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Ahstract. This paper describes fast and accurate culibration-
free aduptive saccade control of a four-degrees-of-freedom
hinocular camera-head by means of Dynamic Cell Stnuciures
(DCS). The approach has been inspired by biology because
primates face a similar problem and there is strong evidence
that they have solved it in a similar way, Le., by error feed-
back leamning of an inverse model. Yet the emphasis of this
article is mot on detailed biclogical modeling but on how
incremental growth of cur artificial neural network model
up to a prespecified precision results in very small networks
suitahle for real-time saccade control. Error-feedback-based
uﬂnln;;ufd:hnﬂwmkpnmﬂinlwplmluﬂuﬁm
phase we use a crude mode] of the camerns and the kinemat-
ics of the head to leam the topology of the input manifold
iogether with a rough approximation of the control function
off-line. In contrast to, for example, Kohonen-type adap-
tatlon niles, the disribution of newral units minimizes the
contrel error and does not merely mimie the input probs-
bility density, In the second phase, the operating phase, the
linenr output units of the network continue to adapt on-line.
Besides our TRC binocular camera-head we use a Datucube
image processing system and a Sthubli R90 robot arm for
automated training in the second phase. It will be demon-
strated that the controller successfully corrects errors in the
mode] and mpidly adapts to changing paramelers.

1 Introdoction

Saccades e fast eye movements used by animals to change
fixation from one point in the visual ficld 1o another. In the
conteat of our binocular camera-head we refer to saccades as
fast eye and head movements that serve the same purpose,
i.e., rupid change of fixation. Since the emphasis is on rapid-
ity and accuracy, pure feedback control is not the optimal
choice for either animals or robots because of long delays
and transient effects associated with the feedback loops. For
example, in the case of human eye movements of up 1o
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1000 deg's and a delay for visual feedback of about 200
s, there is no time for visual feedback to guide the ye lo
its final position (Carpenter 1988). The human saccade con-
trol systers must therefore calculate the patiern of muscle
activaiion in advance for each targel position on the retina
(Carpenter 1988) ~ in other words it must have solved the
inverse kinematics' problem (Dean et al. 1991},

According to an idea first put forward by Kawaio et
al. (19871 and Miyamoto ef al. (1988}, the inverse kine-
matics can be learned by error feedback, ie., by using an
error signal proportional 1o an error in target coondinates a5
training feedback for biological or anificial neural petworks.
In sddition 1o there being strong neurobiclogical evidence
that error feedback is also the way monkeys and humans
learn and maintain saceadic sccuracy [Deun et al. 1994),
Kawato has successfully applied this principle to a vanety
of robotic tasks, including trajectory conirol of industrial
robots (Kawato 1990),

Error Teedback learning for saccade comtrol of a sim-
ulated (in contrast o an clectromechanically or, synony-
mously, physically realized) camera-head with conventionel
artificial nevral net (ANN) architestiures has besn systemul-
ically studied by Dean ef al. (1991), Mayhew et al. (1592)
report implementation of a layered control system for a
four-degrees-of-freedom stereo camera-head utilizing their
Parameirized Interpolating Look-Up Table (PILUT) archi-
lectire.

Inspired by Dean et al. (1991) we have chosen & simi-
lar approach to adaptive saccade control but sclected a lo-
cally linear approximation scheme based on Dynamical Cell
Sructores (DCS) (Bruske ef al 1995) for control of our
{physical) binocular camera-head since this type of ANN
iduﬂymhdmd:nfﬂ:cuwlmkcﬁmmu:dv
culation of the controller output has to be as fast as possible
to allow contral ot video rate. Incrementally growing DCS
mest this requirement by (i) growing the network only us
large as necessary 1o meet o prespecified precision and, fur-
thermere, by (i) utilizing only a small subset of its neural
units for output calculation. Second, in both the human and

I In roboticy, (e torm “inverss kisemann’ of, for example, & mobot arm

sefiers 10 (he problem of debermining e joim snghen roquirsd b mowe the
ol effecinn 10 & cemais (caneiian) posizioe.
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our wrificial wision system the angular rotations. around the
horizontal viewing, pan and tlt axes (ef. Fig. 1) required to
fixate are & lineor function of the retinal = and  coordinates
of the target only in the case of a restricted field of view (0
that the difference between a planar and o spherical retina is
not important and the small angle holds) and
a smmall fmitial tlt angle. With increasing oli the optical axes
of the cameras and the pan axis are no longer perpendicu-
lur and the nonlincarity of the control law incresses, Hence
whmmgmmmmmuh:m:hu:dmhnﬂyhnm

the density of neural units should be high in
regions of the inpot space with a high tilt component. Con-
trary 10 Kohonen-type networks or PILUT, growing DCS
afe able 1o achieve this by allocating new nearal units in
regions of the input space where the approximation error is
high. This is exactly the case for regions of the input spacs
deviating from the lincar control law.

Finally, due o physical constraints phase space trajecto-
riea of multidimensional systems such =3 the camem-head
system usyally lie on submanifolds that locally may be
of very much lower intrinsic dimensionality than the input
space of the system. DCS just attempt a similar reduction in
dimensionality in that they place units in the inpul subman-
ifold and adapt their lateral connection structure towards an
optimally topology-preserving map that is wiilired for im-
proved adaplation and approximation.

The remainder of this paper is organized as follows, In
Sect. 2 we will firt relate our adaptive saccade controller
to saccade control in humans and other primates, i.e., ox-
plain the biclogical motivation. We will then become more
techmical and in Sect. 3 have a closer look at the kinemat-
ics and inverse kinematics for calibrati misdel-
based control of the camera-head. [nsights from this analysis
are used in the design of the DCS-based adaptive saccade
controller in Sect. 5 as well as for the discussion of the ex-
penimental resulis in Sect. 6. DCS are briefly introduced in
Sect. 4. In Sect. 7 we relate the paper 1o previous work and
in Sect. § we provide a final summary,

1 Relution to primate snceade control

Our work bears relatbon 1o biology in three respects. First,
we try to solve a similar problem under similar conatraing
that the human visaal system has already solved, Le., the
problem of fast and accurate saccade control. Second, we usé
ermor feedback leaming for solving the problem - a learming
mechanism well grounded in neurobislogy (Kawato 1995}
and probably nsed for maintaining accomte ssccade conmol
in the uman visual system (Dean ot al. 1994), Finally, we
make use of artificial nevral networks, which are biologically
inspired as well. We now discuss these issues in more detail,

2.1 Reguirements for saccades in artificlal
ind Wological syrtems

In biology, saccades denote the fast movements of the eyes
that are used to bring & new part of the visual ficld to the
foveal region {Carpenter 1988). They have to be a3 accurte
us possible straight away since correctional ssccades ke ad-
ditional time. Because they are so fast, external feedback is

inappropriute for control becasse of the long latency of such
feedback loops. Since this is exactly the problem we are try-
ing 1o solve for our amificial camers-head, we have termed it
*saccade control problem’, although we additionally controf
the pan 3 and tilt ¢ of the hesd, (cf. Fig. 1). Interestingly,
similur restrictions apply to both the biological and our arti-
ficinl system: Human eyes as well a5 our cameras can move
with a velocity of up to 1000 deg/s. In our amificial vision
system the delay for visual feedback is about 40 ms, due
to image processing and data transfer among various buses,
The human visual system has a latency of st least 120 ms
{Carpenter 1988). A major challenge for both human sac-
eades ind control of our camerns is that the required change
in eye position depends not only on the visual (retinal) co-
ordinates of the torget but also on the initinl hesd and eve
position, if the optical axes of the comerss are not initially
perpendicular to both the pan and tilt axes.

2.2 Adaptive saccade corirol by error feedback learning

Although human saccades are generally to be pre-
programmed of ballissic (Carpenter 1988), this only means
that once initiated they cannot be modified in flight. It does
mot answer the question whether the necessary activaiion
patterns are genetically preprogrammed or leamned. Indeed,
there gre a number of lines of evidence pointing 1o the im-
parance of learning (Dean et al. 1994). Human infants, for
example, produce hypometric saccades that become accurate
during the first year (Aslin 1987); adults adapi 1o the effects
of eye muscle wenkening (Zee and Optican 1985); and sub-
Jjects under laboratory conditons come to anticipate the sur-
reptitious movement of a visual target dunng the saccade o
it (Deubel et al. 1985). Based on these and similar findings
Dean et al. put forward their model of brainstem-cerebellar
Interactions for learning and mudntoining saccadic accuracy
based on Kawaio's principle of feedback ervor leaming. The
model is similar to Kowato's models for sdaptive modifi-
cition of the vesiibulo-ocular reflex and ocular-following
response (Kowsto 19953 We will now briefly review this
model of homan adaptive saccade control and then relate it
to our artificial saccade control system,

Az pointed out by Dean el al,, rypical models of sac-
cade control contain o variant of the internal feedback pulse-
generator proposed by Robinson (1975), Such a simplified
model (Dean ot al, 1994) comprises o simple feedback con-
troller converting target coondinates fn visual coordinates
to o desired change in eye position. This desired change in
eve podition is then passed 1o a pulie or bigest generator that
oatpats & velocity command 10 the eculomotor neurons. An
irrermal feedbuck loop with a resentable integratar integrates
the pulses (velocity command) of the burst generator and
subtracts this estimate of the cument eve displacement from
the desired change in eye position (hence siopping the burst
generator when input is below a threshold). Finally, a fir-
ther infegrator also integrates the velocity signal o provide
& steady-$tale position command to the motor neurons that
is necessary oo maintsin the new eye position. While such
8 model can account for & large amount of data about the
behavior and physiology of the saccadic control system in
monkeys and humans (Dean et al. 1994), it cannot learn w



make accurate saccades nor does it inchude information con-
cerning the eye position at the start of the saccade. Dean
et al. therefore extended this model by an aptive contraller
that receives input from both the feedback controller {about
the visual coomndinates of the target) and the aculomotor nea-
rons (about the initial eye position), The output of this addi-
tional cantroller aliers the gain in the internal feedback loop,
thereby controlling saccade generation. Utilizing error feed-
back learning, the controller is adapted by an error signal
also emannting from the feedback controller.

While it has been suggested that the burst generator is
comprised of groups of neurons in midbrain and pons, and
it is assumed that the functionality of the simple feedback
controller is located in the superior colliculus, Dean et al,
have hypothesized that the adaptive controiler is located in
the posterior vermis. In their model, grounded on anatom-
ical and physiological evidence, the information about ihe
visual coordinates of the target is firs projected to the con-
tralatern] Aucleus recticularis tegmenti pontis which in rom is
conpecied with the posterior vermis through a heavy mossy
fiber projection. The source of the signal about the initial eye
position is not entirely elear, but the authors quote evidence
that it is the nucleus prepositus hypoglossi that projects to
the posterior vermis via mossy fibers. Finally, the error sig-
nal is thought to be provided by climbing fibers that arise
from a specific subregion of the inferior olive, which itsell
is the warget of & projection from the superior colliculus.

Tn contrast to Dean et al. (1994), our adoptive saccade
contraller is oot kntended to [mitate or model biology in
the first place but to control a pamicular electromechani-
cal device - the TRC camern head. Nevertheless our con-
troller has a number of structural paraliels with its biologi-
cal counterpast, mainly the sssumed overall structure com-
posed of a simple feedbuck contreller and an adaptive in-
werse model, the laner being adapted by an errof signal pro-
vided by the feedback controller (cf. Fig, 4). Also there is a
strict separation between the visual coordinates of the target
and the initial eye and head positions. As in ithe biclogi-
cal model, the simple feedback controller is provided with
the visual target information only, whereas the adaptive in-
verse model receives information about the initial positions
g5 well, The main functional difference compared with the
biological model is that our sdaptive controller does not con-
wol saccades indirectly by modifying an internal feedback
loop but muher directly by generating the input for the in-
termal controllers of the camer-head.

2.3 Biplogical plousibitity of DCS

hmﬁedhinﬂhlﬂyhﬁplmdbyﬁnhﬂ.lh:ﬂmdld
ANN models [Multi-Laver Perceptron (MLP) and Radial Ba-
sis Function (REF) networks] ceruinly have little 1o do with
biological neurnl networks, mt least on the newrvanatomi-
cal level. They represent nonlinear function approximators,
which tom out to work very well, both in theory and in
practice. ANN are capable of learning and hence can be
eonsidered models of higher-level brain functions associated
mmﬁwmﬁmm"mmm@
tion that are closely related to function approximaiion. The
DS we have wied o this paper are RBF networks with an
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additional lateral connection structure formed by Hebbian
learning. Poggio (1990) has outlined his “theory of how the
brain might work” by means of HyperBF networks, On
a functional Jevel he sugpests that the brain iwres modile
for multivariate function approximation ax basic components
of several af ity information processing subsystems and that
these modules are released by HyperBF networks, He also in-
dicates how these networks can be implemented in terms of
hinhaiuﬂypllm'bhmhnimmdnhmiurhmubd-
lum is proposed to consist of a set of approximation modules,
the granule cells to corespond o the basis functioas that re-
ceive input vio mossy fibers, the Purkinje cells to correspond
to the output units that sum the weighted activities of the ba-
sis functions end the climbing fibers to provide a teacher 5ig-
nal. Within this theory the adaptive saccade controfler would
be implemented by a HyperBF network. similar to our DCS-
based adaptive controller. Martinetz et al. (1994) comment
on a possible analogy between their Topology Representing
Networks (TRNs) and the architecture of biclogical neural
networks, which would enable the network o represent the
neighborhood and topological relations between features just
as in DCSY. Yet to our knowledge neurobiological evidence
for this snalogy is locking.

3 The camera-head

Let us now introduce our binocular camera system, the TRC*
BiSight. We first describe the imaging geometry of the sys-
tem and then report results concerning the inverse Kinematics
for model-based control. Finally, we discoss the implications
of the inverse kinematics for calibration-free adaptive con-
trol. Besides the hinocular case we also treat the simpler
manocular cuse.

1.1 The TRC BiSight camera system

The TRC BiSight (Fig. 1) has four mechanical degrees of
freedom, given by the pan angle x, the tilt angle & and the
horizenial viewing directions (h.v.ds) §; and 8, for the left
and right camera, respectively. The maximum control valies
are +160° for pan, £90° for tilt and £45° for the hv.ds,
The precision is £0.0225" for pan and ult and =0.006" for
the h.v.ds. The CCD cameras are mounted on the Gl axes
and the length of the stereo baseline s 25 cm. Each cam-
era has three optical degrees of freedom: the 200m (11.5-
69 mm), the focus (30cm—o:) and the aperture. The image
size of each camera is 512° pixels.

3.2 Geometry of the camera-head

For the configuration of the TRC BiSight, the mapping from
POt P = (Fue, Vuws Sy 1) i homogeneous world coordi-
nates to 8 point fi; = (T, Yo 2 1) in comera coordinates is

§ poggin’s HyperBFs are jusi penevaliond REF wring elliprical Innesd
af radially yymmetrical weighting functions.

3 Aceonfing to the definition of TRN (Metinete et al. 1994}, DCS e
be classified as TRNs wiik a REF smociated with each sode in the graph
of e THN.

4 Transiticen Research Corportion, Dunbery, Conneciicut, USA
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given by
Po =T T3\ T P (h

{ and = indicating the lefi and the right comera, respectively,
with transformation mutrices

feody 0 —siny 0]
T = 0 1 i} (1]
x siny © comy O
L0 0 0 1)
1 0 0 07
0 eosg —gming 0
Te= |0 sineg cme 0] @
L0 0 ] 1]
[ cosfy 0O sinf -82
To = 0 I 0 0
%75 | —sin®y 0 cosdy O
L 0 0 0 |

and Ty, analogous to Ty, (changed index and reversed sign
of ranslation and rotation). Here, wie assume the origin of the
warld coordinate system to be at the point of intersection of
the pan and tilt axes, and the origing of the camera coordinare
sysiems to be at the point of intersection of the tilt axis with
the comresponding view axis.

The mapping from a point #: = (Le, Fe. 2=, |1 In camera
coordinades 1o image coordinates f; = (xy, 4. 1) Is given by

i O 0 xp: 0
ﬁ-ﬂﬂ(—-ﬂ-).wiﬂ]ﬂ,- 0 oy the (3
% 0 0 1 ¢
The poramelers o, oy, Eie; Joe @08 the infringic parame-
ters of the camerns and have to be carefully determined by
a calibration as described in, for example, Tsai

i 1986) or Fougeras {1993).

1.3 Inverse kinematics

Knowing the geometry one can solve the inverse kinematics
for bath the monocular and the binocular system. In order 1o
make the solution of the inverse problem unambiguous we
upply the following constramnts:

= for the monocular system we require the pan axis o be
fixed,

= for the binocular system we reguire the two cameras o
verge symmetrically, e, & =8 =8,

Solving (1)-(3) for the required angles (necessary fo fix-
ate the target given the current angles and retinal coordi-

Fig. L & The TRC BiSight binocular hesd, b Diagram of
the TRC head

nates) in now sirnightforward? and yields the model-based
inverse kinemntics for monocular and binocular fination, re.
spectively:

o = (", 0" = Rz, 1.6, 0)

{monocular case) {4
G (x0T = e y  E U B B, X0)
(Winocular case) (5)

It is. however, advanmgesus not (o calculae the new angles
@* directly becaose (ofter some monipulations) it twms out
thar the change in angles AD is independent of the tlt in the
monocular case and of the pan in the binoculor cose. The
inverse kinematics now take the form

Adr = (Ap, Al = [Ro "z v, 8)

{monocular case) 69
A= l‘ﬂxr Ap, A8y, ) = Wt-rirﬂl-frl Ve el

{binocular case) im
24 Discussion

Having derived a model of the inverse kinematics of the

camera-head, one can use it for model-based saceode control

However, one must bear in mind the central assomptions

behind this:

= tili and view axes [mtersact oi the optical center,

= the CCD chip of the camer has been accurntely placed
by the manufactirer,

= the base length 15 known exactly, and

= the intrinsic parameters have been determined with high
BCCUracY

The first assumpdion is valid only if the system is well
manufsetured. 1F tilt and view uxes did pot intersect at the
optical cenier the complexity of the model would incredss
significantly. The second assumption is only approximarely
wvalid, since the CCD chips are usually slightly rotated around
the optical axis of the cameras, The model could, bowever,
be extended 1o cope with these rotations at the cowt of in-
troducing yet another set of Intrinsic Finally,
10 determine the inirinsic parameters (and perhaps the base
length as well) one must employ a carefully designed cali-
bration method. Yet any change in the intrinsic parnmelcrs
{e.g.. by mooming), change of the base length or wear and

* Blnce the rather lengthy formalas for the fallowing funcbons and their
derivation wiih help of the MAPLE ol st do mot coniribeie o Se gncer-
standing of b article and our cmphails by on slapuve miber than model:
lmaseid comimnl, they have been omiited here

N -l-r'q.!‘ B o s
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Flg. L Inereasing senlinesrity of the competed map-
pimg from image coonkmmes to changes b (0 and
horizontal viewing dirsction (hvdd, lziombe s —

{a, ), fior varyimg insial hovd, @ and comsiant Gl
& = 0" The fgures shenw the mapping of the reinal
(= g pridd B0 tbe cmpirall values [ A, AF) for 6 = 0*
Liop effi, @ = 20 jjop vighil, I = 40° (boinm fef)
i & = 0 (bt g
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tear of the imernal controllers of the camera-hend requires 2
new calibraion.

Hence even In the presence of a perfect model, cali-
bration-free ndaptive control can be advantageous, provided
the adaptive controller is fexible enough to reach the re-
quired precision. The analysis of the system then sheds
some light on the kind of controller one should employ.
In the monoculsr case the controller need not know the: pre-
vious till angle, @ (6). Funbermore, the inverse model hos
a strong linesr component for small initial hovid, ie., when
the optical axis of the camera is pearly perpendicular 1o
the dlt axis. This is illustrated in Fig. 2, showing that for
small Initial hov.d. @ the mapping of (2. g, ) 1o {28, A6)
is pearly Hnear (top left) while becoming increasingly non-
linear with increasing initial h.v.d. Analysis of ihe binocular
case reveals independence of pan (7}, and the mapping from
(20, Ve Zr U Or @) 10 {8, Ao, A8y ) here becomes in-
creasingly nonlinear with respect o both initial hov.d, and
tilt. The nonlinear dependency on the il s due o the fact
that the optical axes of the cameras are no longer perpen-
dicular o the pan axes for tikk angles differemt from rem.
An adaptive controller can exploit thiz, and our DCS-based
comroller does g0 it leamns a locally linesr approximation of
the actual inverse kinematics and will place more nodes in
regions of increasing nonlinearicy. The latter i3 an inrinsic
propenty of DCS and, 4 we demonsirate in Sect. 6. lends
to a distribution of nodes aimed al minimizing the approx-
imation error (and not just reflecting the fnput probability
density, as, €.g., [n the case of the Kohonen feature map).

4 Dynamic Cell Structures

DS, as introduced in Braske et al. (1995), denote a class of
approximation schemes that are based on RBFs and attempt

1o learn and wilize optimally topology preserving feamre
maps (OTPMs).*
The architectural characierizties of DCS (Fig. 3) are

= pne hidden layer of RBF units,

= 3 dvoamic latersl connection structure between these
units, and

= o laver of (usually linear) output units.

Training algorithms for DTS rest on adapting the lateral con-
nechion structure towards an OTPM by employing o com-
petitive Hebbian leaming rule and activating and adapting
RBF units only in the neighborhood of the current stimulus,
where “neighborhood” relates o the simultaneously lewmed
ropolagy.

‘We use a normalized RBF appronimation scheme and
heace the output of a DCS network calculates as”

flE) = M (B}

where rbfi(# — &) denotes an REF with center &, The vee-
tors & can be thought of as output weight wectors attached
to each rbf unit. The sctivation function thi: 8" — 8°
is srictly monotonically decreasing with rbfi0) = 1.0 and
rhficec) = 0. In the experiments reported in this amicle the
activation function has been realized by a rational function,
rhiflz) = 1 /{1 = oz}, with fixed &. With the lateral connec-
tion structure between the RBF units being represented by
an adiacency matrx £, the neighborhood Nh*(7) of neuml
unit 7 is defined s the unit itsell (ogether with its direct

topological neighbors Nh(j):

¥ In cosram m the ineroduction i Bruske e al {1999), we here no
longer require DCS w0 leam 2 perfenly topology-preierviag map, since
perfect wpolagy preservation as defined m Martiiets ef al. (1994) can only
be: checked for if prior knowledge of the dam diuribatics, Le, knowledpe
of the “density” condition in theorem ¥ in Maninetz o al, (1994), is given,
which [+ nit the case here.

¥ In the following we dencis vecioe by . composents of a vector by
£ and enumsmtions of wecion by £9,



Flig- X Dnamic cef] structianss (DCS) are Rofinl Basis Fanction
(REF) nesworks (faff) plus latersl conmection sruciure heiween the

Nh* () =Nh(j}Uj={ilCy #0,1 Si S N}UJ (9
and the best matching unit bmus is given by
(ol ci@—-2 (1 ZigN) Loy

The adjacency matrix C is adapred by 2 competitive Hebbian
learning nile

Lipwm2zm pRlskrs) {an
0 : otherwise

Ay =
with y, = (2 — #F). Given the training set T (either
explicitly in the form of o number of samples or implicitly
via o density function on the input space) the lateral connec-
thon structure converges to the OTPM of the set of centers
= [#,,..,2} with probability 1, with the OTPM of §
given T' defined as the graph {adjacency matrix C) with

CyfleoIreTVI<kSNEkE(ij}:
max{(2- P, 2=-FP)s@-2" UD

The importance (and naming) of OTPMs stems from the
fact that they are optimally topology preserving in the sense
of the topographic function introduced in Villmann e ol
(1994) for measuring the degree of topology preservation,
Compared with the usunl RBF approximation, leaming and
exploiting the topology of the input space not only speeds
up the computation of the output value (because only a small
number of neural units need © be evaluared in each step)
but can also improve approximation quality (hecause in the
usunl RBF scheme units whose centers have small Euclidean
distarice 1o the stimulus but burge intra-munifold distance 1o
the point of projection of the stimulus onto the manifold can
impair the approximation fdelity).

In order o adapt the output vectors &, we employ gra-
dient descent on an ermor function E{§), (see Sect. 5.2.1 for
gradient-bazed output layer adaptation in comjuncton with
error feedback leamning). The centers & can be adapted by
gradient descent 25 well bur may aliematively be trained by
1 Kohonen-type leamning rale atilizing the lateral connection
structure. Both these center adaptation rules are investignted
in the context of our application in Sect. 5.2.2

Growing DCS are realized by inserting additional REF
units in regions of the input space where the approximation
performance s unsatisfactory (hence increasing the resala-
tion in this region). This is achieved by attaching an adedi-
tional error variable {rerource value) to each neural unit that

REF usits asempting 1 budld an optimally wpelogy preserving map
(0TI by comgetitive Hebbian leaming (righr, clovely madified
from Fig 5d of Maticetz e al. 1954)

monitors the performance of the network when this wnit is
involved In outpul calculation. Tn Sect. 5.2.3 we will show
how the fixation error i used to update the emor variables
and to control grawth of the network for adaptive saccade
control. As alresdy mentioned, and central to our applica-
tion, the error-driven insertion of new units has the advan-
tage that the distribution of Aeural units attempts 1o minimize
the error (and does not merely reflect the input probabificy
denmity, a5 would be the case with o Kohonen-type rule].
See also Fritzke (1995a) for more on incremental growth of
RBF networks utilizing resource values.

While error-driven refinement of approximation schemes
works very well in practice. It ks an open question whether
biological systems use similar mechanisma. All that is known
ks that in the sdult beain no new peurons are available.

Finnlly, we want 1o point out the closs connection of
RBF networks and DCS with Sugeno-type fuzzy logic con-
trollers (for details see Bruske et al. 1996a), Here, the main
idea is that each RBF node with its aimched outpui vector
may be viewed as a Sugeno-type fuzzy rule, and (8) just
implements the Sugeno furry inference rule. This allows in-
corporation of prior knowledge as well a8 analysis of DTS
in terms of furzy logic.

% DCS for sdoptive saceade control

Having investigated the kinematics of our cameri-hesd and
outlined the ideas behind DCS, we now describe our feed-
back error leurning scheme for adaptive saccode control. The
sctual training of the system will proceed in two stages. First,
we use a crude simalation of the camerss and the kinemat-
ics of the head 1o leam saccade control up to @ predefined
precision off-line. In the second phase, the operating phase,
we conlinue 1o adapt the output layer of the DCS network
on-line 1o cope with deviations of the physical camera-head
from the simulated one and deviations doe to changing pa-
rameters. The first could be on-line as well but simu-
Intion has the advantage that raining takes less time (no ezl
head movement) and that, in the second phase, the physi-
cal system is under reasonable controd rght from the star.
Stopping center adapation in the operating phase also avoids
potential instahifities that may arise due to the sensitivity of
the center sdnptation mules o o possibly changing, nonsta-
tionary fmpui probability density in the operating phase [cf.

suaf
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Ritter and Schulten (1986) for an analysis of the center dis-
tribution as a function of the input probability density in the
context of the Kohonen rule].

a
%1 Controller mpur colculation

Exploiting the strong linear eomponent of the saccade cof-
trol problemn (see Sect. 3.4) we do not directly sssociate the
input vector of retinal coordinates and angles & = (f, 2) with
& output veetor but with a (Jacobian) matrix A. This matrix
is then multiplied by the vector of retinal coordinaies § 1o
yicld the change in angles. Hence we approximate the in-

* verse kinematics with a locally lincar mapping, inierpolating
between the linear transforms A' atached o the nodes of
our DCS network. See Fig. 4 for illustration.

More specifically, for the binocular case we use o five-
dimensionsl input vector, & = (1, o, Zr, &+, @), which we
wssociate with a 3 x 3 (Jacobian) matrix A, the oaiput of
the DCS network. Here. 2, 1. = denote the reiinal (image)
eoordinates of the target on the Jeft and right comers, &,
are the hov.ds of the left and right comera and ¢ is the tilt
angle of the camera-head. The output of the controlier A
is enfeulmed ns

. Ad=(Ax, A, Afy,) = AP (13)

here Ay, A, A8, . denote the changes (rotations) in pan, tilt
and h.v.d.s necessary to finate the torget, and §i= (2y, i, Tr)
is the retingl coordinate vector. Recall thay because of sym-
metrical vergence §; = @, and thet Al does not depend on
v. Further, we exploit the fact tha the four rerinal coordi-
nales =y, i, Z¢, b are not independent® 10 exclode v, from
bath the input @ and the retinal coordinate vector

In the monocular case, we use & three-dimensional inpat
mw,i:[:,y,ﬂwh:hwmiﬂwi:hn!:lnu—
trix A. With retinal coordinntes = (z, y) the output of the
controller then calculates as

As=(A8, A8,) = Ap {14}

Utilizing a DCS network, the mairix A is computed 25 a
normalized weighted sum of the mutrices A* atiached to the
rbf units of the DCS network,

A= E A'K, with b =

& N )

rhi((d — &%)
E,m-_,ﬁﬁ[ﬁ - &¥)

! The target poiit i uniquely desermined us the miErsection of the two
wiewing niys defined by (=p, ) and (2, ye ). reapestively. It ia, however,
umiquely determined alsn as the imtersection of the viewing plane defined
by 2, and the viewing ray defined by (x;, mlk

(15

Fig. & DCS-based sfapeive saccade comrol, The D05 sae 00 o
sociues an inpal veclor of angles and rriinad coondise

with & [Jacoblan) metris A, which is thes mudtiplied by the 1o
mw;um.wumm.mm
walie is. the s of this change plus G obd anglm, 20 2. ARer
finmibon, the resinal goordinaies of e larger poimi are wensformed
inio & further chamge in angles AD® by the proportonal fendback
comteoller. This serves &8 as ermor signal for the DS petsork and
can also be wied For a oivimctional weesds

5.2 Feedback error learning with DCS

Adter fixation we use the output of & simple proportional
feedback controller to adupt the parameters of the DCS net-
work. This is the principle of feedback error learning. which
is illustrated in Fig.  and served as the design principle of
oir adaptive saccade controller (Fig-4). Advaningeous prop-
erties of feedback emor lesming of inverse kinematics are
(i) that in contrast to direct inverse modeling, feedback er-
ror leaming does not suffer from the problem that the giobal
optimal solution (with respect to the error function used for
training) s not necessarily a correct inverse model [see Jor-
dan and Rumelhar (1992} for the ‘convexity problem” as an
example] and (i) simplicity, i.e., in contrast 10, for exam-
ple. farward-and-inverse modeling no additional backprop-
agation through & forward model is necessary. A detailed
discossion of this and reimed leaming paradigms is beyond
the scope of this article, and the reader 15 referred to Kawato
(1990} and Jordan and Rumelhort (1992),

The drawhack of ermor feedback leaming is that difficuly
problems such as the inverse kinematics of & robot arm with
redundant degrees of freedom may require quite sophist-
cated fesdback controllers, yel in our case of symmetric fix-
ation with & binocular camern-head. a jona] feedback
controller suffices. lis output AD® = (A", A¢F, A7)
is proportional to the mean target’s retinal r-coordinates,
the 1eft camera’s p-coordingte and the difference in the z-
coordinaes after fixation:

(A", AP, AL ) = (kylzy + ), ke Bylm = =) (16)

with ky,....ky the gain factors of the [ con-
trosller. If fixation is perfect, AZ® will be the null vector.

For the monocular case, the oatput of the feedback con-
trotler is AD® = (AP, AF™) ond the components are simply
pmpmiumlnnlhy-md'm:ddm:mﬁnuunfﬂu
camera after fixation:

LAG", AF) = (ki kax) (a7

Mote that for both the hinocular and the monocolar case the
control laws (16) and (17) suffice to fixare. The reason for
training an additional inverse model is just to accelermis fix-
ation, i.e., to fixate in one step without relying on feedback.

5.2.] Output layer adapration. In order io adapt the output
layer of our DCS network, ie., the mairices A', we have to
yrnnslate the feedbnck error AZ® into a difference between
matrices, The feedback error AD” indicates that
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Feedbock A
Controter [ 73" Syvtam
AL = AD+ AT = AP+ AT (18}

i5 3 berter output of the controller. This ouiput would have
heen obiained by o matrix A* with
'

It

as iz easily checked by multiplying (190 by f Using A"
as the desired output of our DCS petwork we can define a
difference motriz

dA=4

=A+ AP (%

Az B (20
=Aa T ]
(PR

and can e the following o-LMS (least mesn squure) rule
for adapting the outpul layer, with () < a < [

A4'= (MW) e, § € NA" (banu) an
implementing & gradient descent on {AAF. We set o =107
in il the following experiments.”

5.2.2 Center adapration. For center adaptation we repon ex-
peniments with two different leaming niles introduced in the

following. An evaluation of these learning rules in the con-
text of our leaming tasks s provided in Sect. 6.1,

= The well-known Kohonen-tvpe learning rule (Kohonen
1987) used. for example. in Fritzke (1995a) and Bruske
et ol (1935

A =g fi—-2), i€ N (bmu) 2

= A gradient-modulated learmng nule with centers restncied
to moving in the direction of the negative gradiens'

H_{t.{ﬁ—-ﬂ: 4

HHMF =0
0 : otherwise

1 & Nh™{bma)

(23
with

* The parsmeter settng i chis and (he fodlowisg sdapranon naled s sot
eritical, i.s., small varobons lead & wnmiler bedavine. ¥t o
pondd racke-olf berseen apeed af sdaption (o — 1) sd sability (o — 0)
B b0 be founsd by experimentaton.

1% Gloce (he gradient of & RBF with respect o the centey is abways. in
the direciion of the difference berween ssimuluy and comer vecor, e,
Tarbii(E = &) ~= =({i = &, (2]] does iscéed sdapt the conter vestor in
the direction of the negeiive gradient of (3AF,

Fig. 5. Feedback ermor lpaming

]
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In the above leaming ruled. the £, denote leamning constunts.
We have £; = fume = 0L05 for the bmuo and &, = o = 0.006
for the direct neighbors of the bmu.

The Kohonen-iype leaming rule (22) is simpler but has
the disadvantage thei the distribution of neoral units does
not depend on the ocutput eror of the network bul on the
input probubility density only, Although frequently used in
regreasion, classification and control wsks it is & very poor
leammg rule for those tasks because of this missing emor
senaitivity. 15 use can only be justified if the approxima-
tion emor 4 comelated with inpur probability density feg..
uniform approximation emor ond uniform. inpus probabifine
density) or if there i an additionnl mechenism taking care of
an error-dependent distnibution of umits (like our error-driven
insertion stralegy: see below),

A grodient-based center adaptation nile promises to be
the more choice because i aims directly at mim-
mizing the expected output error, The additiona] error-driven
insertion strategy of newral units helps to alleviate the well-
known problem of locol minima for this leaming rule (by
*globally’ inserting units where the local approximation er-
ror is largest). Furthermore, gradient calculation is fost tn
DCS networks even n implementations on serial hurdwarne
because it is restricted o the bmu and i3 onelghbors. Yet
in conjunction with RBF networks, gradient descent is fre-
guently observed 1o move neural units out of the input mani-
fold (since a local optimum may be reached in this way), and
the same is true for DCS. This i$ the motivation for consid-
ering the gradient-modulated leaming rule (23), where the
stimulus aftracts the unit just o8 in the case of the Kohonen
rule but oaly if the movement is along the pegative gradi-
ent. Hence umits sty in the input manifold and only maove
in directions of decreasing error.

2 (AAF = TA(AAF

£.2.3 Node insertipn. A new unil is inseried whenever the
respurce value of the bmuw, Ty, and the cumrent fixution
ermor, ey, exceed the prespecified precision &

T > & and ep, > 4§ (25)

' in our case, wy musily rquie § = 15 pius, whick is 0.9% of 0w
image uee of the camerns (312 x 312 pazlsi
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[n case of tnsertion, the resource of ihe bmu s 4et to Zom,
or else it is updated using a Roating overage mile:

__{ ] :  indertion (26)
o= | Ben+ (1 = D Otherwise "

Mote that this inseriion rule i (1) parely local and (i) purely
error driven. Making insertion depend on the best-matching
imits resource, which is a local average of the fixaton er-
rar, the procedore bocomes less sensitive 10 noise than by
relying only on eg,. Setting the resounce to zero after in-
sertion and choosing a small avemging constant § we avoid
over-frequent insemons ia the neighborhood of 4 single wniL

The output matrix A of a newly insered unit is initial-
rzed with 4™ and its center |s initialired with the eurrent
stimulus, & = i Finally, it is (motually) connected with
the bmu. Between suecessive insemions we require ai least
i log i wmining steps without insertion.” n being the cur-
renl number of neural onits, to allow the lareral connection
structure of the DCS perwork 1o build sn OTEM. Duoe 1o
this srategy we need & relatively large number of trials for
meeting high precision demands. However, in the off-line
phase emphasis s on a8 small & number of neural units and
as good i OTPM as possible, since these will no longer be
adapied in the on-line phase. Training in the off-line phase
stops when the averaged fisation error falls below the pre-
specified precision.

3.2.4 Topology lrarming. Since unith are allowed o move,
the Hebbion learning rule (117 mist be modified 1o allow
‘forgemting” of neighborhood relations (laeral connections)
that no longer exist. This can easily be achieved by extend-
ing (11) with & decay term. However, care has (0 be taken o
avold “dead negrons”, Le., units thot are disconnecied from
the remaining ones and are unlized no further, Our solution
is 0 nonsymnetric Hebbian learming rule similar to that pro-
posed in Ahms et sl (1995) and detmled in Bruske et al,
[ 19966,

5.3 Off-line troining phase

In off-line training we use a (crude) model'? of the TRC
RiSight {and not the syatem jtsell) o calculnbe the new reti-
nal coordinates of the target ofter applying the controller
oatpul. Input vectors are generated randomly. The oaly con-
straints are that the hov.d & and tili & are restricted 1 an
interval of interest and that the retinal coondinaies =, i, =
inay nol exceed the field of view of the cameras.

Mote that we do emor feedbock Jeaming (Le. no super-
vised training) in the off-line phose just a3 in the following
on-line phase. [n particulor, we do not need the inverse kine-
matics, Our off-line training phase could sctually be on-line
as well (with the TRC BiSight instead of the model); the
only reasons 10 keep it off-line are 1 accelerate training*

1T This heuristc |s menvaisd by iBeciveical reulty conceming the tme
o boilding OTPMs a3 given ia Martierz ef al. (19941
1% The model i given by (1) sad (1) with o coarse esamaos of the czmers

PEFMEEETL
pared with 5.5 b om-linie (wnsh | 8 for ench movement of the mbot s for

presrsting the nead target pointl

and to have reasonable control in the working phase right
from the start.

5.4 On-line training in the operating phawe

in the operating phase we continue to adapt the matrices
A" in the output layer by emor feedhock, just as in the off-
line phase. Howsver, we no longer grow the netwark nor do
we adapt the centers or the lutern] connection structure any

longer.

Tasgets for fixation we generated by mndomly moving
or Stiubli R90 robot arm in s workspace with & light
source attached 1o its gripper (Fig. 6). Relying on our Diat-
acube image procesiing system, we can caleulate the retinal
coordinates of the target with respect to the rao cumeras of
our TRC binocular camern-hend (Fig. 6a) ar video rute. The
controller output s calculaied sceonding to (13) and (15) is
then applied 10 fixate the iarger. and the output of the pro-

controfler is used for emror feedback learning. The
laner is also used for o comectional saccade,

6 Experimental results

In this section we will first investigale the two learning roles
introduced in Sect 5.2.2 for center adaptation. We do this
in the context of analvtically more simple monocular fixn.
tion (see Sect. 3). We then procesd with (he bener lenming
rule (the gradieat-modulined rule) and apply it for leaming
binocular fixation. We funber demonsmmie the effect of on-
ﬂmmhmllndﬁwmnnmﬁ:d'huwth:wmdm
in changing camera parameiers.

Throughout ail the following expenments we use the
same set of learning parameters for the DCS network ™ In-
puts have been normalized to the interval [—1, 1] The fixa-
tion ervor is calculated as the mean of the retinal coondinates.
.Itl

o + 1yl

=l—-_—'----=

and (n

)| + 2| + [l
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Oaly one retinal y-coordinale is evaluated for error calou-

Iation in the hinocular case since the y-coordinates cannot

be contralled independemiy. There is only one common ikt

Joint and in the case of fixation with symmetric vergence
= e

(monecular case)

fia {hinocoiar case)

6.1 Manocular adaprive fixation

Toking the monocular case as a est bed we compare the
twio learming rules of Sect. 5.2.2, Kohonen-type and gradient-
modulated center sdaptation. Targets were generated with a
uniform hov.d. distobution in [—40°, 40°] and cowvered the

13 Paremetery me o = 0.7 (owipul layer Waming raiel, & = 1.0 (widt
of hasis funcsioen), 0 = (U03 (nesouice averaging CONMLES], Fume = (.08,
fop = (LD (center sdapaanion ruies).
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whale 5122512 pixel reting of the camera. Table 1 shows the
number of training sieps and the number of allocated neural
units for the two learning rules as o function of the fequired
precision (fixation error). Bodh the number af training steqs
and ihe humbes of neural units are uveraged over len fins
The pradient-modulated rule consistently outperforms the
Kohonen-type rule, Le., @t allocares significantly less units
and wkes neardy half the training time of the Kohonen-tvpe
rule. Not surprisingly, the table also implies that the number
of units peeded to reach 3 required precision grows super-
lincarly. Figure 7 shows the distribution of neural units as 3
function of initial h.v.d. The first row shows the frequency
of center insertion as a function of the hv.d, while the sec-
ond row shows the number of neural units as o fanction af
the h.v.d. after training. The histograms are avernged over
=6 mmns

The learming rubes show the same qualitative behavior
although targets have been gensrated with a uniform disiri-
bution with respect o the h.v.d., far more neural umits are
inserted in regions of large hov.d than in regions of small
hov.d. (first row). This is in sccontinee with owr expectanon
based an the analvsis of the inverse kinemmatics for monoc-
ular fixation in Sect. 3.3, There we saw that the control kaw
becomes increasingly monlinear the larger the hv.d Hence
approximation with a local linear model becomes more diffi
cult for Luge hov.d.s, and in onder to reach the same precision
for all hvds, the error-driven insertiog srategy allocates
more units for large angles,

The error-driven disirbution of centers is maintned
by the leaming rules frecond row ). However, since the
Kohonen-type rule follows the probability density, this mle
would eventually generate a uniform distribution of wnits {if
cenler adaptution continued but no new wiits were inserted)
It is the mussing emor-sensiivity of this role that is redpon-

Fig. Sah. On-line craiming with e roset
arm. @ Sctup for sn-fing wainang. b The
Sazeahli A9 sivcd ey

fible for i non-vptimal performance (Table 1), A closer
look at the distribution for the Kohonen mile afier training
iscconid row in Fig. 7) sctually indicaies that this fattening
is already in effect for small and medium ingles. Only the
higher insertion rute for large hov.ds and the barder affect
{moving centers from the border jowards the center) have
prevented the peaks a1 large angles from fattening.

&.2 Binocular adapiive fieation

The gradient-modulated learming rule tumed out to be the
more appropriate for binocular asymmetric vergence 1oo,
and the resuls below all refer o this leaming rule. The
workspace for the off-line phase wos & [=30%, 30¢] for
tft and &, € [0 10®) for the hovads Targers were gen-
ernted with o uniform distribution with respect o the ule
and covered both camera images. The workspace used for
fruming in the off-line phase ncludes the workspace for on-
line sraining, which was @ € [—145,2%), 8, . & [2*,4*] and
if € (=47, 9%]. The latter reflects the work space of our robot
AFTIE,

For the very high precision of (L5% (2.5 pixels] we need
oaly 19135 £ (340 training saccndes and 84 +~ 2 & meural
units. Aguin, the numbers denoie averages and standard de-
Wions over ten mms. For one of these rms, Fig. 8 shows
the course of the pixel error (averaped) and the number of
meural wnits in the DCS network versus the number of irain-
tng steps. On reaching this precision after 19000 simuolared
#accades only 82 neurnl anis have been fnsemed jnto the
network. We could reach this prectsion with fawer braining
ateps but since we wani as few neural units and a8 pood
an OTPM as possible, we invest in the off-fine phase. After
all, the whole off-line phase takes only 3 min for 20 000
saccades on a Sparc 4 workstation. And the very reasonable
fecuracy of 1% (3 pixels) is reached after 3500 weps with
fewer than 40 neursl wnits.

Figure 9 shows the averaged distribution of neural units
depending on the tilt angle, at time of insertion (left) and
it the end of training (nghtl. Again this distibution b in
accordance with expectation: insertion frequency and density
af neural anits increase with increasing til and hence with
increasing nonlineariry, in spite of the uniform Iramning target
distribution with respect o the L.

Mow we use the pretrained controller for saccade Ca-
trol of the physical TRC binocular camera-head. As demon-
arraied in Fig. 10 the erme o the sise of the operating phasze
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Fig. 7. Daseribusina of centers projecied os ihe
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Fig. & Average hinocufar fination emmor in pasels
amd the niimber of sewml emin n e DCS we-

is about 7 pixels {1.5%), which is due 1o deviations of the
model from the physical system. However, due 10 on-line
leaming by emor feedback the error drops to 10 pixels
within 1000 saccades.

Finully we performed an experiment similar 1o that de.
scribed in Henson (1978). In Henson's {monocular) experi-
ment subjects were fitted with a contact leas that made them
armifictally myopc, This myopin was then peutralized by

o B e Wm0 wow w00 W  eos e

work versus S nimber of Tuisng aeps in the
aff-line traiming phise

4 conventional specticle lens. Yet bocouse the contactlens
moves with the eye, the subject experiences a prismatic ef-
fect, based toward the center of the lens for the eye, ot nil
positions of gaze other thin that throwgh the optical center of
the spectacie. Henson has repomed thae after 14 man {about
250 saccaded) the oculomotor sysiem had munaged to adapt
10 the new conditions and the saccades showed almost the
same dissribution of undershoots, overshoots and normosmet-



Fig. 9. Disenbation of centers projecied on
the 11 sngle # (dag) for lesming bisocalar
fination with dhe laarming
rules: Al che time of ieservion (fafth ond o the
end of maining {mphr)
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ric movements a8 before weanng the coniacilens spectocle
combintion.

To demonstrate on-line sdaptivity to altered visual input
in our hiinocular sysiem, we increased the zoom of one of the
camerns as refleced by the peak in the ermor plot in Fig. 10
Incrensiny the zoom incresses the focnl leagrh and hence
the inirinsic parameters ., and @ in (3) a5 well a8 2
and g if the |acter differ from zero. Due (o magnification,
smaller changes in angles are now required to compensate
the same retinal coordinases, The controller is able w adupt
to the new parameter setting of the cameras within the next
600 saccades (Fig. 10

7 Related work

The adapuve saccude controller based on DTS is related 1o
the work of Deun et al, (1991) and Mavhew et al. (1992), and
this s the first 1opic 10 be discussed here. We continue with
the relation of our DCS wrehitecture to similar srehitectures
and finally provide a beief overview of other active vision
projects invalving binocular camers- heads.

7.1 Adaprive saccaue control of g Binoeular cemerg-head
with ANY

The most closely related approach to adaptive saccade con-
trol of 2 hinocular camern-head with amificial newral pet-
works i that of Dean et al_ {1991) and Mayhew et al. (19932),

.h mooe e S oumbsy of ouning weps in
the operanng phese

Dean ef al, 11991 ) texied several types of networks for sac-
code control of a rinulared four-degress-of-freedom comers-
heod. These included o linesr associator, 3 Mult-Layver Per
ceprron (MLP), Albus' Cerebellar Model Arithmetic Com-
puter (CMAC) ond two-lavered hierorchical networks, the
last consisting of 4 linear net plus a CMAC or MLP trained
to compessate the eror of the linear net. They used super
vised as well as feedback error leaming and directly atsoci-
atedd 3 seven-dimensional input vector (including pan) with
changes in pan, il and h.v.d. Dean et al. noted a strong
linear component, ‘which wos their motivation o use the
two-lavered networks.'® One of their conclusions was that (¢
wwennld ber werefiul 0o fove o met thar could adjusr it owr gran-
wulariry and nerworks that could be trained incrementally — 2
major issue in this paper.

Interestingly, the weight analvsis of their MLP networks
rovealed very smoll weights from pon input-umnits but large
from tilt input-units. In light of the inverse kinemotics of
binocular Axation this can be well explained - the contmoller
ot indesd does not depend on the pan,

Muyhew et al. (1962) discussed adaptive ssecyde control
o an application of theie PILUT architecture, Mo perfor-
mance resulls were given, yei the PILUT bears similarity 1o
aur approach: 4 first layer acts as a relatively coarsely coded
indexing merwork (comparable o our hidden layer of RBF

¥ For their besi networks (ibe meo-livered onesi, Dean ot al ([991)
repeaved fizaiaon erenn of 3 pials with wenulaisd 256 picel comers iragey
In 3 uimdlar sorkepece smd o simsler tmining time our DCS conmrodier
reaches 1.9 piasd accuracy om 3127 peed camens mages.



units) that blends focal piecewise linear approximitions car-
ried out in the second layer. However, they did not report
attempts o incrementally grow the jndexing layer nor did
the PILUT leamn the topology of the inpat manifold.

In a more recent article, Zahn et al. (1996) repored on
supervised training of 3 monocular camera system o gener-
ae time-optimal saccades. The interesting point about thia
work is that an MLF was trained 1o leam directly the appro-
priate acceleration and deceleration tmes for fixating a tar-
get point with maximum forque values {bang-bang conrnl),
This therefore mode unnecessary the additonal controller
that trandlates chonges in gaze direction (the output of our
as well as Dean’s saccade controller) into o comresponding
orgue profile.

7.2 Nenwork archilecture

Concerning the charscteristes of our DCS nerworks, DCS as
introduced in Sect. 4 are chosely related o Fritzke's Growmng
Cell Structures {GCS; Fritcke 19950) and Martinetz” Topol-
gy Representing Networks [TRN: Maninetz et al. 1994), In
fact, DCS can be regarded as merging GCS with TRN (for
2 detoiled discussion see Broske et al. 1995), Independently
of pur work, Fritzke has funther developed his GCS and cre-
ated his Growing Neural Gas {GNG), which is similar to our
DCS (Frimke |095b).

7.3 Relation to other active visipn syitems

There are 4 growing number of different research grodps
within the field of sctive vision that use bivocular vision
systerns. However, emphasis bere is usgally not on adaptivity
and fearming bui on betier and more robust estimation of
depeh. motion, shape. etc, and bence they have emploved
standard (model-based) calibration.

As one of the firs, Abbot et al. {1988} elaborated on im-
proved surface recomstruction by combining the mechanical
and optical degrees of freedom of an active vision systerm.
Larer, Krotkov ([989) combined steren with vergence and
depth from focus for more robust depth estimmtion. Pahla-
mn:LtlwdhnﬂUhﬂneuHIMImvmamm
potential of active stefeo systems for ¢ exploration by
dyvnamic fixation and attentive vision on a broader scale, and
thewe groups shafe an interest in regl-time applications for
mution and estimation with our own research group.
The work of Daniilidis et al. (1996) and Hansen et al. (19946)
represenis first steps towards o repertoire of oculomotor be:
hoviors for vision-hased reactive real-time navigaiion,

# Conclusion

Unilizing a DCS network for leaming calibration-free sac-
cade control from error feedback we smrted where previous
wark (Dean ¢t al. 1991) ended. By incrementally growing
the network dup to the size where il meets o prespecified
pccaracy level we mied o wilire as few neural units as pos-
sible 1o achieve the sccurncy level. Since only a minor froc-
tion of these unis is mvolved in calculsting the ourpui of

relevant regions of the input space. Different leaming
rules have been tested for center adaptation, most success-
fully the gradient-modulated one. The density of nearal unirs
was demonstrated 1o be high in regions of the inpat spoce
where they ars actually nesded, Le. in regions where the
sefsory-motof mopping i nonlinear and thus dif-
ficult 1o approsimats by the locally linear model, Insight
into the inverse kinemotics helped 1o reduce the dimenaion
of the input space and to design the DCS-hused controller

‘E.-
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