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Abstract

In this article we show how optimally topology preserving maps (OTPMs)
can be used for efficient local subspace construction and how existing
local approximation networks can benefit from the local subspaces such
constructed. The network models include radial basis function (RBF)
networks, local linear maps (LLM) and local linear data modeling.

The local subspaces are constructed by local principal component
analysis (PCA). Exploiting the OTPM, the local PCA can be shown to
have only linear time complezity w.r.t. the dimensionality of the input
space (in contrast to the prohibitive cubic complezity of the conventional
approach), and hence the method becomes applicable even for very high
dimensional input spaces as frequently encountered in computer vision,
cf. [2]. Interesting on its own, we demonstrate the workability of the sub-
space approach by means of an appearance based robot grasping system.

1 Introduction

It has long been noticed that if input data stemming from some low d-dimen-
sional manifold are embedded in a high n-dimensional input space, a local
approximation scheme should work by projecting input data to the manifold
and restrict approximation to within the manifold (hence eliminating noise
orthogonal to the manifold). In a straightforward approach (e.g. [3]) a number
of centers is distributed within the input manifold and an approximation to the
manifold by local subspaces is obtained by local PCA of data in the Voronoi
cells of the centers. Yet PCA has serial time complexity O(n®) independent
of the intrinsic dimensionality d of manifold, and hence the approach becomes
prohibitive for high dimensional input spaces.

On ICANN’97, [2], we have shown how local subspace analysis by PCA
becomes possible in time O(n + m(d)?) using optimally topology preserving
maps (OTPMs), where m(d) is a function of the intrinsic dimensionality of
the manifold only. Hence by using OTPMSs, local subspace analysis scales
only linear with the input dimensionality and suddenly a large range of local
subspace approximation schemes becomes applicable. For example, in the local
linear data modeling approach [3], data are modeled within the local linear
subspace. In RBF networks, stimuli can be projected to the local subspace
prior to calculation of the activation function, resulting in Hyper Basis Function
(HBF) networks, [5]. Finally, in Ritter’s Local Linear Map (LLM), [7], the
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subspaces can be used for both projection and reduction of storage requirements
for the Jacobian matrices. :

2 Efficient local subspace construction

For the convenience of the reader, we will now briefly review the basic proce-
dure for efficient local subspace construction with optimally topology preserving -
maps as presentend in [2]. Given a training set T C IR", it proceeds in four
stages (batch-variant).

1. Generate a set of N centers S = {c1,...,en} C IR"™ as the output of a
vector quantization algorithm working on the training set 7'.

2. Calculate the graph G = (V, E) by
(a) associating each center in S with a node in V/, i.e.
[V|=|S|andc;e S& i€V

(b) for each z € T, connecting the nodes associated with the best and o
second best matching centers, i.e. - e

E ={(i,§)|3z € TVk € V\{i,j} : max{||ci —z ||, |l ¢; =z [|I} |l ex — 2 [}

G is called the optimally topology preserving map, OTPMr(S), of S
w.r.t. T, cf. [2].

3. For each node i € V perform a principal component analysis of the set g
of m; difference vectors {ci; — ¢i,...,Cm;, — €i}, With (¢j; —¢;) the differ- .
ence vectors between ¢; and ¢;j;, the center of its j-th direct topological i
neighbor in G. o

4. Exclude eigenvectors corresponding to very small eigenvalues. A

As a result of the vector quantization stage (step 1) the centers are placed 2
within the data manifold M C IR"™ and noise orthogonal to M is filtered out. In B
step 2, OT PMr(S) is constructed by simply connecting nodes corresponding o
to best and second best matching centers on presentation of T'. e

The central “trick” in step 3 is to use the difference vectors (cj, — ¢;) for '
PCA of each local subspace and not the data in a local region itself. First,
the difference vectors have very low noise component orthogonal to M (due
to the noise reduction property of the vector quantizing stage), and second,
the number of neighbors m of a node in an OTPM does only depend on the
intrinsic dimensionality d and is small for small d. The latter property can be
exploited to perform local PCA in time O(m(d)?n + m(d)?), [2], hence scaling
only linearly (optimally) with the input dimensionality n.

Deciding in step 4 what size an eigenvalue ; as obtained by each local PCA
must have to indicate an associated intra-manifold eigenvector (and not a noise
component), amounts to determining a threshold e (significance level). In this
work, we will regard an eigenvalue y; as significant if 'nTnI::_:II,' > a. If no prior

knowledge is available, different values of a have to be tested.
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3 Local subspaces for neural data modeling

Local subspace construction as described in section 2 supplies us with a set of
(orthonormal) eigenvectors e, ..., e}"l_, li < m;, spanning a local subspace for
each center ¢; € S. In this section we show how knowledge of these subspaces
can be used to improve existing local approximation schemes.

3.1 Local linear modeling

In 3], Kambhatla and Leen proposed an algorithm for local linear modeling
of data based on clustering and straightforward PCA. They first generate a
set of centers S by clustering the data with a vector quantizer, then they use
local PCA in each Voronoi cell to obtain the local eigenvectors. New data is
coded as the index of the best matching unit, bmu, together with the projection
coefficients to the local eigenvectors (2 —csmu)T €)™, ..., (z—Comu)Te}™" . The
reconstruction (decoding) is given by

tbmu

T = Comu + Z((x - Cbmu)Te?mu)e?mu- (1)
i=1

Utilizing the efficient local subspace construction procedure (section 2) we were

able to apply local linear modeling to a sequence of (64 x 64)-dimensional images
in [2].

3.2 Subspace Local Linear Maps

The Local Linear Map (LLM) as introduced by Ritter et al., [7], has found
widespread application for learning input - output mappings. The LLM rests
on a locally linear (first order) approximation of the unknown function f :
R™ — R* and computes its output as (winner-take-all variant)

Y(z) = Abmu(T — Comu) + Obmu- (2)

Here oy, € R* is an output vector attached to the best matching unit (zero
order approximation) and Asm. € RF*™ is a local estimate of the Jacobian
matrix (first order term). Centers are distributed by a clustering algorithm.
Due to the first order term, the method is very sensitive to noise in the
input. With a noised version z' = z + 7 the output differs by Aym.n, and
thus the LLM largely benefits from projecting to the local subspace, cancelling
the orthogonal (w.r.t M) noise component of 5. Equally important, instead of
adapting and storing kxn parameters with each matrix A;, by first projecting to
the local /;-dimensional subspaces only matrices Al € R**L need to be stored.
This results in much better scaling with the input dimension n and, because
of the reduced number of free parameters, better learning and generalization

properties. The Subspace LLM (SLLM) proposed in this article hence takes
the form

y(z) = LmuEbmu(m - Comu) + Obmu, (3)



734

where E; = [e},...,e]] denotes the local projection matrix as calculated by
the efficient subspace construction procedure.

3.3 Subspace RBF networks

RBF networks for learning input - output mappings approximate the unknown
function f : R® — R* by

y@) =3 ohilll z - ), (4)

c;ES

where h; : R — [0, 1] denote strictly monotonically decreasing activation func-
tions, e.g. hi(z) = exp(—2z2/o?). Their netto input is usually calculated as the
squared Euclidean distance, i.e. || z — ¢; ||?= (z — ¢;)?. With the squared Eu-
clidean distance, some noise component 7 orthogonal to the input manifold will
result in a change of n? of all netto inputs and hence seriously affect approxima-
tion. Again, this noise component can be filtered out by projecting the input to
the local subspaces. This amounts to setting || z—c; ||? to (z—c¢;)T E;ET (z—c;)
where E; = [el, ... ,ef‘,] is the local projection matrix. The basis functions now
become Hyper Basis Functions (HBFs), cf. [5]. -

In general, the manifold can be curved and wrapped and hence we can not
use all HBFs for approximation for a given stimulus (because they have lost
any sensitivity orthogonal to the local eigenvectors). A solution to this problem
is to use only the HBFs of the best matching unit and its direct topological
neighbors w.r.t. the OTPM, Nh™(bmu), for output calculation:

y@) = Y, ohi((z-c)TEBE] (z - ), (5)
iENAt(bmu)

Note that eq. (5) is just the Dynamic Cell Structure approximation scheme [1],
except the additional projection to the local subspaces.

3.4 Normalized RBF networks and the effective
projection property

In normalized RBF networks, the output of the RBF network is normalized
with the total activation, i.e.

§(z) = oihi/ Y hi. (6)

Interestingly, in case of Gaussian activation functions with equal widths o; and
all centers c; lying in a linear subspace H C IR", these nework possess an
effective projection property [1): They are insensitive to noise orthogonal to H
without explicitly projecting to H, i.e.

j(xr +n) =j(z) forz € H andnLH. (7) 48

Hence in this particular case, explicit projection to H has little effect.
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4 The robot grasping application

Our demonstration concerns appearance based pose estimation of objects, cf.
[4]. Fig. 1 (left) shows the experimental setup. Given an image of the object,
the robot has to estimate its pose and to grasp it. The flat object has only
one degree of freedom, its rotation around the z-axis, and hence images under
different rotations lie on a 1-dimensional trajectory in image space.

Preprocessing of the image involves segmentation, scale normalization, tak-
ing the logarithm of grey values and convolving the image with 75 DC-corrected
Gabor filters. The latter are distributed on a 5 x 5 grid, with 3 orientations
on each position. As bandpass filters the Gabor filters serve two purposes:
In conjunction with the logarithmically graded grey values they first achieve
brightness invariance (filter out the DC component) and, second, they filter out
high frequencies which would lead to discontinuous trajectories in image space.
The 75 filter responses serve as input to the networks. We use 180 images and
their corresponding grasping angles as a training set, 180 as a test set (differing
by 1° rotation from those in the test set).

100
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10
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Figure 1: Left: Robot arm with attached camera for appearance based grasping of a
spanner. Right: Pose error [°] for Subspace LLM on a = 0.2 level, normalized RBF
and Subspace RBF network and winner-take-all network.

Figure 1 (right) shows the grasping accuracy for a Subspace-LLM on the
a = 0.2 significance level, for a normalized Subspace-RBF network on the
a = 0.2 level, for a normalized RBF network and a winner take all scheme (av-
eraged over 180 test images). All approximation schemes used the same center
distribution (generated by an incremental LBG vector quantization algorithm).
For the RBF networks we used the activation functions

hi(2) = exp(—22/0?) with 0} ~ [mamr Zjennc) (€ — )

For each number of centers the output vectors o; (and Jacobian matrices 4;

in case of the Subspace-LLM) were optimized by singular value decomposition
(SVD) [6]. Not surprisingly, the Subspace-LLM shows the best performance

|
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and achieves a pose estimation error of 1° with as few as 15 nodes in the net-
work. The normalized Subspace-RBF network, however, performs only slightly

better than the simple normalized RBF network. This can be attributed to the -

effective projection property of normalized RBF networks.

5 Conclusion

We have shown how to efficiently construct local subspaces utilizing OTPMs
and how to use these subspaces for improved local approximation schemes. By
projecting data to the relevant subspaces, othogonal noise is filtered out and,
as in the case of the Subspace-LLM, the number of free parameters can be
dramatically decreased.

Concerning our grasping application, we have succeeded in extending the
demonstration presented in this article to an appearance based robot grasping
system for multiple objects. In another project, we have equally successfully
applied the local subspace approximation schemes for estimating the head pos-
ture in facial images. Based on these experiences we are confident that the pre-
sented subspace approach may become a valuable tool in pattern recognition
applications characterized by high dimensional input spaces but low intrinsic
dimensionality, in particular visual learning.
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