On-line Learning with Dynamic Cell Structures *

Ingo Ahrns, Jorg Bruske, Gerald Sommer
Christian Albrechts University of Kiel - Cognitive Systems Group
Preusserstr. 1-9 - 24118 Kiel - Germany
Phone: ++449 431 560480
Fax: +449 431 560481

e-mail: jbr@informatik.uni-kiel.de

Abstract

Dynamic Cell Structures (DCS) belong to the class of topology representing net-
works recently introduced by [Ma94]. DCS networks rest upon radial basis function
networks (RBF) and an additional lateral connection structure between the neural
units. This connection structure reflects the topology of the input manifold.

Initial simulations on CMU benchmarks presented in [Br95] are very encouraging
but were all involved with off-line learning tasks. In this article we argue that DCS
networks are also capable of performing on-line learning tasks where the training
examples are generated by a dynamic system (i.e. not a fixed training set). The
proposed modifications to the original learning scheme in order to cope with the
dynamics bear relevance not only for DCS but for Kohonen type networks and TRN
in general. Our test environment is pole-balancing.

1 Introduction

Like Kohonen’s famous SOM Dynamic Cell Structures (DCS) are capable of adaptive vec-
tor quantization, clustering, dimensionality reduction and have been extended for super-
vised learning. Moreover, DCS-networks form “topology preserving” feature maps [Ma94].
In this section we briefly summarize the foundations of DCS. Section 2 presents our ex-
tensions for better coping with dynamic systems and in section 3 we report simulation
results.

Consider an input manifold I C IR" and an output manifold O C R™.

A neural DCS-unit is a point u = (¢, Wy, @y, 1) € 1 x O x [0,1)7 x IR>q, where ¢,
is called the center, w, the weight, «, the activation function and r, the resource of the
neural unit.

A DCS-graph is an undirected graph N = (U, L) where U C I x O x [0,1]7 X Rx¢ is a
finite set of neural units and L C {{u,v}|u,v € U A u # v} is a set of lateral connections
between different neural units.

*Published in: Proc. of ICANN’95, Vol.2 (1995) 141-146

The lateral connection-strength is a function p : L — IR>q which is usually given by
a symmetrical adjacency matrix C' € IRVIXIVI for which Cj; = 0 for all ¢ € {1,---,|U|}.
Moreover, C;; = 0 if unit ¢ and unit j are not connected, and 0 < C;; < 1 if unit 1 and
unit j are connected with strength C;;. In general we have p({u;,u;}) = C;;.

A DCS-network is a triple (U, L, p) of a DCS-graph (U, L) and a lateral connection-
strength p. In order to perform perfect topology learning, a simple competitive Hebbian
learning rule is used ([Br95]). It was proven in [Ma94] that a lateral connection structure
of neural units formed by the competitive Hebbian learning rule yields a perfect topology
preserving map. In [Br95] and [Ma92] this learning rule was extended by introducing a
forgetting constant in case of a non-stationary input distribution or changing neighborhood
relations.

GDCS is a growing DCS network that employs ideas from Fritzke’s Growing Cell Struc-
tures (GCS) [Fr95]. Like in GCS each neuron contains a local error variable which is called
the resource of a neural unit. Such a resource variable accumulates error values if its
neuron wins the competition for a given input stimulus and becomes the best matching
unit. In case of supervised learning one can e.g. use the squared output error as an error
measure. The reason for introducing resources is to guide the insertion of new neural units
by the local error in order to get a uniform distribution of all resource values.

In GCS and GDCS centers are adapted in a Kohonen-like fashion, such that the centers
of the best matching unit (bmu) and its neighbors are moved into the direction of the last
input. In this article we argue that an improved adaptation rule can be obtained by taking
into account the error variables — much like the classification performance is taken into
account in LVQ-algorithms [K092].

2 DCS for dynamic system control

The GDCS-networks mentioned above has demonstrated effectiveness in supervised and
unsupervised learning tasks [Br95]. Training sets were static and have been mixed to
remove the influence of the order of sample presentation. This kind of neural net training
is legitimate if all training data are directly attainable. The focus on this article is on
demonstrating how GDCS are able to learn control functions on-line.

2.1 The Task of Pole-Balancing

Pole-balancing is a famous example of a dynamic system which has often been reported
to be a difficult control problem. In this article we consider the pole-balancing problem in
its simplest version adopted from Ritter [Ri91]. System dynamics are then comprised by
the following differential equation:

..
(m—l—sim2 6)0 + 502 sin(260) — (m + 1)sinf = — f cos 6. (1)
Here, 6 represents the angle of inclination of the pole, m is the mass of the base point

of the pole, and the force applied to the base point is denoted as f. As an appropriate
function for balancing the inverse pendulum, the force fL(0, (9) — 5sinf 4 0 was taken

as a teacher signal for supervised learning. In our simulations we released the pole at a
randomly chosen angle —40° < § < 40° with zero velocity. The force for controlling the
pole can be obtained by

f = 6(tk)y(07 0) + (1 - 6(tk))fL(07 0)7 (2)

where 8 : [0,T] — [0,1] represents a monotonically increasing function which expresses
the reliability of the control-function y of the network.

2.2 Improvements on DCS

Let us now discuss some modifications of DCS with respect to on-line learning in control
problems.

2.2.1 Mixed insertion strategy

In the classical GDCS approach, a new neural unit is inserted after A teaching steps between
the units with the largest resource values. We call this method error driven unit insertion.
It is useful, if one has a fixed training set 7. In our control problem we don’t have any
fixed training sets. Rather training data are obtained according to the dynamics of the
controlled system which can cause severe problems with unfolding in GCS as well as GDCS.
The solution is to augment GDCS with a second insertion strategy operating in parallel
to the error driven insertion strategy: We introduce a threshold é € IR>¢ which indicates
the maximum distance of an input stimulus to the center of the best matching unit. If the
distance exceeds 6 and the number of neural units is below a given maximum unit number,
we insert a new neural unit at the position of the given training pair in I x O. That new
unit can be connected to the last best matching unit. Such an additional distance driven
unit insertion is quite common, see e.g. [Ha93],[P191], where insertion takes place if the
stimulus distance and the approximation error both exceed a threshold. Besides coping
with unfolding problems, the distance driven insertion yields a coarse scale approximation
which will be refined by the error driven insertion strategy.

2.2.2 Non-Symmetric Lateral Connection Structure

As pointed out in [Ma92], it is possible to update the lateral connections of the best
matching unit only. If we use a competitive Hebb rule as proposed in [Br95] for topology
learning, including the deletion of lateral connections in the case of C;; < 8, unconnected
neural units can result. Unconnected neural units become superfluous if they lie in regions
of the input manifold where input stimuli have low probability to stem from. Such neural
units are called dead neurons. In order to avoid such neurons we now give up the demand of
symmetry and adapt the lateral connections of the bmu non-symmetrically. Consequently,
lateral connections will only be removed, if the connection strengths of both connected

units fall below 0. We obtain:

1 {1,7} = {bmu, second}
0 i =bmuAj # second N\ (a-Cij < ONCj; <0)
Cyj = 0 : j=bmuAi+#second\(a-Cj <ONCi<0) (3)
a-Cy 1o =bmulyj # second N\ (a-Cij >0V Cj > 0)
C;: 1 otherwise

where the best matching unit and the second best matching unit for a given input stimulus
x € [are defined by

Vu € U | eomu — || < lew — ||, Yu € U\ {bmu} : |[¢second — || < ||cu — 2] (4)

2.2.3 Error Modulated Kohonen Rule for Center Adaptation

The next modification of GDCS concerns the adaptation rule for center updating. If
training data are generated by a dymamical system like the inverse pendulum tendencies
will result which usually infers with traditional training methods. Another well known
problem with Kohonen-type feature maps is to avoid that regions where inputs have a
high temporary probability density attract all neural units. Instead of reflecting the input
probability density the distribution of neural units should result in a uniform distribution
of local approximation errors. This is the motivation for our error modulated Kohonen-
rule: Let the resource values accumulate a kind of mean value of error signals (independent
of frequency). We employ:

Phmu =Y * Thmu + (L =) - err, v €[0,1]. (5)

Now let ¢ : IR>o — [0, 1] be a monotonically decreasing function with ¢(0) = 1 and ¢(1) = 0.
Our modified update rule is

f

Chmu ‘= Chmu T € () * Ebmu (l’ - cbmu)v (6)

Tbmu

Yu € Nh(bmu) : ¢, := cu—l—c< Tu)-5Nh-(:1;—cu), (7)
Tbmu
1
where 7= ———. T (8)
|Nh(bmu)| ueN%(%mu)
and Nh(bmu) := {v|{bmu,v} € L}. 9)

Hence the bmu is only attracted by the input stimulus if r,,, > 7 and neighbors are only
attracted if their resource is below the bmu’s resource, aiming at a uniform distribution of
resource values.

3 Simulation results

We applied our improved GDCS-network to the task of pole balancing mentioned above.
The GDCS-network was trained for a duration of k,,,, training steps. After a balancing

failure (|0] > 45°) or after ky., successful balancing steps the simulation was started again.
For our experiments we used a DCS-network with the mixed unit insertion strategy, the
non-symmetric lateral connection structure and the error modulated Kohonen rule for
center adaptation. After 3000 learning steps our network, consisting of 70 neural units,
was able to balance the pole, see Fig. 1.

Figure 1: a), b) DCS-network. ¢) Approximate function y(@,é). d) 6(t) during pole-
balancing after training-phase.

The parameter set of our simulation was: &, = 3000, ki, = 100, time step width At
= 0.3 s, pendulum mass m = 1.0 kg, learning constants ey, = 0.1, e55 = 0.001, connection

threshold # = 0.01, insertion constant 6 = 0.075, insertion step width A = 100, resource
k

averaging v = 0.8, connection forgetting rate a = 0.88, reliability function 3(t;) = —
and c(x) = 22° — 32 + 1 if 2 € [0,1] and ¢(x) = 0 otherwise. Neural activations were
computed by Gaussian basis-functions with a standard deviation of ¢ = 0.2. Output

weights were adapted by using a simple delta-rule with a learning constant of n = 0.001.

4 Conclusion

On-line learning with respect to control of dynamic systems is difficult due to the non
stationary probability density of input stimuli and resulting tendencies in the training data.
In this article we proposed three modifications to the original GDCS learning scheme to
cope with this problem without “freezing” of learning constants. First, our error modulated
Kohonen type learning rule is no longer dominated by the input probability density but
aims at a uniform approximation error (uniform distribution of resources) independent of
the probability density. This idea applies to GCS and extensions of the Kohonen map as
well. Second it was found that tendencies in the data can cause severe unfolding problems in
GCS or GDCS if error driven insertion is employed only. We therefore decided to augment
GDCS with a distance driven insertion scheme for approximation on a coarse scale. Error
driven insertion remains responsible for error driven refinement. The idea applies to GCS
as well. Finally, TRN may suffer from dead neurons if lateral connections are allowed to be
forgotten. Our solution to this problem is to introduce unsymmetric lateral connections.
Pole balancing in its simplest version was used for demonstration. Despite of its simplicity
this simulation nevertheless had to cope with all the afore mentioned difficulties in on-line
learning of dynamic systems.

Currently we work on using GDCS for obstacle avoidance on a TRC Labmate mobile
robot.

References

[Br95] Jorg Bruske, Gerald Sommer: Dynamic Cell Structure learns Perfectly Topology
Preserving Map, Neural Computation, Vol. 7, No. 4, 1995.

[Ma92] Thomas Martinez: Selbstorganisierende neuronale Netzwerke zur Bewegungss-
teuerung, Dissertation, DIFKI-Verlag, 1992.

[Ma94] Thomas Martinez: Topology Representing Networks, Neural Networks, Vol.7, pp.
505-522, 1994.

[Ri91] H. Ritter, T. Martinetz, K. Schulten: Neuronale Netze, Addison Wesley, 1991.

[Fr95] B. Fritzke: Growing Cell Structures - a self organizing network for unsupervised
and supervised learning, Neural Networks, Vol.7, pp.1441-1460, 1995.

[Ha93] J. Hakala and R. Eckmiller: Node Allocation and Topographical Encoding (NATE)
for Inverse Kinematics of a Redundant Robot Arm for Inverse Kinematics of a 6-

DOF Robot Arm, ICANN 93, pp. 309-312, 1993.

[Ko88] Teuvo Kohonen: Adaptive, associative, and self-organizing functions in neural com-

puting, Applied Optics, Vol. 26, pp.4910-4918, 1987.

[Ko92] T. Kohonen et. al.: LVQ-PAK, The Learning Vector Quantization Program Pack-
age, Version 2.0, Helsinki University of Technology, 1992.

[P191] J. Platt: A Resource-Allocating Network for Function Interpolation, Neural Com-
putation, Vol.2, No. 3, pp.213-225, 1991.

