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Albstract

In thix comtrilntion we want 10 driw e resders abiention (0 e advintages of dvenic el srucheres (DCS8) | Briske
andd Sommmer, 195%5) for leaming reactive behavion of poonomoeans robots. These inclsde incemenial on-like leamirg, iy
asatpist calcubation, i Hexible impegrarion of different learming rules and 8 close connection 1o fuzzy fegic. The later albows for
incorporntion of prior knewledge ond W imerpret lenming with DCSs s fueey mde gerneration and adopunion

After successful spplications of DICSs o tsks imwolving supervised learming, feeiback error leaming and incrememal
category baarming., in s irtkcle we take reinfercement learning of resctive collizion sweidance for oo aulonomous mobile
robol i g fusther example w demonstrate the validity of oe approuch. More specifically, we employ o REINFORCE (Willisms,
1962 alporidum in combination with an adaptiee heurinate critigue (ANCH Sution. 1980 ) o learn o comtima valued temnsoe
meter mappiag Tor ohstacke svoidance with a TRC Labmate from delayed reinforoement. The sensory input consiats of gigh
unprocessed sonar readangs, the controller sutpuat is the continuoas engular and forwasd velocity of the Lobmate. The controller
and the AHC are integrated aithin a dngle DCS netwiork. and the nesulting avoidance behavios of the robot can he analyred
m o set of furey muides, each rale having an additbonal certiinry valdiie.

Kevwonds: Dymamic cell anactuses, RBF nerworks: Sapeno fusey control; Reacthve control; Integrated archiiecture! Hemlorcemsal
leaming; Mohile bt Ohsiacle svoslance

1 Imiroduction

Reactive control rests on the hypothesis that the desired system behavior can be realized by o simple magping
between sensory date and motos actions, e without invelving o controller stste. Since such a simple mapping from
iwensory | ingat (o { motor) outpat is the essence of most conventional feed forward nriificinl newrl nesworks { ANNg)
and fuzzy logic condrollers, their apphication o leaming reactive control is self-evident and hxs been tackled by
numerous researchers in the ficlds of robotics, ANNs and fucey logic, Toking resctive collision svoidance ax an
eximple, this problem has been tsckled using either supervised learning or reinforcement learming o train ANNs,
e [13.17). or to refing (nearo-) fuzzy contratlers, e.g. [3]. Various furzy logic controllers withoot sdogtability
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have been suggesied ax well, c.g. [ 18]. As is evident from the continuing research effor in this field, reactive comtm)
and collision avoidance in particular are fur from being closed chapiers in robotics

O behulf of learmiog reactive control, the system should possess the fellonwing propertias.

o Faut o-line: lemrming to sdapd io rel time.

* Incremental learming. 1.e. the learner should not forgel what he has lesmed so lar bt incrementally wdapl the
kel complexiny.

& Ome shot feamidng. ie. just storitg o new sitiition-action pair on demand,

# |ntegration of domudn knowledpe o avold learming from sermich,

= Suppon of different and potentially complementary leaming mules (unsupervised, reinforcement, feedhack er-
ror and supervised leaming) fo expion all available information and 10 escape from local minima (w.rt some
performance measure ), &

All these topies are hotly debated as reflected m a vanety of recen publications, e g [11.15,19), In Section 2 we
argue that dynamic cell structures ([CSs) |8 ] with sdditional provisions for on-line leaming [5] meet these rexpuire-
ments and can thus be benchemlly anlized for leaming reactive contral, Recent applications of DCSs imvalving
superyised learming | 51, feedback ermor leamming [7], iscremental cutegory lewrming [20] mnd reinforcement bearming
ithis article) underfine our ¢loim.

In Section 3 we introduce the integrated leaming architecture which we employ 1o kearn reactive collision avoid-
ance from delayed reinforcement in Section 4. Different 1o e g | 13] we stsnciate 8 contimicus sepsiny inpul with
continuaus molor scthans, i, we learn an approprie forward velocity and anguilar selocity, nol only o tum either
left or nght with a fixed velocity. As input we use the unprocessed readings of eight noisy wmnr wensory, wiich
yield learning more difficult than e the three luser readings used in [17). We avoid over-simpliticd simulations by
rimulpting the geometnic, dynmmic and sensory characioristies of our real TR Lobmate Employving a REINFORCE
[23] algorithm this application is interesting on its own since it avoids rather questionable hewristics and providies
an additional cenainty value for each control rule. We relate vur architecture and experimens to previcis work in
Section § and elose with a briel summary in Section &

I Why chowsing a DS

lii this section we first provide the reader with the foundations of DCS nerwork. Wi then discuss somie strmight-
torward modifications for on-line learning and show that DCSs can be regarded as restricted Sugend-tvpe fuzey
controllers with adiditional learning and exploitation of the 1opology of the input space. Finally we show how
dilTerent learming rules can be used 10 train DCSs. From this section it should become clear that DOSs meet the
requirements for leiming of reactive control as put forwand in Secton 1

21, Dvoamiy cell strue ey (DCSs)

DCSs as introduced in (8] denote a class of RBF-based npproximation schemes sttempring 10 concurrently leim
and utilize perfecily iopology preserving feature maps (PTPMs ) DOSs are o subclass of Martinets's topology
representing networks (TRN) | 14] defined 1o contiin any network using competitive Hebbian leaming for building
FTPMu

The architectural characieristics of a DCS network (see Fig. 1) ate:

s one hidden luyer of radial basis function units (possibly growing/shrinking);
& o dynamic lateral connection streciure berween these imits; and
o o layer of (usually linear) outpul units,

Trmining algorithms for DESs sdapt the lateral connection sructure wwards o PTIV by employing u competitive
Hebhian kearning rule and activiie and udapt REF units only in the neighborhood of the current stimulus, Here.
“neighborhood” relites 1o the simuluncously leamed topology.
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Fig. | D50 are RBF petwoeks (befi | plies s baters] conneation stmciure between the REF s siempaing 1o tuikd o FTI by compentive
Helbshian lesmimg {right, chosely middifbed Fig. 4d) from | 1400

We use i normalized REF approsimation scheme snd hence the cutput of the DCSs calculates us '

ity @ el — €'l
}:rnﬂhlm.l"'ll'l"r -l

where fi (i = ' ||} denotes o radial basds Tunction with center ¢ The vectors o' can be thought of s outpul
weight vectars sttnched 1o cach RBF unie The functions &, : BY <= B are strictly monotonicully decreasing with
B (0) = 1.0 and by ook = 0, which we have realized by Ganssions.

The nelghborhomd N0/ of newm! wnit / is defined s the unit isell wopether with s direct wopological
neighbors

nay= il

Nhif)={|Cy #0. 1 <1 = N}ULJ) {2}
ared e best matching umt, bmug is grven by
™ -2l =k -2, (1=2i5N) i1

The ndjacency matrix € represents the lnteral commection structure between the RBF units and is adapted by a
compefitive Helsbran leaming rule like

oo ohy-dy =iy Wk 2N

ACH™ L0,  otherwise,

(4}
giving rise to o PTPM (see | 14])

Compared o RBF networks, leaming sed exploitong the wopology of the input space as m OS5 nod only signif
icantly specds op computation of the output value (beravse only the o and it wopological neighbors need 1o be

! In the Tullowing we denide veciars by, componesis of o vecior By, and enumesuivins of vecion by 1




W I Hrmude of al, £ Rivhotipn amd A Nndemnin I3 | P97 X2 00}

evihusted and sdapted], but is ilso like (o improve approximution guality. This is because in the uwiual RBF scheme
units whine centers have small Euclidean distance to the stimulus but large intre-manifold distance 1o the point of
projection of the stimulus onto the manifold can spoil ihe approximation.

In order b acipd the owtput vector 8° we wsumlly employ gradient descent on an error function £{y). As in KEF
networks, the centers ¢ can be adapted by grodient diescent as well bai muy aliemotively be trained by o Kohonen-
type learming rule {ulilizing the luteral connection structsire | for adaptive vector quaniization. keading 1o & hybrid
trmining scheme.

Incremental prowih of the DCS network is accomplished by insening prototypes (x, ¥) withe! =rand o' = g
tone shot leaming)® or inserting neutral units in regions of the input space where the approximation performance
of the DACSs 15 unsatisfuctory (hence incrensing the resolution in this rerioni. The lutter can be realized by ansching
mn additional error varishle (resowrce value [9]) v cach nearnl wnit which moditoes the performnce ol the network
when this unit is imvolved in output culeulation. Such an error driven imsertion of new units has the advantnge thal
the distribution of newral units attempts o minimize the ermor (and not merely reflects the mput probability density,
s it wonild be the cose with a Kohonen-type rule). Moreover, error driven insertion is kuown (o cope with problems
of local minima since it takes into account the global ermor distriution. See slsa (9] for mime on incremental growth
of DS like networks utilizing resowree valued

21 Cin-line lewrnimg with dyvmamic cell strichure

DCSs lend themselves for on-line learmtng bul some midifications are necessary i ke imo account specific
proflems, .. the non-stutionury irput probability density in on-line leamning. The st provision is a mixed insertion
strufegy which inseris new newral onits not only between units with high ermor variables (eeme defven dverio)
bt also in regions not sifficiently covered by the metwork, e when the sctivation of the bmu is o small. This
udditional disiance driven iniertion simiegy helps the network: with unfolding problems and can be regarded o a
eonrsg weale approximation @ be refined by the error deiven insenion waatepy,

Secoml, the Hebbion learning rule (4) must be modified 1o allow “Torgetting™ of no longer existing nelghborhood
relations {lateral connections). This con casily be achieved by extending (41 with & decay term. However, care has 1o
be uiken 1o avoid “deod pearons”, e, units which are disconnecied from Lhe remaining and are not further erilized,
Our solutiom is o nop-symmetric Hebhiun learning rule as proposed in | 5], where only lteral connections emerging
fromn the bimu can be discarded.

Finaily, if using a Kohonen-type leaming mle for cemter sdiplation, one has i take core that the centers do not
eventually collapse in a region of high dats density, Thiv problem can be circumventad by either freezing of the
learning constant {us is wsunlly done ) or error modulation of the leaming constant utilizing the error variables of the
neural units. An example for such & modulation can be found in [5] as well, and this was the method of chalee for
our experiments. Here, the learning parameter for center adiplasion becomes the smaller the more equal the Tocal
error viinihles.

2.8 Fuzzy logic for pre-atracterneg and (nterpreettng CCSs

In this section we will show that spant from representing an easy-1o-implemeni, fast incremental on-line leaming
wheme [ Sx are clowly related 10 Sugeno-type furzy contml, More purticalar, we will show that viewed from ihe
perspective of fuzzy control, nonmalized DCSs represent restricied Sugeno-type Tuziry controllers with the additional
feature that only the best mchisg rules are evaluated und sfiagted.

"'m;ripnunpmu W = §f mumly valid for negligibhe overiap of the bas fusctions, 1, hoasver, amighs foreanding 1o sodve d 1)
for @' mncise of non-negligible overiap o well
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9 Supervised Eﬁm Error | [REINFORCE]
DCS A Learning ing Learning
- / B Unsapervised Leaming | [Febbian Learming
( /@ J {for centers) (for PTPM)
Error Dniven otype | |Fuzzy Logic
/_/f / Insertion nsermon Prestructuring
PR @
'\f A Y )

Fug. 2. Combimng delferent armang parsdigms ansd errre sources for oainmg TS

by compentive Hebbian leamang. The resource values (emror vanables) artached 1o the units can be unilized for
incremental growing of the nepwork lermod deiven insemtion) and error modulation of unsupervised leaming laws
Mot thut the error function contributing o the resoarce values does not noed fo be differentiabie. Finally, the alrewdy
discussed insertion of prototypes and prestructisring with fuzey logic can help in leaming resctive contnol.

Examples of DCSs uilizing different leaming roles and error sources include Bef. | 7], emploving fecdback error
Jewrming and the fixation ermor a8 a resource {or leaming sccuraie and fist saccade contml of 3 hinocalar head,
Ref. [5] employing suporvised lenming and the approximation cffor as o resouroe for leaming pole balancing,
Rel. |6) employing Q-leaming and the T érvor as the resource for learning discrete control policies and Ref. [20]
using unsiperyised learming and the guantimation ermor a8 o resource for incremeisti category leaming of KHEPERA
I'I:Ihﬂ:u.

Followitig the recent discussion in leaming reactive control, combining and utitizing different leaming pardigms
seewns i be of uimost imponabce and the key o practical success. Each lewrming paradigm has iis weakness (¢.g.
pure remforcement learnimg is usually oo slow b and they all saffer from local mimimi. In combination, bowever.
difficult problems con be solved in reasonable time (e.g, [ 15], combining reinforcement with self-sopervised leaming
for goal doven obitacle avoidance )

3. REINFORCEment learning with INCS

We will now imroduce o keaming controller based on DCSs for bearning continuous valued sensory—mioto
mappngs from delayed remforcement. OS5 integrate an adaptive hewnstic cibgoe (AHC) as well as the acioal
controller within o angle network. Refermng o Section 2.4, the controller leamns from o gradient based REINFORCE
algorithm as well os an error modulated Kohonen mbe, It wmilizes error driven as well as distsnce driven iserticn
for imcremental growing and can be prestructurcd with fuzzy logic mbes,

Fig. ¥ depicts the conroller architectune. Besides DCS we utilize on sdditsonal axsoclative srareh lewsint
{ASE),
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A 1. Conrrtler oupur coloslarion

The calculation of the contral vector & given the sensory input 5 proceeds as follows:
First, the taput vecion § is tranaformed 10 an activity vecior & representing the normalized activations of the RBF
umnins with centers ¢, and umiform wadih

g =y

rhi, i)
i = % a

—_——  with b ) = ¢lp{

) ¥i & Nhihriw,). ()

Secund. @ protolypical action vector gi. the cerainty vector o und the predicied cumulative reinforcement ¥ are
enlculsted by o weighted sum of contribiting output vectors attached to the RAF anit:

p= Y &', &= 3} apl. V= Y av. )
' M b o Ml iy | e T Y

Finally the ASE draws the sciual sction vecior u sccording 1o the probability. density fonction piu: ., o). the
components of ¢ being Gaussipns:

iy =,
Probein b = (W p, o) = ,..I_.np —'—!'.-liL ] {10y
yire] i

A2 Comtrealler adaplation

Oni-line adapation (s performed w r.i the contributon prototypical vectors jo/ , cenainty vectors o/ and evaluition
wiloes ¥, aitoched o the RBF units, as well as i the centers ¢/ of the REF units.
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The evaluation values V; are updated using a TEN 1) rule [21]:

[
i 2 R
4"",r=.|-"'ﬂ'l‘m“|£?" Tm”h’:] w!d'-ﬂ—ﬂ'b'm}-ljlrl, (1

where errrnif) = Fit) — bit) denotes the current temporal difference error with rir) the reinforcement signal. and
it} = Vix-1) = 3 V%) is the adaptive baseline. Of course. for computing the siam in {114 it §s not necessary 1o
;mmmmm.huu:l.wcnnl:rmdlnm:dulmvnhnurlﬂnsnmwmm-:iwlyupﬂudh

Prototypical action vectors ' and certinty vectors o/ are adapied usitg 4 REINFORCE pradient descent:
iln;m:;.u.mr and Ao = f,ir —M-E- Imi g s g, e de (4]
o der)

With g iae; g1, o) bemg normal distributions we obtain the chisracteristic eligihilities

Ajr| = Buir = b)

8 (e — ;) A T T et L1
i 5 k. == s s— + i T
5 lnigs (hy: o, €)) = =y P T faes s ) = ) i3
and hence
2 . Ty
Aisl = Pyt = by My and aa] = futr - iy L0 o i14)

feri ¥ iy i

For a detathed discussion of REINFORCE algorithms we refer the reader to [23] by Williams. Uihzing & RE-
INFORCE algorithm for reinforcement leaming offers 4 sound theoretical baasis, because in case of immediale
reimforcement and comstant baseline the upduge rules (12) are guarinteed to perform gradient descent on the ex-
pected reinforcement, see [23]. Unfortunately, no guarniee enduts for our case of delayed reinforcement and adapiive
haseline. Yet o us it seems reasonable 1o prefer algorithms, whose benevolent behavior has been proved ai least in
simplummﬂnulhnc#hipmdhnnhgmkﬂmﬂf:mmmhdumm.lmminsl}-.ﬁq.lldlhlw
avery intultive interpretation. The prototypical sctions g/ are moved in the direction of the current actions 8, 1f the
iepparal difference e ermpp indicates on improvement (positive vulue) and in the opposite direction otherwise
Similarly, the o' change such that the corrent outputs &, become more likely if errr is positive (improvement)
and more unlikely if it is negative. As stated by Williums and confirmed in our evperiments the o/ narmow down
hoth in theory uﬂwmﬁmﬂmtrdmmmnmmmmnlmnﬂmﬂmm.hmnmmpmmm
cORverge L RErn,

Theo! can be sed both in prestructuring and in the analysis of the DCS-hased controller. Ii we are very cernain
sboul a prototypical action for & given siuation we will set its &/ value close to zero thus preventing the controlicr
from exploring ahematives, Since non-decreasing o/ indicate convergence 1o & local maximum, non-decreasing
\'Hmummiwﬁm:mm:cmmwmmmmdhﬂmﬁulI:M.‘lhhh:ln-m&mhn
for calling the o/ cenainty values.

Finally, the centers ¢ of the binu and its twpological neighbors are updaled sccording o an emor modulated
Kohonen rule as described in [S]

A = Epouised TV With errvg =8 — . (15]

The error we use for modulition is the squared TD-ermor, erryy,, which serves as the Jocal ermor variable {resource)
fior our DCS network. The laseral connection structure of the DCS is adapted towards a PTPM, see [5] for details.

A new neural unit (rule) bs inserted whenever the distance 10 the current best mutching umit is oo large (distance
driu:nlnmrl'mlntuu:r:iuuteﬁlueﬂ:mhuﬂuhﬂnﬂ{mdﬁmlmnﬁmhh:mﬁ“ ity
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Fig. 4 Diagrim of our TRC Lubsrtiate, sonsr configursimon and mumbering

are inserted. Using the squarcd TD-error 2 & resource value and therehy s 4 critérion for rule insemtion serves 1o
disambignate regions of the inpul spuce where similar motor actions result in different rewards,

4. Experiments

As u testbed for our DOS-based REINFORCEment learning controller we have chosen reactive collision avoidance
with our TRC Labmate. Our variant of this task involves leaming a continuows valued sensory-motor mapping from
unprocessed readings of eight sonor sensors 1o both forward and tum velocity. Since we want to test the performance
of the controller independent of prios knowledge and other learning rules, we leamn from scratch. This, however,
would be highly impracticable for the real robot since pure real valued reinforcement leaming from delayed rewards
usually takes the robot too long lime and Lo many collisions. We therefore performed our expertments in a simulaior,
For practical use, reinforcement learming must be augmented by incorporation of priof knowledge and /or additional
self-supervised lenming.

Simulations for testing the REINFORCEment learmer are sdequate if two requirements are met. First, the simuluted
learning problem must have similar characteristics and the same complexity as the real problem. We are confident
to meel this requirement since we carefully modeled the dynamics ud the sensory characieristics of the Labmate.
Our simmulistor has been tested versus the real robot with o set of hand coded behaviors for indoor nayigation | 1], and
they compare very well. The second requirement is that the reinforcement leamning actually can be combined with
prios knowledge and other learning rules as intended. As laid down in Section 2, our architecture does ot pose a
thearetical limitation, and the work of Millun [15] points a way of how it can be done in practice *

From & remnforcement leaming scheme intended 1o be used in combination with prior knowledge and other
learming schemes we expect that!
ia} it sctually improves performance and fine mines the purmmeters and
thi it does not show sudden breakdowns in performance, Le. behaves stible.

‘Whﬂﬂhllllhmihhﬂtﬂ-ﬂllmlmmm the claimed henefis of infegrating (prs dommn
keiwledpe for reinforvensel learmang il remains o be demosstrased, 1 i part of o ongoing werk of ining reimforoomen lesring
for the: real (physical ) Labmsie
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Lewming suble control from seratch includes these issues but, moreover, demonstraies the learer to be able 10
generite new knowledpe {rules) from the reinforcement signal

£ 1 The mduw

Wi work with i TRC Labmuate (vee Fig. 4) equipped with eight sonar sensirs and two tactile sensors (froni and
rear bumpers ). The Labmite has a differentind dive with two sctive wheels on 4 central axis allowing for turming on
i point. We operate the Labmate in jog mode by controliing the urn e and the forwarding velocity, The Labmate
mwever leuves jog mode excepi in case of humper contact or too small sensor readings, in which case it stops and
Imiggers. i emengency and orientation beluvior. The sonars are polandds with copes of approsimaely 2

Ehar simulater stlempts (o simulate the dynamics of the Labmate, has the same soltware inlerface 55 ihe motor
control fbrary and simulates the sonamn as H1' cones with & varishle nmount of nolse on the measurements. We alus
did sirmulations with wealizod beams of 0 cone widih

4.1 Experimeniol setup

Fu traiming reactive collision avoidance the simuilatied |abmate fs placed in s training environmend is depicted
Fig. 3 {left). The Labmale is then allowed 1o drive aroand undil either the distance w an obstache drops below 20 cm
ar 200 time steps have elapsed, ending o trial. In the former case, the robot's orientation behavior in riggered tha
causes the Labmate 1 rotate untl the from sensors indicate free space. In the lotier case (he Labse 1 slopped
and motted for o randodh angle @ prevent it from saying on the same collision free irpectory all the fime and
thss prosfucing decetvingly good aviadance results. Allematively, we could have randomly translated the robot or
changed the environment from time o e, 2s olhers do. The ady antage of oar method s that i coubd be applied 1o
the noal labmaie gs well, A ‘li-‘ﬂll'l'illllngl.' is thut by p:m.;hm.[! trming the Lubmuste we "'Ellllrﬂ[l:l foree e Labmale
amdis situntions it would not have reached relying on the coniroller and can only escape by triggering the oriestation
behavior. This leads to o negative bias of svoidunce lesming performance and is an additional chullenge o the
learming algonithm

e T T T

Fig. 5 Sart of irnming. wn iruimng environmens {lefly; end of sraiing, i (e 1o e ipoames (Aghi)
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420, Mnitial knoviledge

Since we want 1o les the performance of the controller independently of incorporated prior knowledge, the
contredler started with only one Tuezy e

i Gy = SO00) A - A (g = SOO0) then (g, = o) A (p, = 0) Al = al) Ao, = a), {16

stating that i ull sensor resdings wre about 5 m the Labmute should drive forwand | zero angular velocity ja, b with
ﬂtl?‘ . The certminty vilues fod forwarnd velocity and angular velocity fer, . o) were set to small initial valees
(ol o

422 Reinforvement flenciion

As immediste reinforcoment r(r) we used the difference between evaluations of 1o succeeding situations,
rith = Wis) — Wig. ), with w B — [0, 1] the evaluaton function of u sensory stuntion. In addition, the
Labmate was given o high negative reinforcement signal, ring = — L, if it had approached an ohstcle within less
than 20cm and thus mggered the orienation behavior

Muore specifically, we ine 8 comves combination with weighting factor ¢ of non-linear transforms (s, ) of the
individial components of § io constract ¥

:
Wis) -—r—-—E"”""’“‘]'_
Ea-nf-

In pur experiments we onfy used the four fromt sensom for the evaluaton of o suske wnd i sef oy = - = = §
unal the remaining weighting faoor i ger (compare Fig 4,
Fur the son-linesr transformation @ : B — |0, 1] we hove

kil

plr)m [ Tum (1)
“Jﬂl = Xjum
where gy = Jhom bs the minimal distance meisured by our sonars and G, = 2m s their (adjustable) time ot
distance.

We have chisen this kind of non-linear transfurmation hecause for 57, 8 = const it yields the maximum value
far Wiz} = E..,.p @in) when ull components 5, are equal (as can be easily verified by o Lagrangian multiplier).
This is desimhile in coliision pvoidance maks, where the vehicle should sty for from all obsiacles and shoald no
receive decreasing reinforcement for departing from one object on the oot of approsching another.

4.4 Experimental reslts

Foe a typical run Fig. § (left) shows the Labmate at the beginning of tnining in the waining environment, Fig. §
iright) sharws collision free nuvigstion of the Labiite in o test environment afier the training phase. End of waining is
indicuted by the sveraged TI3-ermor approsching o minimam, the averaged reinforcement approoching dis maximsmm,
ind of course, avoidance of collision. Phots for both the TD-ermor and the reinforcement (avieraged over 100 rialy) are
depicted in Figs. Gia) snd (h). In our experiments traming ook between 1000 and 10 000 trials, wking (on average)
a loager fime when “more realisic™ sonar sensors (chamcteristic beam width of 200 and 5% noise) were simulaied
Wi bidealized sensors (07 beam widih, no nobse), However, the difference between thise (wo types of simulaiéd
servors 16 rather small (see Fig 6), indicuting that the REINFORCE algorithm is robusd wrl smoll amounts of
niise, This is not surprising, sinee it Soompls o mavimise the expectasion of the reimforcement for each state. Al
st Viggy = 100 mewral units frules) hive been utitized.

From our experiments we conclode that the controfler is indeed able 10 leam collision avoidance from rein-
forcement and, in spite of remaining plasticity, behaves stable. | e. does not show sudden breakdowns in svoidance
performunce. This stable behavior of real valued reinforcement leaming is in sccordance with expenments of
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Millan [15], using a similar reinforcement leaming scheme. The experiments also undespin that lewrming. from
real reinforcement is @ very slow process, although tuning of leaming parameters may help (o slightly improve
performance,

We did pot engage in a detailed investigation of the effects af differeni parsmeter values since very small changes
in parameters can bead w very different exploration patha lind very different experiences, yielding TD-error and
reinforcement curvex which can hardly be compared. ! However. in most of the experiments we performed the
simulated Labmate finally manoged 10 learn a collision avoiding navigation policy, although the time it needed 1o
cuccoed as well as fhe resulting policy largely differed.* Yet there were few cases where early in the iruining phase
the rubot got trapped in wome region of the training enviranment and too frequent successive collisions (and the
associaied strong pegative reinforcement) lead w divergence instend of convergence of both the policy (prototypical
action and certainty values) und the AHC (prototypicl evaluation values ).

5. Related work

e 10 the vast amount of related lierature in the fields of anificial neural networks, furzy loge, remforcement
learning and obstacle avoidunce, we will restrict ourselves 1o the mast fecent and most closely related publications.

Concerning the charactenistics of our DCS networks, DCS uee closely related o Frtzke's growing cell struc-
fures [9] and Martinetz topology representing networks (TRN) [14], In fact, DCSs can be regarded as merging
growing cell structures with TRN, see [8] for a detulled disrussion,

The integrated architecture we suggest bears similaritics 1o architectires proposed by Bems [11] snd Millan [15):

‘ammﬂmuﬁ:mdmmmmlwd:sﬁm1tnuhﬂmmﬂwnﬁﬂnHW#m
pﬂimhﬁ:lutmwmmldhmmmhrwﬁmlfunmlm.hnuwmmuﬂi“hw
h||l1.Mmﬂummlhhnhu[mupﬂmmﬁqﬂnuq:dmm-ymi:hm;mmum
guedionahis

3 Paraemoter values anid sdddtional simafutions] details ave dopomented in (1]
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fiems employs an RBF-bsed archiecture for sdeptive control of a walking muchine. He uses i similar algonthm
fust pescforcement leaming of prototypical sctions and shows how 1o combine RBF-based reinforcement leamers
within & higrarchical network. The latter blew may be applicd o our architecture as well. Bems does not
to pefaget centers of the RBF umts, wo exploil the TD-error for sdaptive victor quantization oF 1o bibhd sd uniliee
FTPMs. In addition, we emphasized the close connection i fuzzy logie (for incorporation of prior knowledge ) and
the Bexibility of our architecture (o benefit from different learning parmdigms.

Millan's architeetare for reinforcement leaming of gonl direied obsuele avoidance with & amaulaed Nomad
2060 mohile robot i bused on Alpavdin's GAL architecture 2], GAL rests on locally tuned umits as well but by
introducing addivional “caegory unin” it differs from REF nerworks and fozey logic contmoflers, Nor does GAL
leam or utilize wpology preserving feature maps. His reinforcement leaming rule is bused on TDNG) temporal
differencing and o framework introduced by Gullspalli | 100 The latter differs from oor REINFORCE algorithm
I the caleulation of the vector of standard deviations & used for the geseration of a stochastic outpat value by
Eg. (100, Since in this framework o does no longer depend on the contributing newral omits ey can no longer
provide o cortainty value. Millan's main innovation s his sdditional “planning component™ for sell-supervised
lesrnmg which be demonstrites 10 speed up pure reinforcement leaming. His work anderlines the importance of
coumirining different lexming pamdigms and hence the importance of gn architeciore copable of such iMegrtion.

Berenji's GARIC architeciure [4] is perhugps the most well-known example of o hybrid neoro fusey controller
(HNFC) truined by reinforcement leuming. GARIC adspts the porameters of an sction selection network (ASN),
which encodes a fuzry controller, by means of an acton evaluation aetwork (AEN) and a stochistic sction modifier
(5AM). While conceptuslly similar to GARIC, our control architecture for reinforcement leiming imegrates the
ASN and the AEN within o single DCS network used for adaptive vector quentization of the input space, bearming
of the requined sensory-mabor mapping and evaluation of the comml policy {see Fig. 1} Contrary to GARIC pur
controller is able 0 generate new control mules in addition o adapting parameters of existing ones. Ultifizing a
REINFORCE algonithm we avind the rather questicnable beunstes used in GARIC and, moreover, we are able o
specify ond adapt a centainty value for each congrol rule,

The work of Krdse et al. [ 13] is remarkabbe in tha they were among the firs 1o use adaprive perceptualization
{ ndapiive quomtization of the input space| with o growing /shrinking network of locally tuned units forreinforcement
learming. Yet they wse a discrete representation of the input space | Voronod lessellatlon) and their sction space s
discrete as well (only two actions, lurning either left or right), which makes their work hardly comparable 10 ours.

Obstacle svoidance vsing sonir sensors sl furey logic withou sdaptivity has been tackled by e.g. Relgnier | 18],
In [19] he elaborates on generating new fazzy rules using supervised learning, much of which can be directly
transferred 1o the generation of new newrml onits i our srchitecture

Witls regurd 1o collision aveidance our approsch is finally related 1o potential field approsches, |12], gemsera-
ing vector fields for obstacle svoiding navigation, The main difference is thae the: potential functions involved in
generating the potential field need w be determined & price wheneas we attempt 10 keamn and adapt the required
sensory—molor maopping. Moreover, vectar fields represented by unlversal function approximators like newral net-
wisrks can be fur more generul than vector fields obined s grodients of & potenial field (always having zem
robition).

6. Sammary

W hove peesented an imegrated architeciune based on DCS for keaming reactive behaviors. Thas architecture
wis shown o Fulfill all the regquirements put forward in Section 1, Due w utiliziog locally tuned uibts snd hence the
resemblinee o RBF petworks the archiiecnine bs capable of incremental ay well o one-shot [eaming, Different from
RBF networks DCS leamn perfectly topology preserving feature maps which are exploited for rapid and sccurate
output calculation and on-line adaptation. Bearing close resemblance t0 o nestricted class of Sapeno-type fuisy
controllers the incorpomtion of prioe knowledge in form of fusey mles W straightforwand, this eoiding leamning
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from scratch. Not relying on only one but instend exploiting diffesent jeaming parndigms seems 1o be a key 1o

wnccess i lepming reactive beliviors wd is o red thread through the recent literture on this subject
Our DS -based prehitectinre b purticularly well soited o integrate different bearning paradigms and o learn from
diffieremt error signals.

We have tested our controtler architecture on the task of lerming reactive eollbsion wyvoidance from delayed
reinforcerient for a simulated TRC Labmate. Conditions were unusaially hard wsing unprocessed readings from
cight somar sersors as input and rying to leam a continuous forward and angular velocity. Our experiments con-
firm that even in the ahsence of prior domain knowledge the controller is sble o leam colliwion avoidance from
reinforcement and, farthermore, indicate tha the controller i spite of remuining plissticity behaves stable. At the
heart of reinforcement leaming we employed a REINFORCE algorithm. which besides vielding a sound hasis for
reinforcement learming odds 1o merpretbility by giving rise 1o cenainty values. We utilized REINFORCE grufient
descent, tempotul differencing. Kohonen-lype learning, Hebbian learning and TD-error controlled growth of the
network,

Learning from reinforcement is usually very show us underlined by our experiments. Hence the necessity for
augmentitive mechanisms 1o support pure reinforcement lewming when turning to the physical mbeod. These are
additionally learming mechamsms (e.g. some self-supervised o supervised beaming) and. of course, incorporation
ol priot knowledge. Our architecture allows for both,
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