
References

[Bruske94] J. Bruske and G. Sommer,Dynamic Cell Structures: Radial Basis Function Networks
with Perfect Topology Preservation, Inst. f. Inf. u. Prakt. Math, CAU zu Kiel, Technical Report 9403.
[Bruske95] J. Bruske, I. Ahrns and G. Sommer,Heuristic Q-Learning, submitted to ECML 95.
[Fahlman90] S.E. Fahlman, C.Lebiere,The Cascade-Correlation Learning Architecture, Advances
in Neural Information processing systems 2, Morgan Kaufman, San Mateo, pp.524-534.
[Fahlman93] S.E. Fahlman,CMU Benchmark Collection for Neural Net Learning Algorithms,
Carnegie Mellon Univ., School of Computer Science, machine-readable data repository, Pittsburgh.
[Fritzke92] B. Fritzke,Growing Cell Structures - a self organizing network in k dimensions, Arti-
ficial Neural Networks 2, I.Aleksander & J.Taylor eds., North-Holland, Amsterdam, 1992.
[Fritzke93] B. Fritzke,Growing Cell Structures - a self organizing network for unsupervised and
supervised training, ICSI Berkeley, Technical Report, tr-93-026.
[Gorman88] R.B. Gorman and T.J. Sejnowski,Analysis of Hidden Units in a Layered Network
Trained to Classify Sonar Targets, Neural Networks, Vol.1, pp. 75-89
[Lang89] K.J. Lang & M.J. Witbrock,Learning to tell two spirals apart, Proc. of the 1988 Connec-
tionist Models Summer School, Morgan Kaufmann, pp.52-59.
[Martinetz92] Thomas Martinetz,Selbstorganisierende neuronale Netzwerke zur Bewegungss-
teuerung, Dissertation, DIFKI-Verlag, 1992.
[Martinetz93] Thomas Martinetz,Competitive Hebbian Learning Rule Forms Perfectly Topology
Preserving Maps, Proc. of the ICANN 93, p.426-438, 1993.
[Martinetz94] Thomas Martinetz and Klaus Schulten,Topology Representing Networks, Neural
Networks, No. 7, Vol. 3, pp. 505-522, 1994.
[Moody89] J.Moody, C.J. Darken,Fast Learning in Networks of Locally-Tuned Processing Units,
Neural Computation Vol.1 Num.2, Summer 1989.
[Robinson89] A.J. Robinson,Dynamic Error Propagation Networks, Cambridge Univ., Ph.D. the-
sis, Cambridge.
[Villmann94] T. Villmann and R. Der and T. Martinetz,A Novel Approach to Measure the Topology
Preservation of Feature Maps, Proc. of the ICANN 94, 1994.

The data for the speaker independent recognition of 11 vowels comprises a training set of
582 examples and a test set of 462 examples, see [Robinson89].

We obtained 65% correctly classified test samples with only 108 neural units in theDCS-
GCS network. This is superior to conventional models (including single and multi layer
perceptron, Kanerva Model, Radial Basis Functions, Gaussian Node Network, Square
Node Network and Nearest Neighbor) for which figures well below 57% have been report-
ed by Robinson. It also qualitatively compares to GCS (jumps above the 60% margin), for
which Fritzke reports best classification results of 61%(158 units) up to 67% (154 units) for
a 3-dimGCS. On the other hand, our bestDCS-GCS used much fewer units. Note that
DCS-GCS did not rely on a pre-specified connection structure (but learned it!).

Our last simulation concerns a data set used by Gorman and Sejnowski in their study of
classification of sonar data, [Gorman88]. The training and the test set contain 104 examples
each.

Gorman and Sejnowski report their best results of 90.4% correctly classified test examples
for a standard BP network with 12 hidden units and 82.7% for a nearest neighbor classifier.
SupervisedDCS-GCS reached a peak classification rate of 95% after only 88 epochs of
training.

4 Conclusion

We have introduced the idea of RBF networks which concurrently learn and utilize perfect-
ly topology preserving feature maps for adaptation and interpolation. This family of ANNs,
which we termed Dynamic Cell Structures, offers conceptual advantage compared to clas-
sical Kohonen type SOMs since the emerging lateral connection structure maximally pre-
serves topology. We have discussed the DCS-GCS algorithm as an instance of DCS.
Compared to its ancestor GCS of Fritzke, this algorithm elegantly avoids computational
overhead for handling sophisticated data structures. If connection updates (eq.(1)) are re-
stricted to the best matching unit and its neighbors, DCS has linear (serial) time complexi-
ty6 and thus may also be considered as an improvement of Martinetz’s Neural Gas idea7.
Space complexity of DCS is in general and can be shown to become linear if the
feature manifoldM is two dimensional. The simulations on CMU-Benchmarks indicate
that DCS indeed has practical relevance for classification and approximation.

Thus encouraged, we look forward to apply DCS at various sites in our active computer
vision project, including image compression by dynamic vector quantization, sensorimotor
maps for the oculomotor system and hand-eye coordination, cartography and associative
memories. A recent application can be found in [Bruske95] where a DCS network attempts
to learn a continous approximation of the Q-function in a reinforcement learning problem.

6. Here we refer to the serial time a DCS algorithm needs to process a single stimulus (including
response calculation and adaptation).
7. The serial time complexity of the Neural Gas is , approaching for

, k the number of nearest neighbors.
Ω N() O N Nlog()

k N→

O N
2()

where is the activation of neuron i on stimulusv,
, representing the size of the receptive fields. In our simulations, the size of

receptive fields have been equal for all units.

• adaption of output vectors by the delta-rule: A simple delta-rule is employed to adjust
the output vectors of the best matching unit and its neighbors.

Most important, the approximation (classification) error can be used for resource updating.
This leads to insertion of new units in regions where the approximation error is worst, thus
promising to outperform dynamic algorithms which do not employ such a criterion for in-
sertion. In our simulations we used the accumulated squared distance of calculated and
teaching output, .

3.1 Supervised DCS-GCS simulation results

We applied our supervisedDCS-GCS algorithm to three CMU benchmarks, the supervised
two-spiral problem, the speaker independent vowel recognition problem and the sonar
mine/ rock separation problem.5

The two spirals benchmark contains 194 examples, each consisting of an input vector
 and a binary label indicating to which spiral the point belongs. The spirals can not

be linearly separated. The task is to train the examples until the learning system can pro-
duce the correct output for all of them and to record the time.

The decision regions learned by supervisedDCS-GCS are depicted in Figure 3 after 110
and 135 epochs of training, where the classification error on the training set has dropped to
0%. Black indicates assignment to the fist, white assignment to the second spiral. The net-
work and the examples are overlaid.

Results reported by others are 20000 epochs of Backprop for a MLP by Lang and Witbrok
[Lang89], 10000 epochs of Cross Entropy Backprop and 1700 epochs of Cascade-Correla-
tion by Fahlman and Lebiere [Fahlman90] and 180 epochs ofGCS training by Fritzke
[Fritzke93].

5. For details of simulation, parameters and additional statistics for all of the reported experi-
ments the reader is refered to [Bruske94] which is also available viaftp.informatik.uni-kiel.de in
directorypub/kiel/publications/TechnicalReports/Ps.Z/ as1994tr03.ps.Z

ai 1 σ v wi– 2 1+()⁄=
σ σ 0>,

τbmu∆ y u– 2=

v ℜ2∈

Figure 3: Supervised learning of two spirals

points (which are provided by CMU for supervised learning). Again, the accumulated
squared distance to stimuli served as the resource.

3 Supervised DCS-GCS

In supervisedDCS-GCS examples consist not only of an input vectorv but also include an
additional teaching output vectoru.

The supervised algorithm actually does work very similar to its unsupervised version ex-
cept

• when a neural unit is inserted an output vector will be attached to it with
.

• the outputy of the network is calculated as a weighted sum of the best matching unit’s
output vector and the output vectors of its neighbors ,

, (6)

Figure 1: Unsupervised DCS-GCS on artificial data

Figure 2: Unsupervised learning of two spirals

ni oi
oi u=

obmu oi i Nh bmu()∈,

y aioii bmu Nh bmu()∪{ }∈∑()=

The exact location of its centre of receptive field is calculated according to the ratio of
the resource values , and the resource values of unitsn andl are redistributed among
r, n andl:

, and (3)

, , and . (4)

This gives an estimate of the resource values if the new unit had been in the network right
from the start. Finally the lateral connections are changed,

, and , (5)

connecting unitr to unitl and disconnectingn andl.

This heuristic guided by the lateral connection structure and the resource values promises
insertion of new units at good initial positions. It is responsible for the better performance
of DCS-GCSandGCS compared to algorithms which do not exploit the neighborhood re-
lation between existing units.

The outer loop closes by decrementing the resource values of all units,
, , where is a constant. This last step just avoids

overflow of the resource variables. For off-line learning, is the natural choice.

2.1 Unsupervised DCS simulation results

Let us first turn to our simulation on artificial data. The training setT contains 2000 exam-
ples randomly drawn from a feature manifoldM consisting of three squares, two of them
connected by a line. The development of our unsupervisedDCS-GCS network is depicted
in Figure 1, with the initial situation of only two units shown in the upper left. Examples
are represented by small dots, the centres of receptive fields by small circles and the lateral
connections by lines connecting the circles. From left to right the network is examined after
0, 9 and 31 epochs of training (i.e. after insertion of 2, 11 and 33 neural units).

After 31 epochs the network has built a perfectly topology preserving map ofM, the lateral
connection structure nicely reflecting the shape ofM: WhereM is 2-dimensional the lateral
connection structure is 2-dimensional, and it is 1-dimensional whereM is 1-dimensional.
Note, that a connected component analysis could recognize that the upper right square is
separated from the rest ofM. The accumulated squared distance to stimuli served as the re-
source.

The quantization error dropped from 100% (3 units) to 3% (33
units).

The second simulation deals with the two-spirals benchmark. Data were obtained by run-
ning the program “two-spirals” (provided by CMU) with parameters 5 (density) and 6.5
(spiral radius) resulting in a training setT of 962 examples. The data represent two distinct
spirals in the x-y-plane. UnsupervisedDCS-GCS at work is shown in Figure 2, after inser-
tion of 80, 154 and, finally, 196 units. With 196 units a perfectly topology preserving map
of M has emerged, and the two spirals are clearly separated. Note that the algorithm has
learned the separation in a totally unsupervised manner, i.e. not using the labels of the data

4. Fritzke inserts new units at a slightly different location, using not the neighbor with second
largest resource but the most distant neighbor.

wr
τl τn,

γ τn τn τl+()⁄= τl∆ 1
2
--- 1 γ–() τl= τn∆ 1

2
---γτn=

wr wl γ wn wl–()+= τr τn∆ τl∆+= τl τl τl∆–= τn τn τn∆–=

Crl Clr 1= = Crn Crn 1= = Cnl Cln 0= =

τi t 1+() βτi t()= 1 i N≤ ≤ 0 β 1< <
β 0=

Eq
1
n
--- v wbmu v()–

2

v T∈
∑=

The first neural algorithm attempting to learnperfectly topology preserving feature maps
is theNeural Gas algorithm of T. Martinetz [Martinetz92]. However, unlikeDCS theNeu-
ral Gas does not further exploit this information: In every step theNeural Gascomputes
the k nearest neighbors to a given stimulus and, in the supervised case, employs all of them
for function approximation. DCS avoids this computational burden by utilizing the lateral
connection structure (topology) learned so far, and it restricts interpolation between acti-
vated units to the submanifold of the current stimulus.

Applying the principle ofDCS to Fritzke’sGCS yields ourDCS-GCS algorithm. This al-
gorithm sticks very closely to the basic structure of its ancestorGCS except the predefined
k-dimensional simplex connection structure being replaced by perfect topology learning.
Besides the conceptual advantage of perfect topology learning,DCS-GCS does decrease
overhead (Fritzke has to handle quite sophisticated data structures in order to maintain the
k-dimensional simplex structure after insertion/ deletion of units) and can be readily imple-
mented on any serial computer.

2 Unsupervised DCS-GCS

The unsupervised DCS-GCS algorithm starts with initializing the network (graph) to two
neural units (vertices) n1 and n2. Their weight vectors (centres of receptive fields)
are set to points which are drawn fromM according to P(v). They are connected
by a lateral connection of weight . Note that lateral connections inDCS
are always bidirectional and have symmetric weights.

Now the algorithm enters its outer loop which is repeated until some stopping criterium is
fulfilled. This stopping criterium could for instance be a test whether the quantization error
has already dropped below a predefined accuracy.

The inner loop is repeated for times. In off-line learning can be set to the number ex-
amples in the training setT. In this case, the inner loop just represents an epoch of training.

Within the inner loop, the algorithm first draws an input stimulus fromM according
to P(v) and then proceeds to calculate the two neural units which weight vectors are first
and second closest tov.

In the next step, the lateral connections between the neural units are modified according to
eq. (1), thecompetitive Hebbian learning rule. As has already been mentioned, in off-line
learning it is a good idea to set .

Now the weight vectors of the best matching unit and its neighbors are adjusted in a
Kohonen like fashion:

 and , (2)

where the neighborhood of a unit j is defined by
.

The inner loop ends with updating the resource value of the best matching unit. The re-
source of a neuron is a local error measure attached to each neural unit. As has been pointed
out, one can choose alternative update functions corresponding to different error measures.
For our experiments (section 2.1 and section 3.1) we used the accumulated squared distance
to the stimulus, i.e. .

The outer loop now proceeds by adding a new neural unitr to the network. This unit is lo-
cated in-between the unitl with largest resource value and its neighborn with second larg-
est resource value:4

w1 w1,
v1 v2, M∈

C12 C21 1= =

λ λ

v M∈

α θλ=

wi

wbmu∆ εB v wbmu–()= wj∆ εNh v wj–()=

Nh j()
Nh j() i Cji 0≠ 1 i N≤ ≤,(){ }=

τbmu∆ v wbmu–
2

=

of a new unit the network consists solely ofk dimensional simplices again. Thus, like Ko-
honen’s SOM,GCS can only learn aperfectly topology preserving feature map1 if k
meets the actual dimension of the feature manifold. Assuming that the lateral connections
do reflect the actual topology the connections serve to define a neighborhood for a Kohonen
like adaptation of the synaptic vectors and guide the insertion of new units. Insertion
happens incrementally and does not necessitate a retraining of the network. The principle
is to insert new neurons in such a way that the expected value of a certain local error mea-
sure, which Fritzke calls theresource, becomes equal for all neurons. For instance, the
number of times a neuron wins the competition, the sum of distances to stimuli for which
the neuron wins or the sum of errors in the neuron’s output can all serve as a resource and
dramatically change the behavior ofGCS. Using different error measures and guiding in-
sertion by the lateral connections contributes much to the success ofGCS.

The principle of DCS is to avoid any restriction of the topology of the network (lateral con-
nection scheme between the neural units) but to concurrently learn and utilize aperfectly
topology preserving map. This is achieved by adapting the lateral connection structure ac-
cording to acompetitive Hebbian learning rule2:

(1)

where is a forgetting constant, serves as a threshold for deleting
lateral connections, and is the activation of the i-th unit with as the
centre of its receptive field on presentation of stimulusv. R(.) can be any positive continu-
ously monotonically decreasing function. For batch learning with a training setT of fixed
size , is a good choice.

Since the isomorphic representation of the topology of the feature manifoldM in the lateral
connection structure is central to performance, in many situations aDCSalgorithm may be
the right choice. These situations are characterized by missinga priori knowledge of the
topology of the feature manifoldM or a topology ofM which cannot be readily mapped to
the existing models. Of course, if such a priori knowledge is available then models like
GCS or Kohonen’sSOM allowing to incorporate such knowledge have an advantage, es-
pecially if training data are sparse.

Note thatDCS algorithms can also aid in cluster analysis: In a perfectly topology preserv-
ing map clusters which are bounded by regions of P(v) = 0 can be identified simply by a
connected component analysis. However, without prior knowledge about the feature man-
ifold M it is in principal impossible to check for perfect topology preservation ofS. Noise
in the input data may render perfect topology learning even more difficult. So what can per-
fect topology learning be used for? The answer is simply that for every setS of reference
vectors perfect topology learning yields maximum topology preservation3 with respect to
this set. And connected components with respect to the lateral connection structureC may
well serve as an initialization for postprocessing by hierarchical cluster algorithms.

1. We use the term “perfectly topology preserving feature map” in accordance with its rigorous
definition in [Martinetz93].
2. In his very recent and recommendable article [Martinetz94] the term Topology Representing
Network (TRN) is coined for any network employing competitive Hebbian learning for topolo-
gy learning.
3. if topology preservation is measured by the topographic function as defined in [Villmann94].

wi

Cij t 1+()
max yi yj⋅ Cij t(),{ } : yi yj⋅ yk yl⋅≥ 1 k≤ l N≤,()∀

0 : Cij t() θ< ""

αCij t() : otherwise, ""

=

α 0 α 1< <, θ 0 θ 1< <,
yi R v wi–()= wi

T α θT=

Dynamic Cell Structures

Jörg Bruske and Gerald Sommer

Department of Cognitive Systems
Christian Albrechts University at Kiel

24105 Kiel - Germany

Abstract

Dynamic Cell Structures (DCS) represent a family of artificial neural
architectures suited both forunsupervised and supervised learning.
They belong to the recently [Martinetz94] introduced class ofTopology
Representing Networks (TRN) which buildperfectly topology pre-
serving feature maps. DCS employ a modifiedKohonen learning rule
in conjunction withcompetitive Hebbian learning. The Kohonen type
learning rule serves to adjust the synaptic weight vectors while Hebbian
learning establishes a dynamiclateral connection structure between
the units reflecting the topology of the feature manifold. In case of super-
vised learning, i.e. function approximation, each neural unit implements
a Radial Basis Function, and an additional layer of linear output units
adjusts according to adelta-rule. DCS is the first RBF-based approxima-
tion scheme attempting to concurrently learn and utilize a perfectly to-
pology preserving map for improved performance.
Simulations on a selection of CMU-Benchmarks indicate that the DCS
idea applied to theGrowing Cell Structure algorithm [Fritzke93] leads
to an efficient and elegant algorithm that can beat conventional models
on similar tasks.

1 Introduction

The quest for smallest topology preserving maps motivated the introduction of growing
feature maps like Fritzke’s Growing Cell Structures (GCS). InGCS, see [Fritzke93] for de-
tails, one starts with ak-dimensional simplex ofN = k+1 neural units and
lateral connections (edges). Growing of the network is performed such that after insertion

k 1+() k 2⁄⋅

Published in: NIPS 7, Proc. of the 1994 Conference (1995) 497-504

