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Figure 2: start of training Figure 3: end of training, test environment
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Figure 5: Reinforcement versus #trials
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Figure 4: TD-error versus #trials



Finally, the centers  of the bmu and its topological neighbors are updated according to an error modulated Kohonen rule
as described in [2]:

 with . (10)

The error we use for modulation is the TD-error which serves as the resource for our DCS network. The lateral connection
structure of the DCS is adapted as well, again refer to [2] for details.

A new neural unit (rule) is inserted whenever the distance to the current best matching unit is too large or the resource
value of a unit exceeds a threshold. At most  units are inserted. Using the TD-error as a resource value and thereby
as a criterion for rule insertion serves to disambiguate regions of the input space where similar motor actions result in dif-
ferent rewards.

4 Experiments
In order to test the applicability of our learning controller to collision avoidance with the TRC Labmate the simulated La-
bmate was placed in the training environment depicted in Figure 2. The Labmate was then allowed to drive around until
either the distance to an obstacle dropped below 20cm or 200 time steps elapsed, ending a trial. In the former case, an
orientation behavior is triggered which causes the Labmate to rotate until the front sensors indicate free space. In the latter
case the Labmate is stopped and rotated for a random angle (to prevent it from staying on a closed trajectory all the time).
Since we want to test the performance of the controller independent of incorporated prior knowledge the controller started
with only one fuzzy rule:

if  then , (11)

stating that if all sensor readings are about 5m the Labmate should drive forward (zero angular velocity ) with velocity
. The certainty values for forward velocity and angular velocity ( ) were set to small initial values ( ).

As immediate reinforcement  we used the difference between evaluations of two succeeding situations,
, with  the evaluation function of a sensory situation. In addition the Labmate was

given a high negative reinforcement signal if it had approached an obstacle within less than 20cm2.

For a typical run Figure 2 shows the Labmate at the beginning of training in the training environment. Figure 3 shows
collision free navigation of the Labmate in a test environment after training phase. End of training is indicated by the av-
eraged TD-error approaching a minimum, the averaged reinforcement approaching its maximum and - of course - avoid-
ance of collisions. Plots for the TD-error and the reinforcement (both averaged over 100 trials) are depicted in Figure 2
and Figure 5. In our experiments training took between 1000 and 10000 trials, taking (on average) a longer time when
sonar sensors with a characteristic beam width of 20˚ and 5% noise were simulated than simulating idealized sensors (0˚
beam width) without noise. However, the difference between these two types of simulated sensors turned out to be sur-
prisingly small. At most  neural units (rules) have been utilized. No effort has been spent on parameter op-
timization.

5 Discussion
We have presented an integrated architecture for neuro fuzzy control based on a DCS network for learning from delayed
reinforcement and applied it to the task of learning reactive collision avoidance for a simulated TRC Labmate. Conditions
were unusually hard using unprocessed readings from eight sonar sensors as an input and trying to learn a continuous for-
ward and angular velocity. Our experiments confirm that the controller is indeed able to learn collision avoidance from
reinforcement and, furthermore, indicate that the controller in spite of remaining plasticity behaves stable, i.e. we did not
observe any breakdowns in avoidance performance. However, they also underpin that learning from reinforcement is usu-
ally a very slow process, although tuning of learning parameters may help to improve performance. Hence the necessity
for augmentative mechanisms to support pure reinforcement learning. These may comprise extensions of the reinforce-
ment learning model (e.g. by utilizing action models), additionally learning mechanisms (e.g. some self-supervised or su-
pervised learning) and, of course, incorporation of prior knowledge. The latter has been omitted in the reported
experiments to better demonstrate the learning capabilities of the controller. As is evident from Figure 1, the architecture
is open for a supervised learning component as well. In this case the supervised training error can replace/ augment the
TD-error signal backpropagated through the ASE.

Future work of the authors will be concerned with testing the adaptive controller on the real Labmate, starting from a set
of carefully designed fuzzy logic rules. Furthermore, we will provide components for supervised and self-supervised
learning.

2. Due to lack of space the reader is referred to [1] for further details, including parameter values and the form of the evaluation
function.
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3 Learning Architecture & Algorithms

As depicted in Figure 1 the controller is realized by a single DCS network with an additional stochastic associative search
element (ASE) for REINFORCEment learning. The calculation of the control vector  given the sensory input  proceeds
as follows:

First, the input vector  is transformed to an activity vector  representing the normalized activations (degrees of fulfill-
ment) of the rbf units (rules) with centers  and uniform width :

 with , (5)

where  denotes the best matching unit (rule), , and its direct topological neighbors w.r.t the lateral con-
nection structure of the DCS network.

Second, a prototypical action vector , the certainty vector  and the predicted cumulative reinforcement  are calcu-
lated by a weighted sum of contributing vectors (consequent functions) attached to the rbf units:

,  and . (6)

Finally the ASE draws the actual action vector  according the probability density function , the components
of  being Gaussians:

. (7)

On-line adaptation is performed w.r.t. the contributing prototypical action vectors , certainty vectors  and evaluation
values  attached to the rbf units (consequent - part) as well as to the centers  of the rbf units (antecedent - part).

The evaluation values  are updated using a TD(1) rule:

, (8)

where  denotes the current temporal difference error with  the reinforcement signal and
 an adaptive baseline.

Prototypical action vectors  and certainty vectors  are adapted using a REINFORCE gradient descent:

 and . (9)

The REINFORCE framework [14] states that equation (9) implements a gradient descent on the expected reinforcement
(at least for a constant baseline ). When the algorithm converges towards a local maximum of the reinforcement the
will decrease to small values, narrowing the range of stochastic search. Hence the term certainty values: If we pre-structure
the network with fuzzy rules we can specify the search range for the conclusion of this rule by specifying its  vector.
Values close to zero result in non-changing consequents (fixed rules). On the other hand, if we analyze the network at con-
secutive time steps, non decreasing components of  indicate convergence to (certainty about) the corresponding proto-
typical action.
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Figure 1: Controller architecture
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2.1 Normalized Radial Basis Function (NRBF) Networks

Normalized Radial Basis Function (NRBF) Networks are function approximators and calculate their output as1

, (1)

where  denotes a radial basis function with center . The vectors  can be thought of as output weight vectors
attached to each “hidden” rbf unit. Usually the  are strictly monotonically decreasing functions  with

 and , most often implemented by Gaussians.

2.2 Sugeno type fuzzy control

A Sugeno type fuzzy controller [10] consists of a set of  linguistic fuzzy rules

Rr: if antecedentr( ) then

and calculates its output according to the defuzzyfication formula

, (2)

where  is the degree of fulfillment of the r.th rule.

Obviously, (1) and (2) become identical if we restrict the consequent functions to constant functions, i.e. , the
antecedents to fuzzy propositions of the form

antecedentr: “X is “, (3)

where  is the term set of variable X with n-dimensional universe of discourse , and
the membership functions to radial basis functions.

Hence adapting the parameters of an NRBF network (output weight vectors , centers  and widths of the basis func-
tions) can be interpreted as fine tuning of the consequent and membership functions of a (restricted) Sugeno type fuzzy
controller. Incremental growing of the NRBF network (insertion of new rbf-units) can be interpreted as rule generation
for such a controller.

Finally, if the membership functions  are Gaussians and the fuzzy conjunction is implemented as algebraic product,
antecedents may be alternatively written as conjunctions of n propositions

antecedentr: “X 1 is “ and ... and “Xn is “ (4)

where the Xi denote linguistic variables with one dimensional universes of discourse and one dimensional Gaussian mem-
bership functions given as the marginal possibility distributions of the .

2.3 Dynamic Cell Structures (DCS)

Dynamic Cell Structures(DCS) as introduced in [5] denote a class of RBF-based approximation schemes attempting to
concurrently learn and utilize perfectly topology preserving feature maps (PTFMs). DCS are a subclass of Martinetz’s To-
pology Representing Networks (TRN) [3] defined to contain any network using competitive Hebbian learning for building
PTFMs.

The architectural characteristics of a DCS network are a) one hidden layer of radial basis functions (possibly growing/
shrinking) b) a dynamic lateral connection structure between these units and c) a layer of (usually linear) output units.
Training algorithms for DCS adapt the lateral connection structure towards a PTFM by employing a competitive Hebbian
learning rule and activate and adapt rbf units in the neighborhood of the current stimulus, where “neighborhood” relates
to the simultaneously learned topology.

Hence viewed from the perspective of fuzzy control, normalized DCS represent Sugeno type fuzzy controllers with the
additional feature that only the best matching rules are evaluated and adapted. Learning and exploiting the topology of the
input space is not only likely to improve control but also speeds up the computation of the control value because only a
small number of rules need to be evaluated. See [5] for a more detailed discussion of this topic.

The particular DCS network used in this article is similar to the one introduced in [2] being especially tuned for on-line
learning. Incremental growing of the network (generation of new control rules) is based on a local error variable attached
to each neural unit (rule) called the resource of this unit, similar to [6].
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Abstract. In this article we introduce the concept of ahybrid neuro fuzzy controller based onDynamic Cell Structures
(DCS) [5] andreinforcement learning. While basically aSugeno type controllerthis controller additionally learns and
exploits the topology of the input space utilizing the DCS. The controller not onlyadapts the parameters of its fuzzy
control rules but alsogenerates new rules. Our application ison-line learning of areactive collision avoidance behavior
for an autonomous mobile robot. More particular, the controller employs aREINFORCE [14] algorithm in combination
with anAdaptive Heuristic Critique (AHC) [13] to learn a continuous valued sensory motor mapping for obstacle avoid-
ance with the TRC Labmate from delayed reinforcement. The sensory input consists of eight unprocessed sonar read-
ings, the controller output is the continuous angular and forward velocity of the Labmate. The controller architecture
integrates the controller and the AHC within a single network. Utilizing aREINFORCE algorithm offers a sound basis
for reinforcement learning and allows to attach an additionalcertainty value to each fuzzy rule.

1 Introduction
According to the terminology set forth in [10], hybrid neuro fuzzy controllers (HNFC) denote artificial neural networks
(ANN) obtained by “compiling” a fuzzy controller into an ANN. They can then be adapted using training rules initially
developed for ANN. Lin and Lee’s Neural-Network-Based Fuzzy Logic Control and Decision System [8] is one of the
earliest examples of a HNFC using a combination of off-line unsupervised and supervised training for rule generation and
parameter adaptation. Berenji’s GARIC architecture [4] is perhaps the most well known example of a HNFC trained by
reinforcement learning. GARIC adapts the parameters of an Action Selection Network (ASN), which encodes a fuzzy con-
troller, by means of an Action Evaluation Network (AEN) and a Stochastic Action Modifier (SAM). While conceptually
similar to GARIC our control architecture integrates the ASN and the AEN within a single DCS network used for adaptive
vector quantization of the input space, learning of the required sensory motor mapping and evaluation of the control policy
(see Figure 1). Contrary to GARIC our controller is able to generate new control rules in addition to adapting parameters
of existing ones. Utilizing a REINFORCE algorithm we avoid the rather questionable heuristics used in GARIC and,
moreover, we are able to specify and adapt a certainty value for each control rule. We will introduce DCS for fuzzy control
in section 2 and proceed with a detailed description of the controller as well as the learning algorithms in section 3.

Concerning our application,reactive collision avoidance of an autonomous robot rests on the hypothesis that collision
avoidance can be realized by a simple mapping between sensory data and motor actions, i.e. without involving a controller
state. Since a simple mapping from (sensory) input to (motor) output is the essence of most conventional feed forward
ANNs and fuzzy logic controllers their application to reactive navigation tasks is self evident and has been tackled by a
number of researchers before using either supervised learning or reinforcement learning to train an ANN, e.g. [7], [11] or
to refine a (neuro-) fuzzy controller, e.g. [3]. Fuzzy logic controllers without adaptability have been suggested as well, e.g.
[12]. As is evident from the continuing research effort on this field, reactive navigation and collision avoidance in partic-
ular is far from being a closed chapter in robotics.

Different to e.g. [7] we associate a continuous sensory input with continuous motor actions, i.e. we learn an appropriate
forward velocity and angular velocity, not only to turn either left or right with a fixed velocity. As input we use the un-
processed readings of eight noisy sonar sensors which yields learning more difficult than e.g. the three laser readings used
in [11]. Finally, we tried to avoid over-simplified simulations by simulating the geometric, dynamic and sensory charac-
teristics of our TRC Labmate. In a number of experiments, [1], this simulator has proved to be in good accordance with
the real Labmate.

2 Radial Basis Functions, Sugeno type Fuzzy Control and Dynamic Cell Structures
In this section we briefly introduce and relate Radial Basis Functions, Sugeno type Fuzzy Control and Dynamic Cell Struc-
tures. It turns out that Dynamic Cell Structures can be regarded as restricted Sugeno type Fuzzy controllers with additional
learning and exploitation of the topology of the input space.
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