
Practicing Q-Learning
Jörg Bruske, Ingo Ahrns, Gerald Sommer

Christian Albrechts University of Kiel - Computer Science Institute
Preusserstr. 1-9 - 24118 Kiel - Germany

e-mail: jbr@informatik.uni-kiel.de

Abstract. Q-Learning has gained increasing attention as a promising real time
learning scheme from delayed reinforcement. Being compact, model free and
theoretically optimal it is commonly preferred to AHC-Learning and its deriva-
tives. However, it has long been noticed that theoretical optimality has to be sac-
rificed in order to meet the constraints of most applications. In this article we
report of experiments with modified Q-Learning algorithms together with their
key ingredients for practical success in reinforcement learning. These includeop-
timistic initialization, the principle ofpiecewise constancy of policy and the use
of activity traces. Finally, we extend these algorithms forgrowing RBF networks
with additional on-line learning vector quantization (adaptive perceptualization)
and obtain very encouraging results as well.

Our test bed is pole balancing with additional noise on the sensory input.

1. Q-Learning

Q-Learning [18] as well as AHC-Learning [16] by learning optimal actions try to min-
imize the expected cumulative discounted reward associated with each state in a Mark-
ovian environment. The function mapping a state to the action to be executed in this
state is called the policy. More formally, we have a finite set of states ,
a finite set of actions , stationary (unknown) probabilities ,
denoting the probability to get to state j if applying action u in state i, and a reinforce-
ment signal denoting the immediate reinforcement received for applying action u
in state i. The objective is to find an optimal (stationary) policy minimizing for
all states the evaluation function

, (1)

where is the so called discount factor. Such a policy always exists and -know-
ing all the - can be found by Dynamic Programming techniques [3].
Q-Learning [19] is guaranteed to find the optimal policy without knowledge of the tran-
sition probabilities. Here, one starts with an arbitrarily initializedtable of state-action
values for all . The update equation is

 with (2)

(3)

and convergence of this learning rule to the optimal state-action values is
guaranteed if a) is appropriately decreased to zero with t and b) all admissable state
action pairs are backed up infinitely often. The optimal evaluation function is then im-
plied by

(4)

and the optimal policy by

Π
S 1 … n, ,{ }=

U 1 … m, ,{ }= pij u()

r t()
Πopt

s S∈

VΠ s() EΠ γt
r t()

t 0=
∞∑ s0 s==

γ Πopt

pij u()

Q s u,() s u,() S U×()∈
∆Q st 1– ut 1–,() αterr t()=

err t() r t() γmax Q st a,() a U∈{ } Q st 1– ut 1–,()–+=

Q
opt

s u,()
αt

V
opt

s() max Q
opt

s u,() u U∈{ }=

published in: ESANN’96, Proc. of the 1996 Conference, Bruges, pp. 25-30

. (5)

Both prerequisites for convergence to the optimal policy are, however, unrealistic in
most real world domains. A reactive agent, for instance, cannot afford to try each action
in each state infinitely often (a)1, especially if safety demands have to be met (explora-
tion/ exploitation dilemma), and (b) “freezing” the learning constant is highly undesir-
able as well, if the agent should retain plasticity to cope with a changing environment
(stability/ plasticity dilemma). Other problems of Q-Learning are that the representation
of the Q-function has to be tabular and that the update rule (2) is inherently sequential.
This sequentiality results from themax-operator in (3): Changes to the Q-function at the
current point of time cannot be used to back up Q-values of former visited states be-
cause the policy may have changed meanwhile. On the other hand, for AHC-Learning
the use of “traces” through time fully exploits parallelism and has been shown to sig-
nificantly speed up learning [2].

2. Modified Q-Learning

In order to deal with these shortcomings, we now introduce some modifications to the
original learning scheme and demonstrate their effect in pole balancing. For the details
of our simulation the reader is referred to section 4.
First of all we shift priority from stability to plasticity and therefore use aconstant
learning rate throughout all the following experiments. This is quite common in Q-
Learning, see e.g. [10], [7], [1].
The problem of backing up the costs of all state action pairs infinitely often while nev-
ertheless trying to behave optimally according to the current Q-values is usually ad-
dressed by making the policy a stochastic function of the Q-values (e.g. Boltzmann
distribution, see [3])2. Our experiments with the pole balancer, however, suggested that
given a constant learning rate anoptimistic initalization3 (see also [8]) of the Q-values
together with agreedy strategy yield best results (and were thus employed in the fol-
lowing). Hence our modified Q-Learners are deterministic.
The performance of such a (tabular) Q-Learner is depicted in Fig 1. (Box-curve).
Two more ingredients were needed to yield the impressive success and learning rates of
our second algorithm,BoxAt, depicted as the second curve in Fig 1. The first one we call
theprinciple of piecewise constancy of policy which - often hidden between the lines-
turns out to be a read thread through most successful delayed reinforcement learning ap-
plications (e.g. [2], [12] and [11]). Its essence is that policies must not change too fre-
quently so that the learner gets a better chance to evaluate the current policy.

1. Without prior knowledge of the transition probabilities pij(u), however, it is hard to imag-
ine any learner which is guaranteed to find an optimal policy while violating a).
2. For AHC-Learning, interesting exploration and learning strategies have been proposed
in e.g. [12], [9]. Here, the system frequently switches between deterministic and stochastic
behavior and learning is stopped if a quasi optimal solution has been found.
3. We call an initialization optimistic iff for all .

Πopt
s() argmax Q

opt
s u,() u U∈{ }=

Q
init

s u,() Vopt s()≥ s S∈ u U∈,

We implement this principle by accumulating errors until failure. On failure, the Q(s,u)
values are then updated with their accumulated errors. The learning equation thus ob-
tained is

(6)

where T is the number of time steps from the last until the current failure and

(7)

is the contribution of the current error to the accumulated error .
The second equally important ingredient is the introduction of activity traces, similar to
the eligibility traces of [2]. Here the main idea is to define an error signal not only for
the last but also for all previously encountered states and applied actions. For Q-Learn-
ing such ideas have been put forward in e.g. [13] with the family and [15]. How-
ever, error tracing in the latter two is questionable within the Q-Learning framework
since policies may change and leave the traces invalid. On the other hand, combining
error traces with piecewise constancy of policy yields valid error traces and, moreover,
allows to store a trace for each state only (as opposed to one trace for each state action
pair). Our tracing mechanism replaces (7) by

 with (8)

which can be effectively calculated as
, (9)

with each state’sactivity trace calculated as and
 on a reset.

3. Q-Learning with Dynamic Cell Structures

While Box andBoxAt presupposed an a priori quantization of the input space we will
now attempt to Q-learn with a growing Radial Basis Function network which has to
solve the additional problem of adaptive vector quantization of the input space on-line.
RBF networks, [14], promise to be particular well suited for Q-Learning. The well
known problem of overestimation when using a function approximator for Q-Learning,
[17], is largely eliminated by using piecewise constant policies. Our approach is similar
to [1], using RBF units of constant width and employing on-line gradient descent for
adjusting the output layer and the centres, but includes theprinciple of piecewise con-
stancy andactivity traces which we have reformulated for normalized DCS networks.
While basically an RBF network, a DCS network concurrently learns and utilizes the
topology of the input manifold (see [4] for detail). On presentation of a stimuluss only
the “best matching RBF unit” (bmu) and its topological neighbors,Nh(bmu), are acti-

∆Q
tot

s u,()
α
T
--- errt s u,()

t 1=
T∑ : failure

0 : otherwise




=

errt s u,()
err t() : s st 1– u, ut 1–= =

0 : otherwise



=

∆Q
tot

s u,()

Q λ()

errt s u,() γn
err t()= n min m st m– s={ }=

errt s u,() as t() err t()=

as t()
1 : s st 1–=

γas t 1–() : otherwise



=
as 0() 0=

vated. In the following, let denote . The output of the
DCS network than calculates as

(10)

The output can be interpreted as a weighted sum of theqju values attached to each “state
neuron”. Gradient descent on the squared prediction errorerr2(t) yields the learning rule

 and (11)

and accumulation of gradients for realizing the principle of constant policy:

. (12)

As in the case of table-based Q-Learning with constant policy the current errorerr(t)
can be used to update the output weightsqju for all previously encountered state-action
pairsst-n, ut-n. If unit i has been activated in statest-n and the controller has decided to
take actionkt-n, we can derive the partial derivative oferr2(t) with respect toqi,k(t-n) as

. (13)

Thus by defining an activity trace for each output weight as

(14)

with on a reset, we can replace the right side of (13) by .
The balancing performance for this DCS based approach is depicted in Fig 3.,DcsAt
andDcs denoting the DCS based algorithms with and without activity trace. Bearing in
mind that these growing networks with a maximum of 25 units had to solve the (ex-
tremely non-trivial) adaptive perceptualization problem for the 4d pole balancer in ad-
dition to coping with noise these results are quite impressive. Again, activity traces
helped to increase performance. The reader should be aware of the fact that no learning
constants had to be “frozen”. Gradient descent for center adaptation was found to offer
a good compromise w.r.t. the stability/plasticity dilemma. Note that networks with a
Kohonen type center adaptation rule would have collapsed without freezing if not aug-
mented with some kind of modulation of the learning constant as in eg. [5].

4. Experiments

The kind of pole balancing problem we dealt with is the same problem as attacked in
e.g. [1], [2] and [9] but with additional noise of 5% on the sensory input. The controller
is a four input (4d) single output MISO system, the output being +10/-10N (Bang-bang

Nh
+

bmu() bmu{ } Nh bmu()∪

QDCS s u,()
qjurbf s µj–()

rbf s µl–()
l Nh

+
bmu()∈

∑
--

j Nh
+

bmu()∈
∑=

∆qju αq qju∂
∂

err
2

t()–= ∆µij αµ µij∂
∂

err
2

t()–=

∆w
tot

α– w
T

w∂
∂

err
2

t()
t 1=
T∑ : failure

0 : otherwise





=

qi k t n–(),∂
∂

err
2

t() err t() γn 1–
yi t n–()–=

aik t() yi t 1–() : i Nh
+

bmu st 1–()() k ut 1–=,∈

γaik t 1–() : otherwise





=

aik 0() 0= aik– t() err t()

control), and the learner receives a penalty only if either the pole exceeds a certain angle
or the card leaves a certain range on the x-axis. On failure, the pole/ card system is reset
to the state (0,0,0,0) and a new trial begins. Fig 1. and Fig 3. report the number of bal-
ancing time steps versus the number of trials averaged over 20 runs. Similar to [2] our
runs consisted of 500000 time steps and if a successful trial had to be interrupted be-
cause of exceeded time the remaining trials were assigned the previous number of bal-
ancing steps. In order to avoid deceivingly high balancing results runs with more than
10000 balancing steps were only counted with 10000 balancing steps when averaging.
Fig 2. and Fig 4. show results of some single runs forBoxAtandDcsAt. More details,
parameter sets and additional experiments will be published elsewhere [6].

5. Summary

Our experiments give further evidence thatpiecewise constancy of policyandactivity
traces are key ingredients for practical success in Q-learning. In combination with a
constant learning rate, optimistic initialization and agreedy strategy - our answers to
the stability/ plasticity and exploration/ exploitation dilemma - we were able to derive
a deterministic algorithm (BoxAt) which in spite of its simplicity exhibits impressive
balancing performance on an (a priori) quantized input space with additional noise.

Fig 1. Table Based Q-Learners, averaged Fig 2. 10 singleBoxAt runs

Fig 3. DCS Based Q-Learners, averaged Fig 4. 10 singleDcsAt runs

0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300 350

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

BoxAt

Box

DcsAt

Dcs

Equally important, we have demonstrated that a growing DCS (RBF) network with as
few as 25 units (compared to the quantization into 162 boxes) and using the same prin-
ciples can be very successful as well while solving the additional task of adaptive per-
ceptualization on-line. The algorithms (BoxAt and DcsAt) compare well to Barto’s
famous, yet more sophisticated, probabilistic AHC based pole balancer and to Ander-
son’s probabilistic RBF Q-learners, the latter using networks of 30 units and achieving
balance after 3300 trials on average.

References

1. C.W. Anderson: Q-Learning with Hidden Units Restarting, NIPS 2, Morgan Kaufman, San
Mateo, pp.81-87, 1992.

2. A. Barto and R. Sutton and C. Anderson: Neuronlike Adaptive Elements that can Solve Diffi-
cult Learning Control Problems, IEEE Trans. on Systems, Man and Cybernetics, Vol. 5,
pp.834-846, 1983.

3. Andrew G. Barto and Steven J. Bradtke: Learning to Act using Real-Time Dynamic Program-
ming, Artificial Intelligence, pp. 81-138, 1995.

4. J. Bruske and G. Sommer: Dynamic Cell Structure learns Perfectly Topology Preserving Map,
Neural Computation, Vol. 7, No. 4, pp. 845-865, 1995.

5. I. Ahrns, J. Bruske and G. Sommer: On-line Learning with Dynamic Cell Stuctures,
ICANN’95, pp. 141-146.

6. J. Bruske and G. Sommer: Practicing Q-Learning, Technical Report, Inst. f. Inf. u. Prakt. Math
CAU Kiel, to appear.

7. Bruce L. Digney: Emergent Intelligence in a Distributed Adaptive Control System, Ph.D. the-
sis, Univ of Saskatchewan, 1994.

8. M. Heger and K. Berns: Risikoloses Reinforcement-Lernen, KI 4/92, pp.26-32.
9. D. Kontoravdis: Efficient Reinforcement Learning Strategies for the Pole Balancing Problem,

ICANN 94, pp.659-662.
10. Long-Ji Lin: Reinforcement Learning for Robots Using Neural Networks, Ph.D. Thesis, Car-

negie Mellon Univ., 1993.
11. D. Michie and R.A. Chambers: BOXES: An experiment in adaptive control, Machine Intelli-

gence 2, eds. E. Dale and D. Michie, pp.137-152., 1968.
12. J. R. Millan and C. Torras: A Reinforcement Connectionist Approach to Robot Path Finding

in Non-Maze-Like Environments, Machine Learning, Nr. 8, pp.363-395,1992.
13. J. Peng, J. and R. J. Williams: Incremental multi-step Q-learning, Proc. of ML94, pp.226-232.
14. T. Poggio and F. Girosi: Networks for Approximation and Learning, Proc. of the IEEE, Vol.

78, Nr. 9, pp.1481-1497,1990.
15. G. Rummery and M. Niranja: On-line Q-Learning using Connectionist Systems, Tech. Rep.

CUED/F-INFENG/TR 166, Cambridge Univ. Engeneering Dept., 1994
16. Richard S. Sutton: Temporal Credit Assignment in Reinforcement Learning, Ph.D. Thesis,

Univ. of Mass., Amherst, 1984.
17. S.B. Thrun and A. Schwartz: Issues in Using Function Approximation for Reinforcement

Learning, Proc. of the Fourth Connectionsit Models Summer School, 1993.
18. C. Watkins: Learning from delayed rewards, Ph.D. Thesis, Univ. of Cambridge, England,

1989.
19. C. Watkins: Q-Learning, Machine Learning, 8, pp.279-292, 1992.

