
On-line Learning with Dynamic Cell Structures �Ingo Ahrns, J�org Bruske, Gerald SommerChristian Albrechts University of Kiel - Cognitive Systems GroupPreusserstr. 1-9 - 24118 Kiel - GermanyPhone: ++49 431 560480Fax: ++49 431 560481e-mail: jbr@informatik.uni-kiel.deAbstractDynamic Cell Structures (DCS) belong to the class of topology representing net-works recently introduced by [Ma94]. DCS networks rest upon radial basis functionnetworks (RBF) and an additional lateral connection structure between the neuralunits. This connection structure re
ects the topology of the input manifold.Initial simulations on CMU benchmarks presented in [Br95] are very encouragingbut were all involved with o�-line learning tasks. In this article we argue that DCSnetworks are also capable of performing on-line learning tasks where the trainingexamples are generated by a dynamic system (i.e. not a �xed training set). Theproposed modi�cations to the original learning scheme in order to cope with thedynamics bear relevance not only for DCS but for Kohonen type networks and TRNin general. Our test environment is pole-balancing.1 IntroductionLike Kohonen's famous SOM Dynamic Cell Structures (DCS) are capable of adaptive vec-tor quantization, clustering, dimensionality reduction and have been extended for super-vised learning. Moreover, DCS-networks form \topology preserving" feature maps [Ma94].In this section we brie
y summarize the foundations of DCS. Section 2 presents our ex-tensions for better coping with dynamic systems and in section 3 we report simulationresults.Consider an input manifold I � IRn and an output manifold O � IRm.A neural DCS-unit is a point u = (cu; wu; �u; ru) 2 I � O � [0; 1]I � IR�0, where cuis called the center, wu the weight, �u the activation function and ru the resource of theneural unit.A DCS-graph is an undirected graph N = (U;L) where U � I �O � [0; 1]I � IR�0 is a�nite set of neural units and L � ffu; vgju; v 2 U ^ u 6= vg is a set of lateral connectionsbetween di�erent neural units.�Published in: Proc. of ICANN'95, Vol.2 (1995) 141-146



The lateral connection-strength is a function � : L ! IR�0 which is usually given bya symmetrical adjacency matrix C 2 IRjU j�jU j for which Cii = 0 for all i 2 f1; � � � ; jU jg.Moreover, Cij = 0 if unit i and unit j are not connected, and 0 < Cij � 1 if unit i andunit j are connected with strength Cij. In general we have �(fui; ujg) = Cij.A DCS-network is a triple (U;L; �) of a DCS-graph (U;L) and a lateral connection-strength �. In order to perform perfect topology learning, a simple competitive Hebbianlearning rule is used ([Br95]). It was proven in [Ma94] that a lateral connection structureof neural units formed by the competitive Hebbian learning rule yields a perfect topologypreserving map. In [Br95] and [Ma92] this learning rule was extended by introducing aforgetting constant in case of a non-stationary input distribution or changing neighborhoodrelations.GDCS is a growing DCS network that employs ideas from Fritzke's Growing Cell Struc-tures (GCS) [Fr95]. Like in GCS each neuron contains a local error variable which is calledthe resource of a neural unit. Such a resource variable accumulates error values if itsneuron wins the competition for a given input stimulus and becomes the best matchingunit. In case of supervised learning one can e.g. use the squared output error as an errormeasure. The reason for introducing resources is to guide the insertion of new neural unitsby the local error in order to get a uniform distribution of all resource values.In GCS and GDCS centers are adapted in a Kohonen-like fashion, such that the centersof the best matching unit (bmu) and its neighbors are moved into the direction of the lastinput. In this article we argue that an improved adaptation rule can be obtained by takinginto account the error variables � much like the classi�cation performance is taken intoaccount in LVQ-algorithms [Ko92].2 DCS for dynamic system controlThe GDCS-networks mentioned above has demonstrated e�ectiveness in supervised andunsupervised learning tasks [Br95]. Training sets were static and have been mixed toremove the in
uence of the order of sample presentation. This kind of neural net trainingis legitimate if all training data are directly attainable. The focus on this article is ondemonstrating how GDCS are able to learn control functions on-line.2.1 The Task of Pole-BalancingPole-balancing is a famous example of a dynamic system which has often been reportedto be a di�cult control problem. In this article we consider the pole-balancing problem inits simplest version adopted from Ritter [Ri91]. System dynamics are then comprised bythe following di�erential equation:(m+ sin2 �)�� + 12 _�2 sin(2�) � (m+ 1) sin � = �f cos �: (1)Here, � represents the angle of inclination of the pole, m is the mass of the base pointof the pole, and the force applied to the base point is denoted as f . As an appropriatefunction for balancing the inverse pendulum, the force fL(�; _�) = 5 sin � + _� was taken



as a teacher signal for supervised learning. In our simulations we released the pole at arandomly chosen angle �40� � � � 40� with zero velocity. The force for controlling thepole can be obtained by f = �(tk)y(�; _�) + (1 � �(tk))fL(�; _�); (2)where � : [0; T ] ! [0; 1] represents a monotonically increasing function which expressesthe reliability of the control-function y of the network.2.2 Improvements on DCSLet us now discuss some modi�cations of DCS with respect to on-line learning in controlproblems.2.2.1 Mixed insertion strategyIn the classical GDCS approach, a new neural unit is inserted after � teaching steps betweenthe units with the largest resource values. We call this method error driven unit insertion.It is useful, if one has a �xed training set T . In our control problem we don't have any�xed training sets. Rather training data are obtained according to the dynamics of thecontrolled system which can cause severe problems with unfolding in GCS as well as GDCS.The solution is to augment GDCS with a second insertion strategy operating in parallelto the error driven insertion strategy: We introduce a threshold � 2 IR�0 which indicatesthe maximum distance of an input stimulus to the center of the best matching unit. If thedistance exceeds � and the number of neural units is below a given maximum unit number,we insert a new neural unit at the position of the given training pair in I �O. That newunit can be connected to the last best matching unit. Such an additional distance drivenunit insertion is quite common, see e.g. [Ha93],[Pl91], where insertion takes place if thestimulus distance and the approximation error both exceed a threshold. Besides copingwith unfolding problems, the distance driven insertion yields a coarse scale approximationwhich will be re�ned by the error driven insertion strategy.2.2.2 Non-Symmetric Lateral Connection StructureAs pointed out in [Ma92], it is possible to update the lateral connections of the bestmatching unit only. If we use a competitive Hebb rule as proposed in [Br95] for topologylearning, including the deletion of lateral connections in the case of Cij < �, unconnectedneural units can result. Unconnected neural units become super
uous if they lie in regionsof the input manifold where input stimuli have low probability to stem from. Such neuralunits are called dead neurons. In order to avoid such neurons we now give up the demand ofsymmetry and adapt the lateral connections of the bmu non-symmetrically. Consequently,lateral connections will only be removed, if the connection strengths of both connected



units fall below �. We obtain:Cij := 8>>>>>><>>>>>>: 1 : fi; jg = fbmu; secondg0 : i = bmu ^ j 6= second ^ (� � Cij < � ^ Cji < �)0 : j = bmu ^ i 6= second ^ (� � Cji < � ^ Cij < �)� � Cij : i = bmu ^ j 6= second ^ (� � Cij � � _ Cji � �)Cij : otherwise ; (3)where the best matching unit and the second best matching unit for a given input stimulusx 2 I are de�ned by8u 2 U : kcbmu � xk � kcu � xk;8u 2 U n fbmug : kcsecond � xk � kcu � xk (4)2.2.3 Error Modulated Kohonen Rule for Center AdaptationThe next modi�cation of GDCS concerns the adaptation rule for center updating. Iftraining data are generated by a dymamical system like the inverse pendulum tendencieswill result which usually infers with traditional training methods. Another well knownproblem with Kohonen-type feature maps is to avoid that regions where inputs have ahigh temporary probability density attract all neural units. Instead of re
ecting the inputprobability density the distribution of neural units should result in a uniform distributionof local approximation errors. This is the motivation for our error modulated Kohonen-rule: Let the resource values accumulate a kind of mean value of error signals (independentof frequency). We employ:rbmu := 
 � rbmu + (1� 
) � err; 
 2 [0; 1]: (5)Now let c : IR�0 ! [0; 1] be a monotonically decreasing function with c(0) = 1 and c(1) = 0.Our modi�ed update rule iscbmu := cbmu + c� �rrbmu� � "bmu � (x� cbmu); (6)8u 2 Nh(bmu) : cu := cu + c� rurbmu� � "Nh � (x� cu); (7)where �r = 1jNh(bmu)j � Xu2Nh(bmu) ru (8)and Nh(bmu) := fvjfbmu; vg 2 Lg: (9)Hence the bmu is only attracted by the input stimulus if rbmu > �r and neighbors are onlyattracted if their resource is below the bmu's resource, aiming at a uniform distribution ofresource values.3 Simulation resultsWe applied our improved GDCS-network to the task of pole balancing mentioned above.The GDCS-network was trained for a duration of kmax training steps. After a balancing



failure (j�j > 45�) or after ktry successful balancing steps the simulation was started again.For our experiments we used a DCS-network with the mixed unit insertion strategy, thenon-symmetric lateral connection structure and the error modulated Kohonen rule forcenter adaptation. After 3000 learning steps our network, consisting of 70 neural units,was able to balance the pole, see Fig. 1.
a) b)
c) d)Figure 1: a), b) DCS-network. c) Approximate function y(�; _�). d) �(t) during pole-balancing after training-phase.The parameter set of our simulation was: kmax = 3000, ktry = 100, time step width �t= 0:3 s, pendulummassm = 1:0 kg, learning constants "bmu = 0.1, "Nh = 0.001, connectionthreshold � = 0.01, insertion constant � = 0.075, insertion step width � = 100, resourceaveraging 
 = 0.8, connection forgetting rate � = 0:88, reliability function �(tk) = kkmaxand c(x) = 2x3 � 3x2 + 1 if x 2 [0; 1] and c(x) = 0 otherwise. Neural activations werecomputed by Gaussian basis-functions with a standard deviation of � = 0:2. Outputweights were adapted by using a simple delta-rule with a learning constant of � = 0:001.



4 ConclusionOn-line learning with respect to control of dynamic systems is di�cult due to the nonstationary probability density of input stimuli and resulting tendencies in the training data.In this article we proposed three modi�cations to the original GDCS learning scheme tocope with this problem without \freezing" of learning constants. First, our error modulatedKohonen type learning rule is no longer dominated by the input probability density butaims at a uniform approximation error (uniform distribution of resources) independent ofthe probability density. This idea applies to GCS and extensions of the Kohonen map aswell. Second it was found that tendencies in the data can cause severe unfolding problems inGCS or GDCS if error driven insertion is employed only. We therefore decided to augmentGDCS with a distance driven insertion scheme for approximation on a coarse scale. Errordriven insertion remains responsible for error driven re�nement. The idea applies to GCSas well. Finally, TRN may su�er from dead neurons if lateral connections are allowed to beforgotten. Our solution to this problem is to introduce unsymmetric lateral connections.Pole balancing in its simplest version was used for demonstration. Despite of its simplicitythis simulation nevertheless had to cope with all the afore mentioned di�culties in on-linelearning of dynamic systems.Currently we work on using GDCS for obstacle avoidance on a TRC Labmate mobilerobot.References[Br95] J�org Bruske, Gerald Sommer: Dynamic Cell Structure learns Perfectly TopologyPreserving Map, Neural Computation, Vol. 7, No. 4, 1995.[Ma92] Thomas Martinez: Selbstorganisierende neuronale Netzwerke zur Bewegungss-teuerung, Dissertation, DIFKI-Verlag, 1992.[Ma94] Thomas Martinez: Topology Representing Networks, Neural Networks, Vol.7, pp.505-522, 1994.[Ri91] H. Ritter, T. Martinetz, K. Schulten: Neuronale Netze, Addison Wesley, 1991.[Fr95] B. Fritzke: Growing Cell Structures - a self organizing network for unsupervisedand supervised learning, Neural Networks, Vol.7, pp.1441-1460, 1995.[Ha93] J. Hakala and R. Eckmiller: Node Allocation and Topographical Encoding (NATE)for Inverse Kinematics of a Redundant Robot Arm for Inverse Kinematics of a 6-DOF Robot Arm, ICANN 93, pp. 309-312, 1993.[Ko88] Teuvo Kohonen: Adaptive, associative, and self-organizing functions in neural com-puting, Applied Optics, Vol. 26, pp.4910-4918, 1987.[Ko92] T. Kohonen et. al.: LVQ-PAK, The Learning Vector Quantization Program Pack-age, Version 2.0, Helsinki University of Technology, 1992.[Pl91] J. Platt: A Resource-Allocating Network for Function Interpolation, Neural Com-putation, Vol.2, No. 3, pp.213-225, 1991.


