
Adaptive Saccade Control of a Binocular Head with
Dynamic Cell Structures

Jörg Bruske, Michael Hansen, Lars Riehn, Gerald Sommer

Lehrstuhl für Kognitive Systeme, Christian Albrechts Universität zu Kiel,
Preußerstr. 1-9, 24105 Kiel

Abstract. In this article we report how Dynamic Cell Structures (DCS) [1] can
be utilized to learn fast and accurate saccade control of a four-degrees-of-freedom
Binocular Head. We solve the order selection problem by incremental growing of
a DCS network until the controller meets a pre-specified precision. Calculation of
the controller output is very fast and suitable for realtime control since the result-
ing network is as small as possible and only the best matching unit and its topo-
logical neighbors are activated on presentation of an input stimulus. Training of
the DCS is based on error feedback learning and proceeds in two phases. In the
first phase we use a crude model of the cameras and the kinematics of the head to
learn the topology of the input submanifold and a rough approximation off-line.
In a second phase, the operating phase, we employ error feedback learning for on-
line adaptation of the linear output units. Besides our TRC binocular head we use
a Datacube image processing system and a Stäubli R90 robot arm for automated
training in the second phase. The controller is demonstrated to successfully cor-
rect errors in the model and to rapidly adapt to changing parameters.

1 Introduction
Saccades are fast eye movements used by animates or robots to change fixation from
one point in the visual scene to another. Their speed must be very high (actually up to
1000 deg/s for human eye movements) and it has long been recognized that this speed
is much to high to be influenced by visual feedback alone. Hence the saccade control
systems must solve the inverse kinematics problem. According to an idea put forward
by Kawato et al. [4] the inverse kinematics can be learned by error feedback learning,
i.e. by using an error signal proportional to the retinal error as training feed back for a
neural network. In his plenary lecture on ICANN’95 Kawato not only gave further neu-
robiological evidence that this is indeed the way the monkey visual system learns sac-
cade control but that the principle of error feedback learning can be successfully applied
to a variety of robotic tasks as well.

In a number of simulations Dean and Mayhew [2] have systematically studied different
conventional neural net architectures (Linear nets, CMACs, Multilayer Backpropaga-
tion nets) for learning saccade control from error feedback. In [5] Mayhew et al. report
a successful implementation of a layered control system for a four-degree-of-freedom
stereo camera head utilizing their CMAC based PILUT architecture for learning the in-
verse kinematics from error feedback.

We have selected DCS [1] for saccade control because it ideally meets the demands of
this control task: First, the calculation of the controller has to be as fast as possible to
allow control at video rate. The incremental growing DCS network meets this require-

Published in: ICANN’96, Proc. of the 1996 Conference, Bochum, pp. 215-220

ment by growing the network only as large as to meet a pre-specified precision and, fur-
thermore, by utilizing only a small subset of its neural units for output calculation.
Second, it is well known that the angular rotations required to fixate are a linear function
of the retinal coordinates of the target only in case of zero tilt and small angles. With
increasing tilt the non linearity of the control law increases. Hence if we use an approx-
imation scheme based on locally linear approximation, the density of neural units
should be high in regions of the input space with a high tilt component. Contrary to Ko-
honen type networks or PILUT, the growing DCS is able to achieve this by allocating
new neural units in regions of the input space where the approximation error is high.
This is exactly the case for regions of the input space deviating from the linear control
law.

Finally, the phase space trajectories of multidimensional systems like the head-eye sys-
tem usually lie on a submanifold which locally may be of very much lower dimension-
ality than the system. The DCS just attempts a similar reduction in dimensionality in
that it places its units in the input submanifold and adapts its lateral connection structure
towards a perfectly topology preserving map which is utilized for improved adaptation
and approximation.

2 Dynamic Cell Structures
Dynamic Cell Structures (DCS) as introduced in [1] denote a class of RBF-based ap-
proximation schemes attempting to concurrently learn and utilize perfectly topology
preserving feature maps (PTFMs). DCS are a subclass of Martinetz’s Topology Repre-
senting Networks (TRN) [6] defined to contain any network using competitive Hebbian
learning for building PTFMs.

The architectural characteristics of a DCS network are a) one hidden layer of radial ba-
sis functions (possibly growing/shrinking) b) a dynamic lateral connection structure be-
tween these units and c) a layer of (usually linear) output units. Training algorithms for
DCS adapt the lateral connection structure towards a PTFM by employing a competi-
tive Hebbian learning rule and activate and adapt rbf units in the neighborhood of the
current stimulus, where “neighborhood” relates to the simultaneously learned topology.

The particular DCS network used in this article is similar to the one introduced in [1] in
that incremental growing of the network is performed similar to B. Fritzke’s Growing
Cell Structures [3] using a local error variable attached to each neural unit called the
resource of this unit.

3 Training scheme
Training proceeds in two stages. First, we use a crude model of the cameras and the ki-
nematics of the head to learn saccade control up to a pre-defined precision off-line. In
the second phase, the operating phase, we continue to adapt the output layer of the DCS
network on-line to cope with deviations of the real head-eye-system from the model and
possibly changing parameters. The first phase could be on-line as well but using a mod-
el has the advantage that training takes less time (no real head movement involved) and
that, in the second phase, the real system is under reasonable control right from the start.

3.1 Off-line training phase

In this article we restrict ourselves to the so called head movement problem, i.e. for fix-
ating an object the cameras must verge symmetrically and the head must directly point
at the target. We use a 5 dimensional input vector which we as-
sociate with a (Jacobian) matrix , the output of the DCS network. Here,

 denote retinal coordinates of the target on the left and right camera, is the
vergence angle of the left camera and the tilt angle of the head, see Fig. 1 (d). The
output of the controller is calculated as

, (1)

where denote the changes (rotations) in pan, tilt and vergence necessary
to fixate the target, and is the retinal coordinate vector.1

The matrix A is computed as a normalized weighted sum of the matrices attached
to the rbf units of the DCS network

 with , (2)

where Nh(bmu) denotes the best matching unit and its direct topological neighbors.

After fixation we use the output of a simple proportional feedback controller
 to adapt the matrices . The components are

proportional to the mean target’s retinal x-coordinates, the left cameras y-coordinate
and the difference in the x-coordinates after fixation. If fixation was perfect, would
be the null vector.

Applying an -LMS rule we obtain

, . (3)

The centers of the rbf units are adapted according to a Kohonen type rule,
, , (4)

and the fixation error in retinal coordinates is used as a resource value. A new unit is
inserted whenever the resource value of the bmuand the current fixation error exceed
the required precision. Between successive insertions we require at least train-
ing steps without insertion, n the current number of neural units, to allow the lateral con-
nection structure of the DCS to build a PTFM. Due to this strategy we need a relatively
large number of trials for meeting high precision demands. However, in the off-line
phase emphasis is on as small a number of neural units and as good a PTFM as possible
since these will no longer be adapted in the on-line phase. Training in the off-line phase
stops when the averaged fixation error falls below the pre-specified precision.

In off-line training we use a model of the head-eye system to calculate the new retinal
coordinates of the target after applying the controller output . Input vectors are gen-
erated randomly. The only constraints are that the vergence and tilt angle, and , are

1. We assume , and, because of symmetrical vergence, . Note that does
not depend on .

u xl yl xr θl φ, , , ,()=
3 3× A

xl yl xr, , θl
φ

v
v ∆χ ∆φ ∆θl, ,() Ap= =

∆χ ∆φ ∆θl, ,
p xl yl xr, ,()=

yl yr= θl θr= v
χ

A i

A A ihii Nh bmu()∈∑= hi

rbf u µi–()
rbf u µj–()

j Nh bmu()∈∑
--=

v
p ∆χp ∆φp ∆θl

p, , 
 

= A i ∆χp ∆φp ∆θl
p, ,

v
p

α

∆A i α v
p p

T

p
2

 
 
 

hi= i Nh bmu()∈

µi

∆µi ε λ bmu i,() u µi–()= i Nh bmu()∈

n n()ln

v
θl φ

restricted to an interval of interest and that the retinal coordinates may not ex-
ceed the field of view of the cameras.

3.2 On-line training in the operating phase

In the operating phase we continue to adapt the matrices in the output layer. This is
done by error feedback, eq. (3), just as in the off-line phase. We do no longer grow the
network nor do we further adapt the centers or the lateral connection structure.

Targets for fixation are generated by randomly moving our Stäubli R90 robot arm, Fig.
1 (b), in its work space with a light source attached to its gripper, Fig. 1 (c). Relying on
our Datacube image processing system we can calculate the retinal coordinates of the
target w.r.t the two cameras of our TRC binocular head, Fig. 1 (a), at video rate. The
controller output as calculated according to (1) and (2) is then applied to fixate the tar-
get, and the output of the proportional controller is used for error feedback learning. The
latter is also used for a correctional saccade.

xl yl xr, ,

A i

Fig. 1: Binocular Head (a), (c), (d) and Robot Arm (b), (c)

(a) The TRC binocular head (b) The Stäubli R90 robot arm

θr θl

χ

φ

(c) Setup for on-line training (d) Diagram of the TRC head

40 cm

4 Experimental Results
Fig. 2 shows the average pixel error and the number of neural units in the DCS network
versus the number of trials in the off-line training phase for a pre-defined precision of
0.5% (2.5 pixel). On reaching this precision after 40000 simulated saccades only 120
neural units have been inserted into the network. The tilt angle was restricted to the
interval and the vergence angle to .

We could have reached this high precision with fewer training steps but since we want
as few neural units and as good a PTFM as possible, we take our time. After all, the
whole off-line training phase takes only 3 minutes for 40000 saccades on a Sparc 4
workstation. The very reasonable accuracy of 1% (5 pixel) is reached after 3500 steps
with only 40 neural units.

Now we use the pre-trained controller for saccade control of the real TRC binocular
head. As demonstrated in Fig. 3 the error at the start of the operating phase is about 12
pixel (2.5%) which is due to deviations of the model from the real system. However,
due to on-line learning by error feedback the error drops down to 2.6 pixel within 1000
saccades. After 1000 saccades we changed the zoom of one of the cameras as reflected
by a peak in the error plot. The controller is able to adapt to the new parameter setting
of the cameras within the next 1000 saccades.

5 Discussion
Utilizing a DCS network for learning saccade control from error feedback we were able
to substantially extend the work of Dean and Mayhew. By incrementally growing the
network up to the size where it meets the pre-specified accuracy it utilizes as few neural
units as possible. Since only a minor fraction of these units is involved in calculating
the output of the DCS network, the generation of a controller output is very fast (even
on conventional hardware) and suitable for real-time saccade control. By virtue of
building perfectly topology preserving maps, the centers of the neural (rbf) units and

φ
30°– 30°,[] θl 0 10°,[]

Fig. 2: Average fixation error in pixel and number of neural units in the DCS network
versus number of training steps in off-line training phase

0

20

40

60

80

100

120

Neural Units

2

3

4

5

6

7

8

0 5000 10000 15000 20000 25000 30000 35000 40000

Err
or

Training-Steps

Average Training-Error
Number of Neural Units

the lateral connection structure are restricted to the relevant regions of the input space.
Furthermore, the density of neural units is high in regions of the input space where the
required sensory-motor mapping is difficult to approximate, i.e. is non-linear2.

The controller has been successfully demonstrated to learn saccade control with high
precision and to adapt to changing parameters on a real four-degree-of-freedom binoc-
ular head.

References
1. J. Bruske and G. Sommer: Dynamic Cell Structure learns Perfectly Topology Preserving

Map, Neural Computation, Vol. 7, No. 4 (1995) 845-865
2. P. Dean, J.E. Mayhew, N. Thacker and P.M. Langdon: Saccade control in a simulated robot

camera-head system: neural net architectures for efficient learning of inverse kinematics, Bi-
ol. Cybern., Vol. 66 (1991) 27-36

3. B. Fritzke: Growing cell structures - a self-organizing network for unsupervised and super-
vised learning, Neural Networks, Vol. 7, No. 9 (1995) 1441-1460

4. M. Kawato: Feedback-error-learning neural network for supervised motor learning, In: Ad-
vanced Neural Computers, Elsevier, Amsterdam (1990) 365-372

5. J.E. Mayhew, Y. Zheng and S. Cornell: The adaptive control of a four-degrees-of-freedom
stereo camera head, Phil. Trans. R. Soc. Lond., Vol. 337 (1992) 315-326

6. Thomas Martinetz and Klaus Schulten: Topology Representing Networks, Neural Networks,
Vol 7 (1994) 505-522

2. Due to lack of space this has not been demonstrated in this article. Together with addition-
al experiments and further experimental details it will be the subject of a forthcoming pub-
lication of the authors.

Fig. 3: Average fixation error in pixel versus number of training steps in operating phase.
After 1000 saccades the zoom of the left camera changed.

2

4

6

8

10

12

0 500 1000 1500 2000

E
rr

or

Training-Steps

Average Training-Error

