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Abstract. In this paper we compare two methods for intrinsic dimen-sionality (ID) estimation based on optimally topology preserving maps(OTPMs). The �rst one is a direct approach, where the intrinsic di-mensionality is estimated directly from the OTPM. We argue that thisapproach su�ers from both practical and theoretical pitfalls. The secondis a new approach which combines OTPMs with an e�cient local prin-cipal component analysis (PCA). Exploiting the OTPM, local PCA canbe shown to have only linear time complexity w.r.t. the dimensionalityof the input space (in contrast to the prohibitive cubic complexity ofthe conventional approach), and hence the method becomes applicableeven for very high dimensional input spaces as frequently encounteredin computer vision. A local ID estimate is then obtained as the localnumber of signi�cant eigenvalues. In addition to ID estimation the localsubspaces as revealed by our local PCA can be directly used for furtherdata processing tasks including classi�cation and regression.The workability of the new approach for ID estimation and subspaceauto-association is demonstrated on a sequence of 64 � 64 pixel images(4096-dimensional input space).1 IntroductionThe intrinsic, or topological, dimensionality (ID) of N patterns in an n-dimen-sional space refers to the minimum number of \free" parameters needed to gen-erate the patterns. It essentially determines whether the n-dimensional patternscan be described adequately in a subspace (submanifold) of dimensionalityd < n,[5]. As pointed out in [3], knowledge of the ID is important in order to deter-mine the number of features necessary to represent the data, to decide whethera reasonable 2d or 3d representation exists or to estimate the e�ectiveness ofalgorithms depending on the ID, as e.g. methods for constructing classi�ers ortraining neural networks. It can be greatly helpful in problems like pattern recog-nition, industrial or medical diagnosis and data compression.In this article, we will concentrate on two local approaches to ID-estimationbased on optimally topology preserving maps (OTPMs) (see e.g. [5] for alterna-tive approaches). The �rst one, [3], tries to directly estimate the local ID fromthe number of neighbors of a node in an OTPM. The second one, [1], uses anOTPM for e�cient local PCA and estimates the ID as the number of signi�canteigenvalues. It is conceptually similar to that of Fukunaga and Olsen, [4], using



local PCA as well, but by utilizing OTPMs can be shown to better scale withhigh dimensional input spaces (linear instead of cubic) and to be more robustagainst noise. In contrast to the direct approach, the local subspaces revealedby local PCA can be further used for data modeling.In the remainder of this article we will �rst review OTPMs in section 2. Wewill then discuss the approach of Frisone et al. in section 3. Our own approachis summarized in section 4, and in section 5 we show how our local subspacescan be utilized for data modeling. A demonstration is given in section 6, and weclose with a brief summary and outlook in section 7.2 Optimally Topology Preserving MapsOptimally Topology Preserving Maps (OTPMs) are closely related to Martinetz'Perfectly Topology Preserving Maps (PTPMs) [7] and are constructed in justthe same way. The only reason to introduce them separately is that in order toform a PTPM the centers must be \dense" in the manifold M . Without priorknowledge this assumption cannot be checked, and in practice it will rarely bevalid. OTPMs emerge if just the construction method for PTPMs is appliedwithout checking for the density condition. Only in favorable cases one willobtain a PTPM (probably without noticing). OTPMs are nevertheless optimalin the sense of the topographic function introduced by Villmann in [11]: In orderto measure the degree of topology preservation of a graph G with an associatedset of centers S, Villmann e�ectively constructs the OTPM of S and comparesG with the OTPM. By construction, the topographic function just indicates thehighest (optimal) degree of topology preservation if G is an OTPM.De�nition1 OTPM. Let p(x) be a probability distribution on the input spaceRn, M = fx 2 Rnjp(x) 6= 0g a manifold of feature vectors, T � M a trainingset of feature vectors and S = fci 2M ji = 1; : : : ; Ng a set of centers in M .We call the undirected graph G = (V;E), jV j = N , an optimally topologypreserving map of S given the training set T , OTPMT (S), if(i; j) 2 E , 9x 2 T 8k 2 V nfi; jg : maxfk ci � x k; k cj � x kg �k ck � x kCorolary 1 If T = M and if S is dense in M then OTPMT (S) is a PTPM.Note that the de�nition of OTPMT (S) is constructive: Simply pick x 2 Taccording pT (x), calculate the best and second best matching centers, cbmu andcsmu, and connect bmu with smu. This procedure is just the essence of Martinetz'Hebbian learning rule for topology representing networks. Obviously, for a �nitetraining set T the OTPMT (S) can be constructed in time O(jT j). For a trainingset de�ned via a pdf pT (x), G will converge to OTPMT (S) with probability one.For our purposes, OTPMT (S) has two important properties. First, it doesonly depend on the intrinsic dimensionality of T , i.e. it is independent of thedimensionality of the input space. Embedding T into some higher dimensionalspace does not alter the graph. Second, it is invariant against scaling and rigidtransformations (translations and rotations). Just by de�nition it is the repre-sentation that optimally reects the intrinsic (topological) structure of the data.



3 Direct ID estimation with OTPMSFrisone et al. have been the �rst ones trying to exploit the benevolent proper-ties of OTPMs for ID estimation. They tried to directly infer the ID from thenumber of direct neighbors of nodes in an OTPM by relating this number to themaximum kissing number in sphere packings (Kiss-SPP). The problem here isto �nd a packing of d-dimensional spheres of equal size so that the number �of spheres touching (kissing) each other is maximal [2]. Kiss-SPP has only beensolved for d = 1; 2; 3; 8; 24 and there exist optimal solutions for lattices of spheresfor d = 4; 5; 6; 7, [2].Analyzing the hypothetical analogy between the number of neighbors andthe maximum kissing number one realizes that it rests on three assumptions:First, that the centers have been optimally distributed in the manifold (in thesense of the lowest quantization error), second, that the optimal distribution isrealized by a lattice quantizer and third, that the problem of �nding the bestlattice quantizer is equivalent to �nding the lattice with highest kissing number.While there is some evidence that the last two assumptions hold at least forsmall d, they are in fact open questions, [2]. Anyway, lattices and other regular(optimal) center distributions can only emerge for very large number of centers(in�nitely many) and, of course, an even larger numbers of training samples.Finally, a vector quantization algorithm generating the optimal distribution forthis large number of centers (by annealing?) in �nite time does not exist.This requirement for a huge number of training data, long training timesand lack of theoretical foundation appears to exclude the direct approach frompractical applications.4 E�cient ID estimation based on local PCA of OTPMsSimilar to the direct approach of Frisone, our ID estimation procedure rests onthe fact that the number of neighbors of a node in an OTPM only depends onthe intrinsic dimensionality d and is independent of the input dimensionality n.It proceeds in four stages (batch-variant). First, generate a set of N centersS = fc1; : : : ; cNg as the output of a vector quantization algorithm working onthe training set T . Second, calculate the graph G as the optimally topologypreserving map, OTPMT (S), of S w.r.t. T . Third, for each node i 2 G performa principal component analysis of its correlation matrix 1miATA, AT = [c1i �ci; : : : ; cmi � ci], with (cji � ci) the di�erence vectors between ci and cji , thecenter of its j-th direct topological neighbor in G. Finally, exclude eigenvectorscorresponding to very small eigenvalues.As a result of the vector quantization stage the centers are placed within themanifoldM and noise orthogonal toM is �ltered out. OTPMT (S) is constructedby simply connecting nodes corresponding to best and second best matchingcenters on presentation of T .The central \trick" is to use the di�erence vectors (cji � ci) for PCA ofeach local subspace and not the data in a local region itself, as e.g. in [4] or



[6]: First, the di�erence vectors have very low noise component orthogonal to M(due to the noise reduction property of the vector quantizing stage), and second,the number of neighbors mi of a node in an OTPM does only depend on theintrinsic dimensionality d and is small for small d. Straightforward PCA of thecorrelation matrix 1miATA nevertheless would take time O(n3),[9], yet the mieigenvectors and mi eigenvalues can be obtained by PCA of AAT as well, cf. [8],taking only time O(m3i ). Since AAT clearly can be computed in time O(m2in),and the number of neighbors m of a node in an OTPM does not depend onn but the intrinsic dimensionality d, local PCA of the correlation matrix takesonly time O(m(d)2n + m(d)3) and hence scales only linearly (optimally) withthe input dimensionality.Deciding, what size an eigenvalue as obtained by each local PCA must haveto indicate an associated intra-manifold eigenvector, amounts to determining athreshold. We adopted the D� criterion from Fukunaga et. al., [4], that regardsan eigenvalue �i as signi�cant if �imaxj �j > �%. If no prior knowledge concerningthe distribution of the noise is available, di�erent values of � have to be tested.5 Local subspaces for data modelingLocal subspace analysis as described in section 4 supplies us with a set of (or-thonormal) eigenvectors ei1; : : : ; eili , li � mi, spanning the local subspace foreach center ci 2 S. These subspaces can be used straightforwardly to improveexisting local approximation schemes including RBF networks and Local LinearMaps (LLMs),[10], by �rst projecting stimuli to the relevant subspaces. Herewe demonstrate, how local subspaces can be used for compact coding by locallylinear data modeling, [6]. In this approach, new data is modeled asx̂ = cbmu + lbmuXi=1 ((x� cbmu)T ebmui )ebmui ; (1)i.e. as the center of the best matching unit (Euclidean distance) and the projec-tion to the subspace of the bmu, respectively. Using speech and (pre-processed)image data with typically low intrinsic dimensionality, Kambhatla and Leendemonstrated that this method compares well to (and even outperforms) stan-dard bottle-neck Backpropagation networks. They, however, used conventionalPCA on the data in the Voronoi cells. With help of local PCA based on OTPMs,local linear modeling now scales up linearly for high dimensional input spaces.6 Experimental ResultsIn this demonstration we want to investigate an image sequence generated bytaking 180 snapshots (every 2�) with a resolution of 64 � 64 pixels (4096-dimensional input space) of a robot rotating a cylindric grey ramp around itsz-axis (from 0� to 360�). Since the background remains constant, the images lieon a closed 1-dimensional trajectory in image space with ID d = 1.



Fig. 1. Grey ramp under di�erent rotations. From left to right: Original (symmetric)grey ramp, grey ramp wrapped around a bottle with part of the robot arm in thebackground under 0�, 45�, 90� rotation
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 local linear modelingFig. 2. Left: ID plots for rotating grey ramp on D10 and D20 level with error bars forthe D10 level. Right: Reconstruction error (mse) for locally linear modeling, RBF andwinner-take-all network on the D20 level.Figure 2, left, shows the ID estimates obtained as the mean number of sig-ni�cant local eigenvalues by our procedure for di�erent numbers of centers onthe D10 and D20 level. The standard deviations of the estimates are includedas error bars. The plots clearly indicate an ID of one or at least two. In �gure2, right, the reconstruction error (mse) for local linear modeling with the sub-spaces constructed on the D20 level is depicted (averaged over 180 test images).For comparison, the reconstruction error obtained with an RBF network and asimple winner take all scheme (same center distributions1) are also included. Fora given number of centers, local linear modeling is clearly superior.7 SummaryWe have investigated two algorithms for ID estimation based on OTPMs. Whilethe �rst approach pioneers an interesting idea, it generally turns out to be of1 As a vector quantizer for generating the center distributions we used an incrementalversion of the LBG algorithm, cf. [1]. Adding the (N+1).th center where quantizationis worst and keeping the old distribution of the remaining N centers, the LBGalgorithm only needs to adjust centers in the near surrounding of the new one.
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