor 13 GBFs and a small respectively large support size. Curve (d) depicts thebest approximation of the evaluation function.Using such a GBF network for evaluating the grasping situation, the robotsystem automatically controls the manipulator in order to reach the optimalgrasping stability.CONCLUSIONOur approach of vision based robotics uses GBF networks both for eye{handcoordination and for the evaluation of grasping situations. Furthermore, GBFnetworks can be used to learn operators for view independent object recogni-tion (Pauli, 1996). In numerous experiments it was demonstrated how speci�cnetwork con�gurations inuence the accuracy of the function approximation.Depending on pre-speci�ed limits for the accuracy the GBF networks can betrained appropriately and then used for online operation.
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(b)Figure 6: Courses of grasping stability.
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