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intrinsic Dimensionality Estimation With
Optimally Topology Preserving Maps
J. Bruska and G. Sommer
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1 INTRODUCTION
THE Intrinsic, or pological, dimensionality of N patterma in an -
mmﬂwmmhmmm'hﬂ'p
rameters neaded 0 generate the patterna 3. (It has long been
noticed that this 19th-century notion of dimensionalizy ls unpre-
e and fraught with problema, see, 0., [1] for a short meview. Yet
there exists 8 previse definition of the topoingical dimensiomaity,
wﬂmmthIILanuﬂuwﬁMl}'
mmm:ﬂmtnnﬁmﬂmﬂ-ﬁﬂw}wm
sian) It essentially determines whether the s-dimensional patterns
can be descrived adequately in & sulspace (submanitold) of di-
mensionality m < m Oy providing a bound on the numbser of pa-
wﬂ_ﬂhdm&lmﬂmmmil?ﬂmh
mmmmmwwdﬂpuwﬂ
as in dat vissalization. o the 1D of a data set is two or three, the
daia can be mapped to a 20 or 30 map [4] and visualized for
monitoring of diagnosis purposes without distortions. In classifier
m.hmﬂmnmdmm
hH.d-eanmﬁbu;nm:HuHmpmpmduwshmh
iD 5} In ep. nontinesr dimension reduction with aufo-
sisociative five-layur bottle-neck networkas (8] the nismber of hid-
dlen urikts in the encoding middle Liyer shoald direcily corespond
mﬁhm.ﬁm&umphhhulh-ﬂmﬁlun;ntﬂhm.
where the dimension of local sabspaces should cormspond with
the local [0, The approach presented in this paper not only returns
hwm.:nmlmbultknlhlﬂdwlhmﬂm
Jocal linear modeling,
the clasification in [J], there are two primary ap-
Pmd‘ﬂhtﬂlh‘nﬂhﬁﬂulnhhﬂcdimn‘dﬂlﬂﬂ.ﬂlﬁlﬂm
uhjﬂmﬂhmhwmﬂmhuﬂdﬁdﬂ
flstiened n the d-dimensional space. Benett's al [8] mesd s
wucoessars g well as variants of MDSCAL [9] for intrinsic dimen-
mu,mmhmmmhuum.mmw
i & foced one and brivs 4 exfinuate the Intrinsic di-
sectly from information in the neighborhood of patterns
muﬂpﬂﬁmﬂpﬂnﬂwmﬂ!pﬂmw.
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Jower-dimensional space. Pettis et al s [10], Fukunaga and Olsen's
[11], an well as Trunk's [12] and Verveer and Duin’s method [13]
belong to this category.
Cwir approach belongs 1o the second category & well and is
hased on optimally topalogy preserving maps (OTPMs) and Jocal
component analysis (PCAL Bt bs conceptually similar io
that of Fukunags and Olsen (sbbreviated 10_FO in the following)
using local PCA as well, but by utilizing OTPMs can be shown to
better seale with high-dimensional input spaces (linear instoad of
cuble) and 1o be more robust agaknet nolse.

2 D EsTimaTion Witk OTPMs

Tiie loxal approaches 1o 11 estimation assume: thit the patterrs 2 & T
T the data set. are nolsy semples of o differentiable vector valued
function

Fil' =R, z=fki+n {1

whnl-[h.....h]ﬂ:d-d’mmﬁmnlumrn[dhd-pudnﬂ
parameters and & B denotes the nolse. The function [ can be
imagined o deseribe a d-dimensional surface in n-dimensional
space, which, dus tn the noise, is ot infinitely thin. Assuming
that in small local regions this surface con be lingarly appeo-
mated by d-dimensional hyperplanes, the basic idea behind
ID_FO i to perform local PCA in local regions of the data set
Ideally, sach local PCA should return J stgnificant sigenvalues
corresponding to the spanning vector &y, .. % of the &
dimensional hyperplane {and hence indicating a loeal D of o)
Ma—d:@vmmdﬂwmwhwmmdm
ing nodse] corres g B0 e EENVECON My, ., Ny perpendico
wummm.m;ﬁuppmmmnm“mmmm
reggion thi largest wariance in direction perpendicular to the wur-
face must be much smaller than the smallest varance in direction
of the surface, Lo,

min, Var{s | i a
i l";nl] ;

Here, Viris,), the intraduriace variance. depends on the stze of the
locil region and the pattern denaity, and Vir{n) depends on the
wiriance cassed by the notse amd the fact that the surface cannot be
exactly 4% a linear surfoce. This leads to & curse-
tureinotse diferema for ID estimation algorithms based on local FCA:
i the reghon | too lange, Var(:) might be high due to the curvatum
al the surface. IE, on the other hand, the region 18 oo emall, the
nicise b still thise and will eventually dominate Var(s). A more
basie is that 10 estimation in the of poise acty-
ally becomes an ifl-posed problem because without prior knowl-
exdgr charrving vananoe in some direction, it is tmpossible to tell
whether it coresponds to intrasurface varance or noise. [magine
just a straight line in 3D space and some small uniform nose in the
sampling Diows the dats describe a (1) line or & filled
{30} cylinder? The answer depends on the scale (size of the local
region) the data in looked af, and &n 1D estimation
glgerithm should provide estimates on different scales, leaving the
firal decision to the (bidsed) user.

Ins TO_FC) an well as cur procedure, both the curvatume { noise
are dealt with by

providing

ent scales). By tracking the
tion of different local region sires, the aser must decide which
pstirate most closely fits his expoctations. (f course, in order to
ihike local PCA approaches work, the data set his to be lange
encugh bo represent the nonlinearities and to allow for filtering ot
thar niolee,

Chur algorithm improves [D_FO with respect o computing Hme
(inear instesd of cubic scaling of PCA with the input dismension]
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and noise sensitivity by not working on the data lksell but on an
intermediate representation as introduced in the following.

2.1 Optimally Topology Presarving Maps

The ides behind topology preserming maps i 1o represent & mankiold
M R by a wpology preserving graph G = (V, E) IV| = N, in
which each node { & V' is sssociated with & pointer ¢ & M and a
pattern 2 € M s mapped to

1 = argenin; i, - o),

In arder o be preserving, poinbers ¢, ¢, which ame neigh-
bored in M should be assodated with nodes adjacent in G and vice

versa. Defining pointers in M to be neighbored il their induced
Voronod cells ¥,

l:'"-{"“"l‘.‘llil"f"l' Isj-liﬁ'}.

have a common border, G ls culled & perfectly ioprilogy preserring
map [14] if it cormsponds to the induced Delaunsy trangulation
Dui5) of the set of poirtens § = oy .ol Lo

etV Ay aa.

Mow, how can we construct a topology preserving map given the
pattern set T o R® and & pointer set § without knowledge of M7
The idea is to comstruct the graph G = (V. E) by simply going
through the pattern s and for sach r & T to calculate the best and
socond best G B T, A b0 cOPECE b
with smu i G, We call such a graph fulfilling

{, i@ Een 3ra Tvke VAL | maxfie - xf k-l sk -
ﬁmmmﬂwplmﬁﬂﬂiﬂmh
trabning st T. As follows directly from Theorem 3 in [14],
OTPM{5) is perioctly topology OTPM5) = Dyl 51 if
T=Mand 5 is “dense” i M. In the more general case that M= T <
B and 5 |s not dense, the condition

VEET  (Comatry Crmar) @ Dl 51, (3
ensures that OTPM{3) contains no edges not also contisined in
Did5). While (2) implicitly relates the Jocal pattern density, notse
level, and curvanere for [D-sstimation by local POA to make sense,
condition (3} relales curvabure, pointer [sampling) density, and
level of noise for perfect topology preservation of OTPMA5)L Ad-
ditionally, in order to obitain all edges in Dy(S1 the pattern derslty
must be high encugh to induce them during OTTM construction.
The number of miust increase ot lesst lnear with increas-
ing 1T (s the simplest d-dimensional geometric entity is the d-
dimenalonal skmplex with d + 1 pointers) and hence the rimber of
patierns musi increase at least quadratic (the d-dimensional sim-
plex has 25 edges).

For our OTPMAS) has two important properties,
First, it does indeed only depend on the intrinsic dimensiomality. of
T, e it s independent of the dimensionality of the input space.
Embedding T into some space dom not alter
the graph. Second. it bs imvariant against scaling and rigid trans-
hmmuhm-dmm”mhymmuuﬂu

2.2 The ID Estimator

The D entbmathon ID OTFM based on
OTFMs s summarized in Fig. 1. For a growing number of up to

herr meiers 1o the function of T. Villmans
al [:?MAM WWSIhﬁ%Hﬂuquﬂqﬂ-n
Oy pressrvation.

izput traioing set T c XK',

maximal musher of pointers N,
significance level o.

8 = | arbitrary x e T )
for @ = 1 to M. {
5, = LMG(T, &)
G = OTPM, [ )
for_all modss (i & @)
@ ={le ~ e, = Slti) ¢ £
ID; = #_significanc sigemmlues{PCA(), o)
|
sﬂﬂ = "i; U“H‘nf{'ﬂ'i“.,u,l' = =|If
}
Fig. 1. 1I0_OTPM: local ID esSmation with O7TPMs,

N 5 1T pointers (cormesponding fo the shrinking focal region
sizes in [D_FOY, it proceseds as follows:
= Fint generate o set of N pointers 5] = [ ... £, a5 the
output of & vector quantization algorithm working on the
tratning set T. Here we use the LBG [16] algorithm LBG(T,
) with initial polnter set 5y

# Second. calolate the graph G as the optimally topalogy-
preserving map, OTPM, (S} ), of 5} for T,

= Third, for each node | & G, perform a principal componen:
analysis on the set (, = R" constating of all the m, ditference
wectors (¢ - o) between the pointer of node | and all of it m,
direct neighbors in G. Estimate the Jocal intrimic dimen-
stonality [D) as the number of significant elgenvalues (se
below) as returmed by PCA Finally, for the next round, ex-
tend the initial pointer set for the LBG-stage by including
the pattern with the largest quantizstion error

As a resull of the vedor stage, the pointers ame
plﬂ:!onﬂupﬂ‘-ﬁpﬂmﬂﬁhﬁhtmdmurﬂmmﬂh
largely fllered out, OTPM, (5, ] & constructed by simply conmeet-
ing nodes corresponding to the best and second-best matching
pointem an presentation of T.

As mentioned before, the central “trick™ ia to use the difference
vectors (¢, - ) for PCA of sach local sulspace and not the data ina
local region ielf: First, the difference vectors have very low nolse
component orthogonal to M (due to the nolse mduction property
ol thie vector quantizing stagel and, second, the number of neigh-
bors m, of a node in an OTPM depends only on the intrinsic di-
mensionality  and is small for small J. tiorward PCA of Q)
mevertheless would take time O(n'y [17), yet the number of vectors
in Q, is m; and hence thee local PCAs an be perfemed in tme
Ofm'n + m). Since LBG() and OTPM-construction scale linear in
i as well, ID_OTPM scales linearly (optimally} with the input
dimensionality.

Following the discussion in Section 2 the problem of deciding
whatther an elgenvalue bs significant is again ill-posed, because one
does not know the intrasurface variance, the niolse, and the our-
vature bo concretize “= 17 in (2). We have adopted the same Da
criterion as did Fulunsgs and Olsen regarding an eigenvalue 4, as
sigmificant i

> a%. i)
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TABLE 1
CoonsryumingG Tibe WITH 32 LOCAL REGIONS AS A FUNCTION
OF THE INBUT DRENSION » FOR THE HELIX Dara SET

DN A SPARC 4 WDRKSTATION
0 FO | ID_OTPM

n tofse] | fimafsec] | tufsec]
] 0.Te (5] 1.2
B 14,75 5 48 A0
100 30 57 [T 13.88
160 THA 11.62 17.68
200 14367 1674 245

values for @ are Bve, 10, and 20 As o [D_FO, different
vahues of @ have to be tested, and again i is up to the user to pre-
fer & corlain interpretation, Yet in [D_OTPAML noise is largely e
duced. and hence for the same amount of noise on the data, & can
ustally be smaller than in ID_FO.

3 EXAMPLES

Previous vtk o different [D estimators including
ID_FO on artificial and “natural” data sets [18], [13] concluded
that dirsgpite the need for and interactson by the user
(which we think is indispensablel, ID_FO i one of the most rel-
abls and eagy-to-use methods, yer confirmed that it is sensitive to
poise and suffers from gquickly increasing computing fime with
increasing  dimensiors. Here we want to demomstrate that
I0_OTPM evercomes these two problems using a helin data et
demonstrating

and an image sexpence. Mote experiments the
waorkability of ID_OTPM can be found in [19], including examples
for ID up 1o five.

Thve helix data set consists of 1000 notsed samples generated by
£ = 'I‘fmf1runl..;—l_—l‘]+{q..r;_..ql'|,

q'unl'mnhm[-u,‘. -q,]. F=2 p=2 re[04a]

Tabile 1 shows the scafing of compufing time’ with increasing tnput
dimension » for e helix datn set. Data wa geoerated with ag=
05, the additional n =3 dimensions being filled up with uniform
noise with the same amplitude oy Using the cydic lacobi method
as described in [17] for eigenvalue in bath algo-
rithens, ID_OTPM scales linearly with n and for 200 dimensions s
almeady six tirmes faster than the superlinesrdy (cubic) scaling
ID_FOL Maote, that more than half of the Sme of [D_OTPM bs wsed
for vector quantization, The helix is also used o compare the noise
sensitivity of the two algorithms. Fig. 2 and Fig. 3 show the global’
I extimates cbuaimed by each algorithm & a functn of the num-
ber of nodes in ID_OTPM (respectively, local regions in ID_OF) for
clifferent noisr amplitudes ay on the D20 level While TD_OTPM
iructioanes the true 10 for @y up be 1.0, [0_CF has problems even for
g = 05 Foray = 1.5, [D_OF ndicates the full input dirmenaion,
while [0 TP rebums an 1 essimate of about two, ndicating
the near cylindrical (20 distribution of the data for that amount of
RCHSE,

In a second experlnent, we investigate an image sequence
genserated by taking 180 snapshots (every 17) with a resolution of
56 = 256 plxls (65, 556-dimensional space) of & robot rotat-
ing & cylindric gray ramp around its 2-axks {from 0% to 3607 see
Fig,. 4: Since the backgrounsd nrrains conslant, the images be on a
dlosed 100 irapectory in image space with 1D d = 1. The noise in the

2 Impiememtation and compilation ane ol optmced,
3 Global 1D sstimades ane by averaging over all bocal [ ==
Bt
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¥ wgnilican egoriel on D20 e

u i

B 10 15 20 B8 30 38 4D 4B 5D
# nodas
21D astimates for ID_CTPM on DD leval lor bifia data sot with
amaunts of noise.
4 -
noisa; 0.0 —
as noisa: .5 —
nouse: 1.0
‘__nn-n:]l—_‘
]

i sigyufcand lgariliiog on (120 kel

5 10 15 20 25 30 3| &0 458 50
B nooes

Fig. & 1D estimates for ID_FO on D20 leved for heiix daim st with aif-

Ieraet Aol of roiss,

measuremiml process is approsimately Gaussian with a standard
deviation of 1.75 gray values per ID-estimation with
ID_OTPM on the DOS level (Fig. 5) indicates that the 1D is at most
tven." Estimation on the D10 level sdicates an 1D between oné and
fwo, whereas sstimation on the D20 level indicates an intrinsic
dimensionality of one, the true ID. I s inteoesting fo notice that
in spite ol the 65,536-dimenalonal input space, the ID-estimate
mwver exceeds two on all three levels. The explanation, revealed
by an analysis of the OTPMs for each number of nodes, is that
the edges in the OTPM actually form a (10} trajectory. Le. the
intrinsic structure (topology) is commwctly mpresented by a 1D
graph. Due to the nonlinearity of the trajectory, however, the
local PCA taking the two difference vectors of a
two tepologhcal neighbors as input does not indicate a 10 local
structute on each bevel,

4 DISCUSSION
We have prosenied an algorithm for estimating the intrinsic di-
mensionality of low-dimensional submanifolds embedded in high

4 The meader should bear in mind that in this and te following e
periment, we do et Ay o the objects in the

soea, &5 the shaps
that

o the cylnee

bzt tha pramber o fnee parainebess

generated the tmage sequence. Bach kmage 18 just treatod a9 ons
peint in 65,5360 unage space.
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Fig. 4, Rotating gray mimp with part of he rebot arm in iha backgound
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Fig & 10 pigts on D05, D10, and D20 levels, Error bars indicats tha
ETEndiarg dewialion of the global 1D estimate for the 020 iswal.

dimensional feature spaces. The algorithm belongs 1o the catepory
of local [D-sstmation procedures, s based on local PCA, and di-
rectly extends and improves its predecessor, the algosithm of Fy-
kwnaga and Olsen [11], in terms of computational complexity and
noise seruitivity. The main idess ary, fimt to cluster the data, see-
ond, to constroct an OTPAL and. third, to use the OTPM and not
the data itself for local PCA

Clustering Is respormible for an even distribution of the duster
pointers and for naise reduction, Le. placing the pointers in the
manifold, The lecal PCA taking dilference vectors of pointers as an
input benefits from the nolse reduction progenty of the dustering
stage. Its cutput, the elgenvalues, gives a better hint at the local 1D
than those of straightiorward local PCA on the data lisell alwavs
inchuding the hall variance of the noise

Constructing the OTPM for the dusier pointers provides a jow-
dimensional mpresentation of the data which optimally reflects the
intringic {topological) structure of the data. Independent of the

dimension of the input space and Invariant wirt sealing and rgid
tranaformations, it provides an bdeal basls for [D estimation Ex-
ploiting e OTPM for local PCA, our D estimation procedure has
oaly linear time complexity in the dimension of the input ipace.
and the invariance properties directly transfer fo the estimae

OTPMs together with elgenvectors and elenvalues rebisrmed
by local PCA ame not only useful for [D estimation bul tan be
used for lincar approsdmation of the dats and construction of
ayto-gssociatons in quite an obvious way. Such associators will
wark by projecting new data to the local subspaces spanned by
the eigenvectors. iz, by projecting fo the linvar approvimation of
the manifold.
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