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Abstract

A predominant task occurring in Computer Vision is to localize and rec-
ognize the two-dimensional view of an object in the image. In particular,
for controlling our vision based roboter system autonomous object de-
tection is necessary for grasping scene objects. The work being reported
here uses RBF networks for learning and representing object detectors.
The primary goal of learning is to generate detectors which are robust
with respect to various imponderables, e.g., illumination condition, cam-
era properties, viewing directions, reflections on the object. We show the
approach exemplary for real world images taken under varying illumina-
tion conditions and varying object background.

1 Introduction

Frequently a model-based approach is used for detecting a scene object in the ima-
ge [Dickinson et al., 1990]. First, a three-dimensional model object is assumed to
be known a priori as well as the geometric projection laws of the camera system
[Faugeras, 1993, pp. 33-68]. Second, by taking the projection laws into account the
model object is transformed into a two-dimensional model and this one is matched
with the image [Faugeras, 1993, pp. 483-558]. Third, the place with the highest
matching score describes the location of the object. The model object is defined by
geometrical attributes whereas the image consists of gray levels. Obviously, these
are different types of representation and image segmentation is the usual approach
to bridge the gap [Maxwell and Shafer, 1994]. Unfortunately, image segmentation
is only useful if surface discontinuities of the scene object have corresponding gray
level edges in the image. It is a matter of fact, nearly all problems in object recog-
nition can be traced back to the mentioned gap of representation.



Our system bridges the gap of representation by using a fundamentally different
category of models dispensing with geometric attributes. Rather the models will
be defined directly as two-dimensional views in terms of gray level attributes incor-
porating implicitly the photometric laws of the camera [Murase and Nayar, 1995].
Consequently, we do object detection without image segmentation and apply instead
appearance grounded detectors.! The detectors will be learned using a Radial Basis
Function (RBF) network [Poggio and Girosi, 1990].

An RBF network interpolates a transformation of m-dimensional vectors into
p-dimensional vectors by a linear combination of n nonlinear basis functions. Each
basis function operates as a localized receptive field and therefore responds most
strongly for input vectors localized in the heighbourhood of the center of the field.
E.g., the radially symmetric Gaussian is the most popular basis function mapping
the distance between an input vector and the center vector into a real value of
the unit interval. The centers and the extent of the receptive fields are learned
with unsupervised methods, while the factors for combining the basis functions are
learned in a supervised manner. Qur system uses RBF networks both for detecting
objects in the image and for determining size and orientation of objects. In this re-
port we use an RBF network to reason about the existence of an object in the image.

2 Learning photometry grounded detectors

First, we take appearance patterns from the object of interest under varying condi-
tions. Second, these patterns will be transformed into a specific structure in order
to apply efficient search strategies (see section 3). Third, the specific patterns have
to be clustered and a small number of typical specific patterns selected. Fourth, the
typical patterns are combined appropriately for defining an object detector.

2.1 Taking sample images

We take sample images containing the object which have to be detected at a later
date. The images may differ from each other with respect to varying illumination
conditions, varying object background, varying camera parameters, varying viewing
directions, varying distances between camera and object, and so on. In this work
we only consider sample images under varying illumination conditions and varying
object background (Figure 1 shows three exemplary images from an overall collec-
tion of 16, the relevant object is outlined with a white rectangle).

!For Physics-Based Vision see several sections in the Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 1994.



Figure 1: Three sample images with different object background or illumination.

2.2 Transforming the sample images

We apply an operator to the sample images in order to transform the gray levels of
the depicted object into a specific structure, respectively. Based on this structure
of the operator outcome it is intended to efficiently look for the two-dimensional
depiction of the object in the image. For example, our operator transforms the gray
levels of the depicted object into a unique peak structure with the peak being local-
ized approximately at the center of the depicted object. The operator is designed on
the basis of a gauss-modulated cosinus wave (for short, wavelet [Rioul and Vetterli,
1991]) which is two-dimensionally extended (see Figure 2). As a special case of
the complex Gabor function (see [Reed and Wechsler, 1990]) we only take the real
(cosinus) part into account:
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The parameter A defines the wavelength of the wavelet, o; defines the turning point
of the Gaussian in the spreading direction of the wavelet, and o, defines the turning
point of the Gaussian in normal direction. The spreading direction of the stated
function is parallel to the X-axis, and if needed, by rotating the x and y components
we can get any 2D direction. We are faced with the problem of allocating appropri-
ate values to the parameters (A, o1, and o3) to get a unique peak structure in the
area of the depicted object (see Figure 3 for the following deduction).
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Figure 2: Gauss-modulated 2D cosinus Figure 3: Defining values for the pa-
function (wavelet). rameters of the wavelet.

The value for A is used to make the operator sensitive to objects having a certain
extension in the direction of the X-axis. The values for o7 and o, are used to specify
the range of definition of the function in spreading direction and in normal direction.
E.g., we define a finite extension of the Gaussian in spreading direction by 2% 7 * o4
, and a finite extension in normal direction by 2 * 7 % 5. Take X,, and Y,, to be the
X-width and Y-width of the silhouette of the object (in pixel), and [, the resolution
of the image (in pixel). For example, in Figure 1 the extension of the silhouette is
X, = 30 Pixel and Y, = 80 Pixel, respectively. The resolution is I, = 512 Pixel.?
The X-width and Y-width are divided by the image resolution to get normalized
values X,,,, and Y},,,. Taking the double of the normalized X-width as the wavelength
and equating the extension of the Gaussian in spreading direction with the double
wavelength we get values for A and ;. Finally, in order to incorporate the Y-width
of the silhouette we equate the extension of the Gaussian in the normal direction
with the normalized Y-width of the silhouette and get a value for 3. Therefore, the
following formulas arise:

Xow =42, Yow =122 XA=2xX,,, o=28n o= Iuo
Taking these formulas into account we transform both an image and the wavelet
into the frequency space, make a convolution, transtorm the image back to the spa-
tial space and get a unique peak structure for the depicted object. Figure 4 shows
the operator response for the left image in Figure 1, and Figure 5 shows especially
for the area of the object the structure of operator response in a three-dimensional
manner.

2In Figure 1, we only show 260x400 Pixel subimages of 512x512 Pixel images.
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Figure 4: Operator response of a Figure 5: Operator response of a wavelet di-
wavelet directed parallel to the X-axis, rected parallel to the X-axis, depicted for a
depicted as gray levels. small patch in three dimensions.

So far we have parameterized the wavelet for a spreading direction along the X-axis.
Alternatively, we can define a wavelet spreading along the Y-axis. The values for the
parameters have to be defined in a similar manner. In particular, now the A-value
depends on the Y-width of the object silhouette. The response of this operator in
Figure 6 is different compared that in Figure 5. Although the peak is approximately
at the same position it is much harder to determine because of the lower curvature
on the top. In order to reach a greater degree of robustness we use both wavelets in
parallel and multiply both operator responses point by point (see Figure 7).
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Figure 6: Operator response of a wavelet di- Figure 7: Operator response of two combined
rected parallel to the Y-axis. wavelets directed parallel to the X-Axis and
the Y-axis.



2.3 Clustering specific patterns of the object

From each of the 16 sample images we are interested in the operator response pat-
tern of a small rectangular area having the relevant object inside (see Figure 4).
These specific patterns are extracted in order generate a training set from which to
automatically learn the object detector. For example, Figure 8 shows the relevant
patterns computed for the three sample images in Figure 1. In order to qualita-
tively show all 16 patterns we select the intensity structure along a middle staight
line in X-direction and along a middle staight line in Y-direction (see Figure 9).
Figure 10 shows the overlay of intensity structures in X-direction and Figure 11 in
Y-direction.

According to the mentioned approach for learning an RBF network, we first
have to group the 16 patterns for getting a smaller number of typical patterns. In
this work, we used a clustering approach which is similar to the error-based ISO-
DATA clustering algorithm in [Schalkoff, 1992, pp. 109-125]. The algorithm initially
groups the patterns using a standard K-means clustering approach. Then, clusters
exhibiting large variances are split in two, and clusters that are too close together
are merged. Next, K-means is reiterated taking the new clusters into account. This
sequence is repeated until no more clusters are split or merged.

The algorithm groups the 16 patterns into four clusters and computes for each
cluster a typical pattern. The typical pattern of the four clusters are shown in Fi-
gure 12, respectively. Additionally, associated with each typical pattern is variance
information representing point for point the deviations from the mean value within
the cluster. Figure 13 shows for the second cluster in Figure 12 the intensity struc-
ture of the typical pattern (middle line) together with the deviations for each point
(upper and lower line).? The four patterns are used as centers of four Gaussians
buildung up the hidden layer of the RBF network. The dimension number of a
Gaussian is equal to the number of pixels in the pattern. For simplicity, each of
the four Gaussians will be defined symmetrically, therefore only one o-value has to
be computed, respectively. We do specify this value by the mean deviation over all
points of a typical pattern.

Figure 8: Three exemplary operator response Figure 9: Two orthogonal straight lines for
patterns. selectively showing the intensity structures.

3Notice, only the intensity structure and the deviations along the middle straight line in X-
direction is depicted.
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Figure 12: Typical patterns of Figure 13: Deviations between the patterns of
four clusters. the second cluster.

2.4 Assembling the object detector

According to the approach for learning an RBF network, we finally assign to each
training pattern a desired output vector. Based on the difference between the actual
outcome and the desired outcome the weights for combining the nodes of the hidden
layer are trained. E.g., the LMS rule can be used for tuning these weights between
the hidden layer and the output layer in a supervised manner [Hush and Horne,
1993]. In our specific application the output vector is only a scalar taking a real



value between 0 and 1. This value codifies a probability as to whether the object of
interest is inside a certain image area. Therefore, we assign the real value 1 to each
of the 16 patterns and use the LMS rule for learning the weights.*

3 Using the learned object detector

The learned detector is defined as an RBF network and is mainly composed of a
number of typical patterns together with possible deviations from each typical pat-
tern. Figure 14 illustrates the useful effect of the detector. The image on the right
shows the well known object under arbitrary illumination and background. The
square in the object silhouette marks the location of the object, and the accompa-
nying bright gray value codifies a high probability.

Based on the specific arrangement of the detector we implemented an efficient
method to look for the depicted object in the image. The efficiency arises from
three factors. First, the typical patterns of the detector can be used in parallel for
matching with the image. Second, the unique peak type of the operator response
(of the depicted object) is to a certain degree invariant with respect to shrinking
the image. In fact, all the experiments done for this report can been carried out
with a shrinking factor of 8 leading to similar results. Third, by making use of the
unique peak structure of the typical patterns we can efficiently select small areas of
the image as candidate places for possible locations of the object.

The approach mentioned in the last statement is as follows: First, we take a new
image of the object using any illumination and object background (see the right
image in Figure 14). Second, we apply the operator used during the training phase
(see operator response in the left image in Figure 14). Third, for each typical pat-
tern of the learned detector we take the point having the maximal intensity value
and compute for this point an interval of possible intensity deviations. For example,
in Figure 13 the two horizontal lines define variations of the maximal response in
the interval beginning at the intensity of 125 and ending at 142. Fourth, we look
for local maxima in the filtered image, and only those local maxima being inside
the relevant interval will be considered in detail. For example, the dark areas in
the middle image of Figure 14 depict the operator response in the intensity interval
between 125 and 142. Fifth, only the image areas which surround a relevant local
maximum must be put into the RBF network. The network computes a hypothesis
for the existence of the object in an area. Sixth, the image area for which the RBF
network computes a global maximal value is the location of the desired object (see
the square in the object of the right image in Figure 14).

Figure 15 shows three additional applications of the detector. First, the object
used during the training phase has been rotated and under this appearance it will be
localized only with a low degree of evidence (see the dark square in the left image of
Figure 15). The low evidence is a desired result because the detector has not been
trained on rotated objects and therefore the learned detector is not robust with

4The number of output nodes is equal to the number of objects which must be detected. For
short, we illustrate the approach only for one object and therefore applying the LMS-rule is trivial.



respect to object rotation. Second, the operator is applied to an image depicting a
new object whose brightness is higher than that of the training object. Once again,
the detector computes low evidence for the existence of the desired object in the
image (the dark square on the object of the middle image in Figure 15 indicates a
low evidence). Third, the operator is applied to an image depicting another new
object whose shape is different compared to the shape of the training object. The
detector can not find any hints at all for the existence of the desired object in the

image (see right image in Figure 15).

Figure 14: Operator response of a test image (left), candidate places of possible object locations

(middle), square patch on the object specifies the location (right).

Figure 15: Applying the detector to images of a well known but rotated object and two new ob-

jects.



4 Conclusion

We have presented an approach for object detection which does not require a priori
knowledge of the three-dimensional geometric shape. Rather the meaning of an ob-
ject is grounded in photometric appearance. That is, the detector for an object must
be learned online on the basis of elementary filter operators. For representing and
learning the detector an RBF network is used. Object detection has been performed
successfully in images taken under arbitrary illumination and object background. In
our current and future work we would like to extend this approach for detecting ob-
jects under arbitrary orientation and scale.
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