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Abstract

[n this paper we deseribe an experimental svs-
tem: based on artificial nearal networks (ANN)
for estimating the pose of human heads from fi-
clal images. The networks utilize an efficient. lo-
cal subspace construction merhiod based on op-
timally topology preserving maps (OTPMs) and
local principal component analysis (PCA). The
estimation acenracy is very high (abont 19). vet
for real world applications the IMAZEe Preprocess-
g stage needs to be improved with respect to a
more robust segmentation of face regions.

1 Introduction

Estimating the pose of human heads (i.e. pan
aed rile) from ecamera images is an important
task with applications in o.g. driver surveillance
e the design of advanced human-machine in-
terfaces. I this artiele we use subspace nenral
networks for <olving this task. Theyv exploit the
fact that pictures from human heads of a single
person that only differ in pan and tilt lie on a
low- (2-) dimensional trajectory (submanifold) in
IEe space.

Urilizing an efficient local subspace construe-
tion method based on optimally topology pre-
serving maps (OTPNs) and loeal principal com-
ponent analvsis (PCA) we have shown in (BS97]
how local subspaces can be constructed in time
Ol +m(dy). where mn(d) is a function of the in-
trinsic dimensionality o of the manifold only and
1 is the dimension of the embedding space. Due
to this lincar instead of cubic scaling with n the
method becomes applicable even for very high di-
mensional input spaces as frequently encountered
In computer vision,

In our application we use subspace variants of
Ritter's Loeal Lincar Map (LLM) [RMS91] to
Approximate the mapping from facial images to

head-poses.  We will review rhe subspace con-
struction procedure in section 2. deseribe the
Subspace-LL)M in section 3 and zive experimental
results in section 4,

2 Efficient local subspace
construction

We will now briefly review the basic procedure
for efficient local subspace construction with op-
timally topology preserving maps as presented
in [BSO7. BS98]. Given a training set T C R"
and an intecer N > 0, it proceeds in four stages
(batch-variant) and supplies us with .V sets of (or-
thonormal) eigenvectors ¢ T e 1€ {1....N},
each set spanning a local subspace.

l. Generate a set of N centers § =
{er..... ext € IR™ as the output of a vec-
tor qnantization algorithm working on the
training set T,

2. Caleulate the graph G = (1. E) by
() assoriating each center in S with a node
m 1 Lo,
[Vl=|Slande, e S ie |V
(b) for cach £ € T, connecting the nodes as-

sociated with the hest and second best
matching centers. i.o.

E={(ij)|3reTVk e V\{1.7} -

max{|[ e, =z |[.|| e, =z I} <|| ek =z || 1

G is called the optimally topology preserving
map', OT PA¢(S), of S wrt. T, of. [BS97].

"The optimally topology preserving map is closely re-
lated to Martinetz' perfectly topology preserving map
[MS94).




3. For each node ¢ € V perform a principal com-
ponent analysis of the set of m; difference
vectors {cy, = Ci, ..., Cm, —Ci}, With (¢j; —¢;)
the difference vectors between c¢; and c;;, the
center of its j-th direct topological neighbor
in (7. This vields a set of orthonormal eigen-

1

vectors el..... €4, and corresponding eigen-
values pi.....ph,. ny < my.

4. For each node ¢ € V exclude local eigenvec-
tors e} corresponding to very small cigenval-
ues yj, Le choose 0 < a < 1 and reject

eigenvector e if a‘ﬁf";; < o

Note that the central “trick™ in step 3 is to use the
difference vectors (¢;, —¢;) for PCA of cach local
subspace and not the data in a local region itself.
First. the difference vectors have very low noise
component orthogonal to the input manifold .M
(tue to the noise reduction property of the vec-
tor quantizing stage), and second. the number of
neighbors m; of a node 1 in an OTPM does only
depend on the intrinsic dimensionality « and is
small for small .

3 The Subspace-LLM

The Local Linear Map (LLM) as introduced by
Ricter et al., [RMS01]. has found widespread ap-
plication for learning input - output mappings.
The LLM rests on a locally linear (first order) ap-
proximation of the unknown function f : R" —
R* and computes its output as (winner-take-all
variant}

!,‘(-r\l = -'lbmu(-'r — Chmu} + Obmu. (1)

Here opn, € R* is an output vector attached to
the best matching unit {zero order approxima-
Jond and duwm, € R¥*T is a local estimate of the
Jacobian matrix (first order term}). Centers are
distributed by a clustering algorithm.

Due to the first order term, the method is very
sensitive to noise in the input. With a noised
version ' = & + 7 the output differs by Apmun,
and thus the LLM largely benefits from project-
ing to the local subspace, cancelling the noise
component of 7 orthogonal to M. Equally im-
portant. instead of adapting and storing & x »
parameters with each matrix A4;, by first project-
ing to rhe local !;-dimensional subspaces only ma-
trices 4 € R**% need to be stored. This re-
sults in much better scaling with the input di-
mension n and. because of the reduced number
of free parameters, better learning and general-
ization properties.
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The Subspace LLM {5-LLM) proposed in this
article takes the form

y(z) = Y [AlE(z-ch+od h(z) with
ieNh(bmu)U{bmu}
(2)
e = (x —e)TEE] (z — o),
where E; = [e},... e} ] denotes the local pro-

jection matrix as calculated by the efficient sub-
space construction procedure, hi{z) is a radial
basis function and Nh{bmu) the node set con-
sisting of the direct topological neighbors of the
best matching unit w.r.t. the QTPM. It not only
extends the LLM by projecting onto but also by
interpolating within the subspace. As basis func-
tions we use normalized Gaussians
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hi(z) =

pENAbmuiLEmul
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Batch training of the S-LLAl invoives optimiza-
tion of the output vecrors o; and Jacobian ma-
trices 4, by singular value decomposition (5VD)
[PTVF88] as well as adaptation of the centers
¢; by an incremental version of the LBG vector
quantizer [LBGS&0].

4 Experimental results

We recorded 500 images of a doll-head {see figure
1) for the training set. Doll instead of human
heads where emploved bhecause a doll head can
be more easilv and accurately positioned (using
a robot arm). The pan of the head varied from
—75° to 75°, the tilt between —30° and 30°.

Figure 1: Left: Head of the doll bold by a rabot
gripper (vertical stripes at top).




Figure 2: Reconstructed viewing circle as estimated
by rhie S-LLAL The circle indicates the intersections of
the doll’s viewing directions with the computer mon-
ior

Preprocessing of the images involves segmen-
tation of the face region (using ¢olor histogram-
ming for identifving skin-colored regions), scale
normalization and convolution of the grey-scale
images with 64 Gabor filters. The latter are dis-
tributed on a 4 x 4 grid, with 4 orientations (0.
7/4. /2 and 37/4) on each position. As band-
pass Alters the Gabor filters serve two purposes:
First. they fifter out high frequencies which would
lead to discontinuous trajectories in image space
and. second, by filtering out the very low fre-
auencies they become less sensitive to changes in
brizhtness. The 64 filter responses serve as input
ra the networks, the corresponding pan and tlt
angles as training output.

On a test set of 180 images (different from the
training set) the Subspace-LLAI achieved an av-
oraged pose estimation error of as small as 0.64°
{maximum test error 1.88°) with just 40 nodes in
the network. To illustrate this resuit. regard fig-
ure 2. Here a doll whose pre-programmed viewing
direction describes an exact circle on a computer
maouitor it looks at has been observed by the cam-
ern. The figure shows the circle as reconstructed
from rhe pan and tilt angles associated with the
camera images by the Subspace-LLMNL

5 Conclusion

Ltilizing an efficient subspace construction pro-
cedure we have presented a neural architecture,
the Subspace-LLM, for estimating the head-pose
from facial images with high accuracy. Results
are very promising, vet for application to pose
estimation of human faces in arbitrary environ-
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ments we have to improve the preprocessing siage
with respect to brightness invariance and more
robust skin-color segmentation. The Subspace-
LLM has been successfully tested in other appli-
cations as well, including an appearance based
robot grasping system.
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