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In this chapter we report application of neuro-fuzzy control to sonar based
collision avoidance of our TRC labmate robot, Figure 5. To this end, we will
first provide the reader with a brief overview of existing concepts of neuro-fuzzy
control and then present our own approach based on Radial Basis Functions.
This particular Fuzzy-RBF (FRBF) approach is innovative w.r.t. three aspects
of neuro-fuzzy control. First, it alleviates the covering problem in fuzzy control,
i.e. the problem of an exponential growth of the number of rules with the
dimension of the input space. Second, it provides a means for exact interpolation,
i.e. inspite of overlapping membership functions the output of the controller can
be guaranteed to take the value of the i-th rule if it has degree of fulfillment one.
Finally, by using DCS, [1], instead of RBF networks, output calculation of the
controller is very fast on average, since only a few rules (the best matching ones)
are evaluated on presentation of an input to the controller.

Utilizing FRBF-based controllers we then present two solutions to the col-
lision avoidance problem faced by mobile robots. The first one is a reactive,
behavior-based approach in which collision avoidance is implemented as an in-

*The work reported in this chapter was performed at Christian-Albrechts-University at
Kiel, Germany
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dividual high priority behavior. In such an architecture the behavior selection
problem must be solved, i.e. in what situations which behavicr has to take over
control. Consistent with the fuzzy approach we use a fuzzy blending scheme
based on a “pain” function. In our second approach to sonar-based collision
avoidance we avoid typical deadlock problems by a closer interaction between
higher level tasks and FRBF-based collision avoidance as well as by more ad-
vanced feature extraction. Here the task of the controller is to safely follow the
freespace direction.

A chapter on neuro fuzzy control would not be complete without a demon-
stration of its learning capabilities. These are illustrated in Section 4, taking
reinforcement learning of collision avoidance as an example.

Since reactive approaches to collision avoidance based on sonar sensors only
work if highly erroneous readings caused by crosstalk, bad reflection properties
of the environment and shielding problems of the sensors can be eliminated, we
finally present a sensor pre-processing method based on sensor grouping and
a modified extended Kalman filter algorithm. This easy-to-implement method
works very well in practice and is compatible with most existing approaches to
fuzzy collision avoidance.

1 Neuro-Fuzzy Control

According to a classification put forward in [2] there are two principal approaches
to neuro-fuzzy control. The first one is cooperative neuro-fuzzy control, in which
the fuzzy controller and the neural network remain seperated, the second one is
hybrid neuro-fuzzy control, in which the fuzzy controller is realized as a neural
network. In cooperative neuro-fuzzy control as e.g. employed in [3] the neural
network is used for off-line generation of the membership functions or linguistic
rules from training data, typically by clustering the data, or the network is used
for online adaptation of membership functions or the weighting of rules in the
fuzzy controller.

In this chapter emphasis is on hybrid neuro-fuzzy control. In particular,
we exploit the functional equivalence between a restricted class of Sugeno-type
fuzzy controllers and Radial Basis Function (RBF) networks as observed in [4]
and explained in Section 1.1. Utilizing this equivalence, prior knowledge in form
of fuzzy rules can be used to prestructure and initialize an RBF network. The
latter can then be trained and refined on training data, and the result of training
can reversly be interpreted as fuzzy rules.

While theoretically simple, RBF-based hybrid neuro-fuzzy control has a num-
ber of practical problems. These problems are alleviated by extending RBF
netwoks in a way described in Section 1.2, resulting in Fuzzy RBF networks
(FRBF). The applicability of this approach is demonstrated in Section 2 and 3,
and its capability of learning in Section 4.




1.1 On the Equivalence between RBF Networks and
Sugeno Type Fuzzy Control

Normalized RBF networks are function approximators (R™ - R™) and calcu-
late their output according to the evaluation function
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where hi(z) = exp(—g’“—:ﬁ—‘ﬁ) denotes a Gaussian radial basis function with cen-

ter ¢; € R™. We will refer to the o; € R™ as output vectors.
Sugeno-type fuzzy controllers, [2], consist of a set of N linguistic fuzzy rules

y(z) =
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where f; : R* — R™ are functions in . The output of a Sugeno-type fuzzy
controller is computed according to the defuzzyfication formula
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where 7i(z) is the degree of fulfillment of the i-th antecedent. Now (1) and (3)
become identical if

y(z) (3)

e consequent functions f; are restricted to constant functions, i.e fi(z) = o4,

e membership functions my;(z) are restricted to gaussians, i.e. mMy; (z) =

exp(—(—’"-'-:;’;ﬁf-), where T(X;) = {Tn, ..., Ti, } is the linguistic term set
of the linguistic variable Xi, (1 <1 < N) with membership functions
M(z;) = {mu1 ...,k } and

e the fuzzy conjunction is implemented as the algebraic product.
In this case, (3) can be written as
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with ¢ij = Bij for proposition “X; is pi; » in the antecedent of the i-th rule.

(4)

y(z) =

1.2 The Fuzzy-RBF Network

Problems with RBF-based neuro-fuzzy control are that the number of nodes
(fuzzy rules) grows exponentially with the dimension of the input space and
that due to overlap at the centers the basis (membership) functions interfere with
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each other. Another problem is that all rules need to be evaluated, even if they
have a very low degree of fulfillment. In the following, we show how exponential
growth of the number of rules can be circumvened by incompletely specified
antecedents. We also provide a solution to the inference problem. Finally, we
show how Dynamic Cell Structures (DCS), [1], help to avoid evaluating all rules
by evaluating only the best matching rule and its topologically neighbors.

1.2.1 Incomplete Rules

In high dimensional input spaces an RBF-based controller faces the problem of an
exponential explosion of the number of nodes (rules) if the input space has to be
uniformly covered. If the input dimension is n and we have a rule depending on
only k variables, this rule has to be expanded to I®~* rules if each variable takes [
linguistic values. This problem can be alleviated if we drop the requirement that
each node in the network must compute an activation function in n dimensions.
Instead we must allow for nodes computing an activation function in just
dimensions, if k is the number of input variables in the linguistic rule. For that
purpose, we introduce the additional symbol L, denoting an undefined value,
and set cjx, the k-th component of the i-th center to

oo = | Mk proposition X is u belongs to the antecedent of the i-th rule
W= L : Xj does not appear in the antecedent of the i-th rule
(5)

The activation function corresponding to that antecedent is calculated as
Tk — 3
m@=ep- Y oG ©)
o
ke{l,.... N}\{l|ca=L}

A similar problem arises for MISO systems with an m dimensional output
and rules which only effect [ of these values. Again, with L denoting an undefined
value, we set 0;, the k-th component of the i-th output vector to

G = fik : k-th output component in consequent of the i-th rule (7)
e L : k-th output component not effected by i-th rule

The k-th output of the FRBF controller is then obtained as

Z£E{1,...,N}\{I|o;,,=J.} oikhi(z)

Y = .
ZiE{l,...,N}\{IIo;,,:J_} hi(z)

where the activation function h;(z) is calculated according to (6).

1.2.2 Exact Interpolation

Another problem with RBF networks used for Sugeno-type fuzzy control is that
the networks do not exactly interpolate between the output vectors (consequent
values of the rules) but rather perform an approximation. This is due to the
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overlap of the basis functions at their centers: Even if one activation function
(degree of fullfilment of an antecedent) takes the value one, the output of the
controller deviates from the corresponding consequent value. However, exact
interpolation sometimes is necessary if the control function must fulfill certain
constraints. In obstacle avoidance, for instance, this could be a rule which
sets the forward velocity to zero if the frontal distance reaches a certain value.
This important rule must not be biased by other rules and probably will not be
subjected to adaptation as well. Our solution to the exact interpolation problem
is to introduce a set II of ezact nodes and to modify the activation functions
hi(z) by multiplying the original activation functions with the complement of
each activation function of nodes in II, i.e.

hy(z) = hi(z) [] (1—hs(2)), (9)

JE\i

which assures that if one membership function has degree of fulfillment one,
the others will be suppressed and hence do not contribute to the mapping. For
exact nodes we require that they have no undefined components in their output
vectors and centers. A formal proof of the exact interpolation property can be
found in [5].

The complete FRBF architecture is illustrated in Figure 1.

AN

basis [1-layer normalization
functions layer

input layer
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Figure 1: FRBF architecture with exact nodes: Each formal node in the nework
consists of a basis function, a 7 neuron for exact interpolation and a normaliza-
tion unit, which may be grouped in three computational layers.

1.2.3 Topology Preservation

DCS networks represent an extension of RBF-networks in that each node in the
network gets to know (learns) which other nodes in the network are its nearest
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neighbors in input space. The rationale for this is that activation of the nodes
decreases with decreasing distance of the input from their centers, and hence
only the best matching unit bmu (i.e. the node whose center ¢; has smallest
Euclidean distance to the input value z) and its direct neighbors significantly
contribute to the mapping and need to be evaluated. But how can direct neigh-
borhood be defined? The intuitive definition was provided by T. Martinetz,
6], calling two nodes neighbored in input space if their masked Voronoi cells!
have a common border. This leads to the definition of the induced Delaunay
triangulation or perfectly topology preserving map in which two nodes are con-
nected if their masked Voronoi cells share a common border. If G = (V, E),
V ={1,..., N} is the graph representing the induced Delaunay triangulation of

the centers cy,...,cn of the network, then the set of direct neighbors of node 1,
Nh(i), can be defined as the direct neighbors w.r.t. G, i.e.
Nh(z) = {jl(i,7) € E}. (10)
The output of the network is calculated as
; o;hi(z
y(m) s E:ENh(bmu} 1 ( ) (11)

E:‘ENh(bmu) hi(z)

and includes only the best matching nodes (rules). This can lead to a significant
speed up in output calculation.

The induced Delaunay triangulation (i.e. the graph G) for a given set of
centers can be either calculated in advance or can be approximated with a simple
learning rule that, on presentation of an input z, always connects the best and
the second best matching unit, i.e. starting with E = 0

E = E U {(bmu, smu), (smu, bmu)}. (12)

If the input probability density function is different from zero for all possible
inputs and the distribution of centers is dense?, G converges to the induced De-
launay triangulation with probability one. If the centers (membership functions)
are allowed to adapt, existing edges may need to be removed from G. This can
be achieved by decaying existing edges by a learning rule such as proposed in
[7].

Combining DCS networks with the ideas presented so far (incomplete rules
and exact interpolation) we obtain the Fuzzy DCS (FDCS). Yet there remains a
problem within the FDCS framework: How can a best matching unit be deter-
mined (and the topology be defined and learned) if components of the centers
may be undefined? The intuitive answer is to replace the Euclidean metric with
the distance measure

d(z,c;) = > (zk — c), (13)

kG{l,...,ﬂ}\{flc“:J_}

If M C IR™ is the input manifold and V; C IR® the Voronoi cell of ¢; then the maksed

Voronoi cell is Vi(M) =ViNnM.
2The distribution of centers is dense if for each possible input z € M the triangel formed
by z,cpmu and csmwu completely lies in M.
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which takes into account only the defined components. With help of this distance
measure, the notions of topology preservation and the learning rules for the
topology preserving lateral connection structure as discussed in 1.2.3 can be
generalized for the new situation of undefined components, as has been formally
proven in [5].

2 Behavior-Based FRBF Control for Collision
Avoidance

After this short introduction into our FRBF-based approach to fuzzy control
we will now propose a fully reactive and behavior-based control architecture for
obstacle avoidance.

The main problem with behavior-based control is the switching between dif-
ferent behaviors and that in order to exploit the advantages of smooth fuzzy
control this switching additionally has to be smooth. We solve this problem
by introducing a pain function which smoothly switches between the avoidance
behavior and the task-driven behavior. The task-driven behavior consists of two
subtasks, wall-following in an exploration phase or goal-following to reach a goal
position.

2.1 FRBF-Based Architecture for Reactive Collision
Avoidance

In the behavior-based subsumption-control-architecture, e. g. [8], the behaviors
are organized horizontally, i.e. each behavior has full access to all sensor readings
and proposes its own motor control command. The final motor control command
is then computed by suppression: Low level behaviors are more important for
the safety of the system and therefore have a higher priority than higher level
tasks.

Classical subsumption architectures rest on a hard selection of one of their
behaviors. Hence these architectures result in a kind of bang-bang control on the
basis of potentially smoothly controlled bang-functions.

In fuzzy control we seek for a smoothly controlled decision between the autho-
rization of two fuzzy controllers. To this end, let us consider two FRBF networks
A and B which represent two hierarchically ordered behaviors. Here, A denotes
the lower level behavior, more important for the safety of the system, and B
denotes the more task oriented higher level behavior. We write y4 : T4 = O
and yp : Iz = O for the corresponding evaluation functions of both networks.
The input spaces might even be different, so that the behaviors can be optimally
adapted to their special tasks.

For each behavior we now introduce a state-evaluation function,

eval : I4 — [a,b], a,b € IR, (14)

which signals the danger of the current system state from the point of view of
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each individual beahvior. The state-evaluation can be regarded as signalling the
responsibility of behavior A.

In biological systems we also have a kind of state-evaluation which can be
regarded as a pain signal. Pain is able to change the behavior of any living
being, if only the pain intensity exceeds some threshold value. Accordingly, we
introduce a pain signal, p : [a,b] — [0, 1], whose response activates the behavior.

Figure 2: Behavior-based fuzzy architecture for obstacle avoidance

We demand p to be a monotonically decreasing function fulfilling pla) =1
and p(b) = 0. Using the convex-combination

y = pleval(za) - ya(za) + (1 - pleval(z.4)) - ys(zB), (15)

we obtain a motor control command y € O for any input z 4 € I 4 and z5 € Ip.
For a low state evaluation eval(z 4) the behavior A dominates, while for high
state evaluations the resulting reaction will be dominated by the higher level
control network. The values a and b represent the maximum and minimum
state evaluation. As an example of a pain signal, consider

pe) = o) -p®)+ E0EO L oy i i)
1

ple] = 1+exp(o-(z —m)) (17)

The parameter m € [a, b] denotes the location of the reversal point, and p € IR
a parameter that stands for the inclination of the pain signal. For p = 0, we
obtain a simple linear function, and for p — oo we get a threshold function with
p(z) =1 for 2 < m and p(z) = 0 for z > m. Figure 3 illustrates the pain signal.
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Figure 3: Pain signal for the parameter set a =0, b = 4000 and ¢ = 0.003

Using a pain signal, we can smoothly combine two different behaviors. Since
these behaviors themselve consist of smooth FRBF controllers, we finally obtain
a smoothly controlled behavior-based reactive control architecture.

For reasons of safety, however, we added a conventional hard-wired lowest-
level emergency behavior that is able to avoid a direct imminent collision by
applying an emergency stop and triggering an orientation behavior. Yet all
higher level tasks, such as obstacle avoidance, wall following and goal following,
result from a smooth combination of different fuzzy controllers.

2.1.1 Feature Extraction

Each FRBF-controller has its own pre-processing stage for feature extraction.
During this stage from all available sensory inputs only those features are selected
that are relevant for the specific task of each behavior. Such a pre-processing
stage is necessary to reduce the dimensionality of the input spaces of the FRBF-
controllers. In our experiments, the sensory input consists of all eight sonar
readings, the actual translational velocity and the angular velocity (jog-rate).
Not all these inputs are necessary for all behaviors.

For the FRBF-controller of the obstacle avoidance behavior we choose as
features all eight sonar readings, whereas the features of wall following are just
the orientation to the left and to the right wall.

Using the ultrasonic sensor arrangement as shown in Figure 4, we define these
two orientation features by

3| — 4 180°
SR (sensor[ ]d sensor| ]) ' ’ (18)
v w
sensor(7] — sensor|(6 180°
SN EE e S
v
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Figure 4: Arrangement of ultrasonic
sensors for the TRC Labmate Figure 5: The physical robot

where d, defines the vertical distance of the lateral sensors.

Finally, the feature extraction for the goal following behavior is canonically
defined by the horizontal and vertical components Az and Ay of the Euclidean
distance between the center of the robot and the goal position in egocentric
robot coordinates.

In addition to the features proposed here, additional features can be utilized.
For example, similar to the inclination to lateral obstacles, the inclination to
frontal obstacles can be defined as a possible feature. If we want to formulate
fuzzy rules in which two sonar readings are compared (e.g. s; > $2), we introduce
the difference (s; — s2) as an additional feature.

2.1.2 Correction of Direct Motor Commands

An additional safety component checks whether the motor commands are within
a tolerable interval or not. In particular, such post-processing is recommanded
if the FRBF controller is allowed to adapt, cf. Section 4. In order to make sure
that only reasonable outputs reach the motors, we filter the proposed commands
by
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a : a€[laTa]
4= la : a<l, ' (20)
e : G>Ta

Filtering the proposed value a € {w,v} finally yields a corrected value a
which lies in the admissable intervall [l,,7,]. The value v denotes the velocity
and w the superimposed angular velocity.

A simple correction mechanism that guarantees a driving velocity with which
the robot cannot contact an obstacle in the distance ds¢op before T seconds is
obtained by choosing J ;

min — Ustop
T ; (21)
where dnin is the minimum frontal distance to any obstacle.

g =

2.2 Fuzzy Rules for the FRBF Controller

In this section we provide the fuzzy rule base for the FRBF controller. Instead
of linguistic terms we directly give numerical values. The values of the premises
make up the centers, as described in Section 1.1. The sign = will be used
whenever conventional (inexact) neural units are used. Correspondingly, the use
of exact neural units is denoted by the = sign. Sonar readings are denoted by
Si-.

2.2.1 Collision Avoidance Behaviors

Obstacle avoidance is often divided into sub-behaviors that treat special types
of obstacle situations. For instance, in [8] one distinguishes between sub-tasks
as avoiding frontal obstacles or avoiding lateral obstacles.

Our fuzzy controller has no inherent structure or hierarchy of rules, yet we
arrange the rules in different groups of neural units that can be interpreted as
velocity control units, frontal collision avoiding units and lateral collision avoid-
ing units. The fuzzy rules are shown in Tables 1, 2 and 3. Figure 6 illustrates
the evaluation function of the resulting FRBF controller.

if (s1 ~ 250) then v = 0
if (s2 &~ 250) then v = 0

if (31 ~ 2000) A (s2 = 2000) A (so =~ 500) A (s3 ~ 500) then v & 500
if (s1 ~ 2000) A (s2 = 2000) A (so = 1000) A (s3 ~ 1000) then v = 600
if (51 ~ 2000) A (s2 = 2000) A (so = 2000) A (s3 & 2000) then (v = 1000) A (w =0)

if (s1 & 1500) A (s2 = 1500) then v & 400
if (s1 &~ 1000) A (s2 = 1000) then v & 300
if (s1 ~ 500) A (sz =~ 500) then v = 150

Table 1: Rules for controlling driving velocity
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w S0
53 0 ]300 [ 700 ] 1200 | 1800
0 0 [ 30 [ 30 [ 30 | 30

300 -30 0 30 30 30
700 -30 | -30 0 30 30
1200 || -30 | -30 | -30 0 30
1800 || -30 | -30 | -30 -30 0

w S1
52 0 [ 300 ] 700 [ 1200 [ 1800
0 0 | 30 [ 30 T 30 30

300 -30 0 30 30 30

700 -30 | -30 0 30 30
1200 || -30 | -30 | -30 0 30
1800 || -30 | -30 | -30 -30 0

Table 2: Rules for avoiding frontal obstacles

w 54
ss_|| 0 ] 300 | 700 | 1200
0 ] 30

300 30 | 30
700 30 | 30 30
1200 || 30 | 30 30 30

w ST

56 0 ] 300 | 700 | 1200
0 || -30
300 || -30 | -30
700 |[ -30 | -30 | -30
1200 |[-30 | -30 | -30 | -30

Table 3: Rules for avoiding lateral obstacles

2.2.2 Task Oriented Behaviors

Table 4 shows the rule base for the wall following and the goal-following behavior.
These rules are realized by exact neural units. Only by using exact neural units
we can assure that the driving velocity of the vehicle exactly becomes zero at
the goal position. Due to superposition of several units this would hardly be
possible with inexact neural units.

2.3 Simulations

In our simulations, the FRBF-based approach for obstacle avoidance turned
out to be superior to the classic behavior-based approaches, e. g. [8], we in-
vestigated for comparison. The FRBF-based approach was able to achieve a
higher maximum speed when there were only far obstacles. In contrast to the
maximum speed of 0.257 achieved by the classic approach, the fuzzy controller
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Figure 6: Evaluation function of the FRBF controller for fixed input values
So = 83 = --- = 87 = 2000 mm.

Goal following Wall following
v/w Az v/w Qe ft
Ay -2000 | 0 | 2000 Qright -50 | 0 | 50
2000 ]| 0/-30 | 0/30 | 0/30 50 || 800/-30 | 800/-30
0 0/-30 0/0 0/30 0 800/-30 800/0 800/30
2000 || 400/-30 | 800/0 | 400/30 50 800/30 | 800/30

Table 4: Fuzzy rules for wall- and goal following behavior

nearly reached the maximum speed of 17%. Nevertheless it was careful in narrow
environments where it navigated with very low speed. In extremely narrow en-
vironments, the FRBF network controls the forward velocity down to zero and
a remaining rotational component results in an “escape from danger” behavior.

Furthermore the smooth control by the FRBF controller was observed to
produce fewer oscillations during a corridor passage. The wall following behavior
is able to align the vehicle with walls. Figure 7 shows the robot in a simulated
environment. The velocity can be recognized from the distance of the dashes
perpendicular to the driving direction. Higher velocities produce more distant
dashes while lower velocities produce narrower dashes. In environments with far
obstacles the vehicle reaches a velocity of nearly 0.8%.

For all FRBF controller we used Gaussian neural activation functions with
a standard deviation of ¢ = 0.2. Inputs to the network were normalized. As a
state evaluation we defined

eval(sg, -+, 87) = \/sﬁ+s'~1’+s§+s§. (22)
The maximum measurable distance (timeout distance) of the ultrasonic sensors
was set to 2m, so the parameter a and b were set to @ = 0 and b = 4000. For the
pain signal we have chosen m = 2700 and g = 0.003. The time step width was
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Figure 7: FRBF controlled tour of a simulated autonomous mobile robot

set to 0.4s and corresponds to the time interval for one control cycle in reality.
There is, however, a problem with the proposed control scheme which has
to be addressed. In contrast to the classical subsumption architecture where
each behavior proposes its own motor command and finally only one command
is selected by a hierarchy of suppression there is no possibility of prefering spe-
cific rules in the FRBF network architecture. All neural units contribute their
activation-driven output to the motor command, which is finally send to the
motor. For example, in the classical subsumption architecture testing whether
left rotation is an appropriate reaction before testing for right rotation results
in a behavior which tends to prefers left curves . Such behavior can be regarded
as non-symmetric. On the contrary, the FRBF architecture has no such built in
preference and will typically result in a symmetric behavior (cf. Figure 6).
Symmetric controllers cause an undesirable behavior (in simulations as well
as in reality) when the robot is driving into a corner. For simplicity we only
consider the sonar readings # 1 and # 2. At first, both readings decrease and
as a result the vehicle decreases its velocity. If the left sensor shows a smaller
reading than the right sensor, the vehicle will turn to the right and vice versa.
But now, by turning towards one direction, because of the new environmental
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situation the state of the sonar readings will switch and the symmetric controller
will turn to just the opposite direction in the next step. This behavior results
in a kind of dead lock situation, shown in Figure 8, which normally should be
avoided. Until now, only the hard wired emergency behavior can free the robot
from the dead lock situation.

Figure 8: A dead lock situation

3 Freespace-Based FRBF Control for Collision
Avoidance

To overcome the dead lock problem mentioned above and keep on profiting from
the advantages of fuzzy control, we next propose a FRBF based approach that
uses improved feature extraction from sonar readings and only consists of a single
FRBF network.

3.1 Feature Extraction

In order to avoid a symmetric fuzzy controller we change the input features of
the controller and introduce an angle that points into the direction of a free space
that is closest to the heading of the vehicle. This free space direction provides
an additional input feature and can be obtained by a technique which is similar
to the obstacle avoidance approach of [9].

In [9], the last three sonar readings are stored and build a coarse temporally
and spatially restricted model of the environment. From this model an optimal
trajectory, chosen from a set of circles through the center of the robot and tan-
gential to the heading direction, is generated and provides the obstacle avoiding
behavior.

What we did is to extract the free space direction from the last stored sensor
readings and provide it as an additional input feature for our fuzzy controller.

sl
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Because no reliable free space information can be estimated from only eight ul-
trasonic sensor readings, we also store the sonar readings in a short time memory.
From this short time memory we extract a coarse model of the direct robot sur-
rounding. In contrast to [9] we do not use this model to explicitly estimate a
trajectory, but we recover the free space direction closest to the actual heading
direction. Figure 9 shows the short time representation of the environment from
which a free space direction is generated.

Figure 9: Short time representation of the robot surrounding

From the short time memory, additional features can be extracted, e. g.

e Direction of the free space closest to the goal direction. This will result in
a goal following behavior.

* Direction of the free space closest to the actual robot heading. This will
result in a wandering behavior.

¢ Distance to frontal or lateral obstacles.

e Orientation of frontal or lateral walls.

3.2 FRBF-Based Architecture for Collision Avoidance
with Freespace Information

In this section we investigate FRBF control based on free space extraction for
obstacle avoidance and show that it can solve the dead lock problem of the
behavior-based approach.

Eight sonar readings and the supplementary extracted free space direction
make up the new input features. As in the previous section two higher level
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tasks are considered, namely wall alignment (in order to provide an exploration
behavior) and goal following. So far these two tasks have been divided into
two different control modules. Using the additional free space information, this
division is no longer necessary. Both tasks can be solved by choosing the free
space direction in accordance with the particular task.

Goal following behavior: If the robot has to reach a specified position, the
free space direction is selected that is closest to the direction of the goal
position.

Wandering around behavior: Exploration of the robot surrounding can be
achieved by a free space direction that is closest to the robot heading. If
the robot moves towards a wall, the free space direction will align to the
wall direction. Therefore, following the free space direction produces a wall
following behavior.

The resulting controller architecture consists of a single FRBF controller
together with the correction stage and the additional hard-wired emergency
behavior on the lowest level. The new architecture is shown in Figure 10.

Figure 10: FRBF-based obstacle avoidance using massive sonar reading pre-
processing

3.3 Fuzzy Rules of the FRBF Controller

Tables 5-8 declare the fuzzy rules of the FRBF controller used for free space
driven obstacle avoidance. As input features we use all eight sonar readings
S0, -+, 57, as well as the free space direction apes¢ according to the specified
task. Supplementary, we use the rules of Table 3. The fuzzy rules of Table 8
represent exact neural units.
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v/w Obest
-150 | -100 | -50 50 | 100 | 150
s;1 ~ 100 : [| 0/-30 | 0/-30 | 0/-30 [ 0/30 | 0/30 | 0/30
s2 ~100: || 0/-30 | 0/-30 | 0/-30 | 0/30 | 0/30 | 0/30

Table 5: Rules dealing with emergency situations

if (s1 & 3000) A (s2 ~ 2000) A (so & 600) A (s3 ~ 600) then v 2 600

if (s1 & 3000) A (s2 = 2000) A (sp & 1300) A (s3 = 1300) then v = 750

if (s1 & 3000) A (s2 = 3000) A (so = 3000) A (s3 ~ 3000) then (v = 1000) A (w = 0)
if (s1 = 1500) A (s2 &~ 1500) then v ~ 400

if (s1 ~ 1000) A (s2 =~ 1000) then v ~ 300

if (s1 &~ 500) A (s2 =~ 500) then v = 150

Table 6: Rules for controlling the driving velocity

3.4 Simulations

The experiments we have carried out applying the above FRBF-based architec-
ture demonstrate the workability of our approach, i.e. to combine the benefits of
smooth fuzzy control and to overcome the dead lock problem. Remember that
we only had to introduce an extra feature which was obtained straightforward
by storing the last sensor readings and some simple feature extraction.

Figure 11 b) demonstrates a successful avoiding maneuver in a situation
where the previous approach has failed. In Figure 11 a) the extracted free
space direction and the sensor readings as stored in the short time memory are
depicted.

N,

4
V4
a) b)

Figure 11: a) Extracted free space direction b) Simulated avoiding maneuver
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Qpest N0 : Qpest ~ 0 :
w S0 w S1
53 0 300 [ 700 | 1200 | 1800 52 0 | 300 | 700 | 1200 | 1800
0 30 30 30 30 0 30 30 30 30
300 || -30 30 30 30 300 || -30 30 30 30
700 || -30 | -30 30 30 700 || -30 | -30 30 30
1200 || -30 | -30 | -30 30 1200 |[ -30 | -30 | -30 30
1800 || -30 | -30 | -30 | -30 1800 || -30 | -30 | -30 | -30
W Qpest
so =53 || -150 | -100 | -50 | 50 [ 100 | 150
0 -30 -30 | -30 | 30 | 30 30
300 -30 -30 | -30 | 30 | 30 30
700 -30 -30 [ -30 | 30 | 30 30
1200 -30 -30 | -30 | 30 | 30 30
1800 -30 -30 | -30 | 30 | 30 30
w Xpest
51 =s2 || -150 | -100 | -50 | 50 | 100 | 150
0 -30 -30 | -30 | 30 | 30 30
300 -30 -30 | -30 | 30 | 30 30
700 30 | -30 | -30 [ 30 ] 30 | 30
1200 -30 -30 | -30 | 30 | 30 30
1800 -30 -30 | -30 | 30 | 30 30

4 Reinforcement Learning of an FDCS

Table 7: Rules for avoiding frontal collisions

Controller for Collision Avoidance

The reason for using neuro-fuzzy control is to allow for adaptation. In this
section we want to briefly? demonstrate the learning capabilities of an FDCS
controller by reinforcement learning of collision avoidance. Circumstances are
very hard because i) the reinforcement signal provides only minimal feedback
from the environment, ii) the reinforcement signal is delayed, iii) we start with
only one fuzzy rule and the learner has to generate new rules from interaction

3 A more detailed description of this experiment as well as learning parameters can be found

in [10] and [5] .

w Opesi
-150 | -100 [ -50 [ 50 | 100 | 150
[s1~s2~3000: | -30 [ -30 | -30 | 30 | 30 | 30 |

Table 8: Rules for free space following
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with the environment, iv) we allow for adaptation of membership and consequent
functions and v) we additionally learn the topology of the input space and hence
an FDCS controller, cf. Section 1.2.3, for accelerated output calculation. On
the one hand, our experiments confirm that even in this extreme setup the
controller is indeed able to learn an obstacle avoidance behavior. On the other
hand, our experiments also underline that pure reinforcement learning (without
prior knowledge and without additional learning mechanisms) takes too much
time and too many trial to be of much practical value.

4.1 Learning Architecture and Algorithms

DCS

ASE

c | PUlLe) —3

V ey,

R e i
Sy EMg eMp
Figure 12: FDCS-based reinforcement learning architecture

As depicted in Figure 12 the controller is realized by a single DCS net-
work with an additional stochastic associative search element (ASE) for REIN-
FORCEment learning. The DCS network implements both the actual controller
(policy) as well as an adaptive heuristic critique (AHC), [11]. The calculation
of the control vector u given the sensory input s proceeds as follows:

First, the input vector is transformed to an activity vector representing the
normalized activations (degrees of fulfillment) of the RBF units (rules) with
centers ¢; and uniform width:

h,‘ (S) .
ZjENh(bmu) hj(s)

(23)

a; =

Second, a prototypical action vector K, a certainty vector o and the predicted
cumulative reinforcement V are calculated by a weighted sum of contributing
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vectors (consequent functions) attached to the RBF units*:

= Z a;pt, o= Z a;jot, V= Z a; V.
1ENAh(bmu)U{bmu} 1ENh(bmu)U{bmu} iENh(bmu)U{bmu}
(24)
Finally the ASE draws the actual action vector u according to a Gaussian prob-
ability density function with marginal distributions

_(tll'—w)2
p(u;-ls)=p(uj|pj(s),aj(sn=\/—(%—e =T (25)
71'0'3'

On-line adaptation is performed w.r.t. the contributing prototypical action
vectors p!, certainty vectors ¢! and evaluation values V; attached to the RBF
units (consequent - part) as well as to the centers c; of the RBF units (antecedent
- part). The evaluation values V; are updated using a TD(1) rule [12]:

i
AV; = averrrp(st) Z(A’}’)t-kvxz‘. V(sk) (26)
k=1
= av (W (ser1) +re = V(se)) 3 (M) *ailse). (27)
k=1

where errrp(s:) = r; — by denotes the current temporal difference error with r;
the reinforcement signal and b; = V (st+1) — V(s¢) an adaptive baseline. Pro-
totypical action vectors y and certainty vectors o* are adapted using a REIN-
FORCE gradient descent:

: 0lnp;(ujlpj, ;) Op;
A A 28
Ap; ay, errrp(st) B Oyt (28)
T
= au (YV(st41) + 1 — V(St))(_J;gli)ai (29)
J
and
i _ dIn p;(ujlp;,05) 0o;
Ao = agerrrp(st) 507 3o (30)
uj = ) = 3
= Q4 ('TV(St-i-l) + 7 - V(St))( g ;3 4 a; (31)
j

The REINFORCE framework [13] states that (28) and (30) implement a gradient
descent on the expected reinforcement (at least for a constant baseline b). When
the algorithm converges towards a local maximum of the reinforcement the o?
will decrease to small values, narrowing the range of stochastic search. Hence the

4the contributing prototypical action vectors and certainty vectors are denoted by
superscripts.
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term certainty values: If we pre-structure the network with fuzzy rules we can
specify the search range for the conclusion of this rule by specifying its o* vector.
Values close to zero result in non-changing consequents (fixed rules). On the
other hand, if we analyze the network at consecutive time steps, non decreasing
components of cr;: indicate convergence to (certainty about) the corresponding
prototypical action.

Finally, the centers ¢; of the bmu and its topological neighbors are updated
according to an error modulated Kohonen rule as described in [7]:

Ae; = Empdulated erryg Wwith erryg =s—g¢; (32)

The error we use for modulation is the TD-error which is locally accumulated
for every node in the DCS network. The lateral connection structure of the DCS
is adapted with a learning rule derived from (12), again refer to [7] for details.
A new neural unit (rule) is inserted whenever the distance to the current best
matching unit is too large. At most N,,., units are inserted.

4.2 Experiments

In order to test the applicability of our learning controller to collision avoidance
with the TRC Labmate the simulated Labmate was placed in the training envi-
ronment depicted in Figure 2. The Labmate was then allowed to drive around
until either the distance to an obstacle dropped below 20cm or 200 time steps
elapsed, ending a trial. In the former case, an orientation behavior is triggered
which causes the Labmate to rotate until the front sensors indicate free space.
In the latter case the Labmate is stopped and rotated for a random angle (to
prevent it from staying on a closed trajectory all the time). Since we want to test
the performance of the controller independent of incorporated prior knowledge
the controller started with only one fuzzy rule:

if (so &~ 5000) A --- A (s7 ~ 5000) then

(ko(s) & 400) A (0u(s) = 09) A (pw(s) = 0) A (0uw(s) = o) A (V(s) = 0),
stating that if all sensor readings are about 5m the Labmate should drive forward
(zero angular velocity p,,) with velocity p, = 400 em s~!. The certainty values
for forward velocity and angular velocity (o, 0, ) were set to small initial values
(¢9,0%). As immediate reinforcement we used the difference between evaluations
of two succeeding situations, r; = ®(s441) — B(s¢), with & : R® = IR the
evaluation function of a sensory situation. In addition the Labmate was given a
high negative reinforcement signal if it had approached an obstacle within less
than 20cm.

For a typical run, Figure 13 shows the Labmate at the beginning of training
in the training environment. Figure 14 shows collision free navigation of the
Labmate in a test environment after training phase. End of training is indicated
by the averaged TD-error approaching a minimum, the averaged reinforcement
approaching its maximum and - of course - avoidance of collisions. Plots for
the TD-error and the reinforcement (both averaged over 100 trials) are depicted
in Figure 15. In our experiments training took between 1000 and 10000 trials,
taking (on average) a longer time when sonar sensors with a characteristic beam
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Figure 13: start of training, training en- Figure 14: end of training, test environ-
vironment ment

width of 20° and 5% noise were simulated than simulating idealized sensors (0°
beam width) without noise. However, the difference between these two types
of simulated sensors turned out to be surprisingly small. At most Nmaz = 100
neural units (rules) have been utilized. No effort has been spent on parameter
optimization.
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Figure 15: TD-error (right) and reinforcement (left) versus number of trials

5 Sensor Preprocessing

In most of the work on fuzzy logic control of mobile robots, sensor pre-processing
is either overlooked or highly simplified, assuming that the sensors deliver exact
(true) values [14, 15, 16, 17, 18]. On the contrary, we argue that it deserves
equal attention as the controller whose performance crucially depends on the
accuracy of the sensors.
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There are two main reasons that necessiate sensor pre-processing in sonar-
based fuzzy logic control. First, due to crosstalk, bad reflection properties of the
environment and shielding problems, sonar sensors frequently produce highly
erroneous readings which must be filtered out prior to using them for reactive
control. Second, when the dimension of the input space becomes too high, it does
no longer make sense to treat each input as a separate variable in fuzzy control.
Besides the exponential growth of the number of rules it will be difficult to
attribute a meaning to every input (which, however, is crucial for fuzzy control).
In case of more than eight sonar sensors the solution to the second problem is a
meaningful grouping of the sensor readings, which may be regarded as a kind of
abstraction from the sensor readings using prior knowledge.

Such abstraction is not unique to the fuzzy control but has been addressed
in connectionist inductive learning too. For instance, multi-layer networks have
been trained in mobile robot navigation tasks, where the hidden layers construct
a generalized intermediate representation of the input by supervised learning,
[19, 20]. Likewise, reinforcement learning techniques have been employed to
generalize the input space by recursively partitioning the state space based on
the individual bit relevance [21]. However, a common characteristic of the above
generalization techniques is that input uncertainties are not considered and do-
main knowledge is largly ignored.

The work in this section proposes a sensor pre-processing method for our
TRC mobile robot. It combines domain knowledge and Kalman filtering to
condense the sensory data and to cope with the uncertainties of the readings.
The proposed pre-processing has been successfully tested on the real robot using
an FRBF controller.

5.1 Partitioning the Perceptual Space

Instead of eight sensors in the previous sections (see Figure 4) in this section we
utilize 10 sonar sensors. The sensors cover a total frontal angle of 120 degrees
and are pre-programmed to measure a distance up to 2m. Even assuming ideal
sensors and the simplest output (binary output), the number of fuzzy rules
to cover all input conditions is in the order of thousands! This is not only
prohibitive from the point of view of the kowledge engineer but also imposes
limitations on the reactivity of the fuzzy controller. Hence we have partitioned
the ten ultrasonic sensors into five regions (Figure 16) corresponding to the
physical geometry of the agent. These are: right corner, left corner, right,
front, and left. In order to account for the beam angle of the sonars and the
fuzzy nature of the five regions we adopt sensor overlapping across neighboring
regions. The sensor arrangement and the overlapping perceptual regions are
shown in Figure 16.

Similar to us, Reignier [17] also partitions the sensors into regions. Yet in
order to determine the depth value of each region he only relies on a single sensor
(the sensor that has minimum depth) . However, from our experience with the
sonars of the Labmate the quantitative value of an individual sensor is not
reliable at all. Instead, all sensors in a region must be taken into consideration
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right comer : 4, 12
right : 12, 14, 8
front : 8, 5, 10, 7
left : 7, 3, 15

left comer : 15, 11

\‘\\ 0 7 //
~._ Total perceptual -
space

Figure 16: Overlapping perceptual regions

and filtering over time is advisable as well. In [20] we therefore partitioned
the sensors into regions and refired the sonars multiple times at each perceptual
cycle to gather data from which we estimated the depth of each region. However,
multiple firing introduces noise in the system through sensor crosstalk and is time
consuming.

‘Rather than relying on the quantitaive value of an individual sensor or firing
the sonars repeatedly, we nowadays employ a cascade of two filters (Figure 17)
and a sliding window of size 3 to hold the present and the past two measure-
ment profiles. Following partitioning, the sensor values of each region are passed
through a median filter (spatial filtering), which gives as output a single measure-
ment of the depth of a region. The median filter estimates the current measured
depth Z;, of a region j covered by N; sensors using

Zj+ = median(S] ;,83,,...,Sk, ) - (33)

where Sf‘t, i = 1...Nj, is the reading at time ¢ of sensor i located in region j,
N; the number of sensors in region j and Zj;, j =1...9 the measured depth
of region j at time ¢. However, the measured depth Z;; is still noisy and too
unreliable for reactive control®. Therefore, a Kalman filter is employed to further
process the measured depth.

5.2 Kalman Filter Formulation

The proposed Kalman filter operates on the present and past measurement pro-
files (Z; 4, .-, Zjt—n), stacked in the sliding window, to estimate the current true

5When these values are used to generate control commands the robot is seen moving
arbitrary.
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depth D;; of a region j. To avoid the influence of Very past measurements on the
present estimate only a limited window size (n = 2) is taken. Because a Bayesian
viewpoint is adopted, we need to select a model for the conditional probability
density function (CPDF) of the true depth given the measured depth P(D;/ Z;)
that best fits the data generated by real world. In this paper a Gaussian® CPDF
is chosen. The main motivations for making this assumption is that the Kalman
filter so designed is optimal with respect to virtually any criterion that makes
sense [22]. As our viewpoint is Bayesian, we require the filter to propagate the
assumed CPDF from some time ¢ — n, for some arbitrary n, up to the present
time ¢. Once the CPDF is propagated the optimal estimate is computed using
the mazimum likelihood criterion.

from agent
enviroment

measured
depth

estimated
depth

Figure 17: The proposed sensor pre-processor

The Kalman filter algorithm is tailored to suit the agent at hand. To proceed
with the algorithm, at each perceptual time ¢ the filters in each regionj=1...5
are initialized by estimating the parameters of the Gaussian CPDF, mean (1)

2

and variance (05). We estimate the mean by equating it with the measured

value at time ¢t —n i.e,

Hio = Zjt-n; j=1...5. (34)

and the variance o3, with the measurement variance 2 of the sonars.

To compute the measurement variance, we have picked a sensor at random?
and placed the sensor in different environments and at different orientations and
depths that can be faced by the robot when it is in operation (such as corners,
corridors, doors edges, walls, free ways, ...). For all environments and depths, the

SThere is no mathematical or experimental prove that guarantees a Gaussian noise distri-
bution in ultrasonic sensors.
TAll the sensors are of the same Polaroid type.
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sensor was fired and the true (d;) and measured (r;) depths were recorded. After
recording N = 1000 (d;, r;) pairs, the measurement variance §° is computed as

N
i 1
&= jNE:Mrﬂﬁ2=EWmm. (35)

i=1
Yet this value turned out to be too low to represent the actual measurement
variance of the sensors when fired one after the other on the moving robot.
Hence we multiplied it by a factor of 2.5 to obtain ¢ ~ 350. At the beginning
of the updating algorithm the statistical variance is set to this measurement
variance, 1.e,

2

_ =2
Fa =9

With (34) and (35) the CPDF of each region is defined. The next step is to
propagate this CPDF forward up to time t. Inherently our system is dynamic,
i.e. agent position and hence sensor values change with time. Therefore, the
dynamic Kalman filter best suits our scenario, yet this filter requires a model for
the rate of change of the sonar return. For a situated agent, this change depends
among other things on: the speed and rotation of the robot, the direction of
motion, the environment and its acoustic properties, the dynamic properties of
each sensor, the position of the sensors on the robot and the frequency of sensor
crosstalk. Looking at the parameters involved, it is extremely difficult to come
up with a clean mathematical model of the form of (37) and (38) for the dynamic
filter:

X(t) = A@®)X(t) + BU(E) + V(@) . (37)
Z(t) =C)X() + W(t) . (38)

Here matrices .A(t), B(t) and C(t) are system time varying coefficients incorpo-
rating all the above mentioned parameters, vectors X'() and Z(t) are estimated
and measured depths respectively, and V(t) and W(t) are system and measure-
ment noises respectively.

Because of lack of the above system coefficients, a linear recursive Kalman
filter is employed, and the CPDF is updated only at discrete time steps, when
a measurement value is available. At each update step i =1,...,n and for any
perceptual region j = 1...5, the updating algorithm is given by :

e compute Kalman gain:

0% i
Kis= 52— . (39)

e update mean:

Bii = piie1 + Kji(pii-1 — Zjg—n+i) - (40)
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¢ update variance:

07 =1~ Kii)osiy (41)

Figure 18 shows how the parameters of the CPDF, p; and 03, vary at each
update. At the last update, we have the CPDF of the estimated depth given
the present and the past two measured values, P(Dj;/Z; -2, Zjt-1,254). Once

this CPDF is determined, the mazimum likelihood criterion is used to extract
the best estimate from the CPDF, i.e,

Dix = maz P(Dje/(Z5-2,Zj -1, Z;s))
= Ujij2; j=1...5. (42)
We have implemented a se

(35) and (39-42) for each regi
cessing stage.

parate Kalman filter according to Figure 17, (34),
on. Taken together they define our sensor prepro-

{/C a

Ros+

0 Z (mm)

Figure 18: Variation of CPDF of D; based on (a) Zjt—2, (b) Zjt-2,Z51-1, (c)
Zjt—-2,Zj-1,Zj4

5.3 Experimental Results

In order to test the preprocessin
2m in front of a wall. After firin
the wall at a constant velocity.
the readings of the sonars in the
robot approached the wall.

g stage, the robot was placed at a distance of
g all the sonars the robot is set to move against
While it was moving, we kept on recording
front regions (sensors 5, 7,8 and 10) until the

Afterwards we applied our as well as Reignier’s
pre-processing algorithm to the data gathered. Figure 19 shows a plot of both

results over time. Clearly, our pre-processing (broken line) provides the better
estimate. In particular, notice how the Kalman filter holds (sustains) the depth

estimate at a relatively high value with only little oscillations when the robot is
far from the wall.

Apart from this off-
used with an FRBF co
to move in our office e

line test, the proposed sensor pre-processing has been
ntroller on the actual TRC robot. It enabled the robot
nvironment and to pass even narrow doors.
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Figure 19: Performance test of the proposed sensor preprocessor
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