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Dynamic cell structures (DCS) represent a family of artificial neural ar-
chitectures suited both for unsupervised and supervised learning. They
belong to the recently (Martinetz 1994) introduced class of topology
representing networks (TRN) that build perfectly topology preserving
feature maps. DCS employ a modified Kohonen learning rule in conjunc-
tion with competitive Hebbian learning. The Kohonen type learning
rule serves to adjust the synaptic weight vectors while Hebbian learn-
ing establishes a dynamic lateral connection structure between the units
reflecting the topology of the feature manifold. In case of supervised
learning, i.e., function approximation, each neural unit implements a
radial basis function, and an additional layer of linear output units
adjusts according to a delta-rule. DCS is the first RBF-based approxi-
mation scheme attempting to concurrently learn and utilize a perfectly
topology preserving map for improved performance. Simulations on
a selection of CMU-Benchmarks indicate that the DCS idea applied to
the growing cell structure algorithm (Fritzke 1993c) leads to an efficient
and elegant algorithm that can beat conventional models on similar
tasks.

1 Introduction

Kohonen's self-organizing feature maps (SOM) (Kohonen 1987), besides
backpropagation networks, are now the most popular and successful
types of artificial neural networks (ANN). This is impressively demon-
strated by a constantly growing list of references to SOM-related research
and applications available from Helsinki University of Technology con-
taining about 500 entries.!

SOMs are used for adaptive vector quantization, clustering, and di-
mensionality reduction, and can be extended to associative memories

'Via anonymous FTP from cochlea.hut.fi (130.233.168.48).
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like sensorimotor maps simply by adding an output to each neural unit
(Ritter et al. 1991). Their main features are

¢ formation of “topology preserving” feature maps, i.e., mapping sim-
ilar input signals to neighbored neural units (and vice versa) and

e approximation of the input probability distribution, i.e., the number
of neural units responding to a certain subset of the input space
is proportional to the probability of a stimulus to come from this
subspace.

However, it has long been noticed that Kohonen maps have several draw-
backs when used for tasks different from visualization of high dimen-
sional data. Mainly these are

1. a fixed number of neural units, making them impractical for appli-
cations where the optimal number of units is not known in advance
(but only, say, some accuracy parameters),

2. a topology of fixed dimensionality, resulting in problems if this
dimensionality does not match the dimensionality of the feature
manifold (in this case one cannot claim topology preservation),

3. that classes/clusters have to be separated by hand, whereas an au-
tomatic separation is clearly desirable, and

4. unoptimal behavior if, as in the case of sensorimotor maps, one is
interested in optimizing the output and not so much in approxi-
mating the input density (there may be less interesting regions of
high input density but important regions of low input density).

All these problems are topics of ongoing vivid research. In particu-
lar, Fritzke’s growing cell structures (GCS) (Fritzke 1992, 1993), represent
a computationally inexpensive neural algorithm with a variable num-
ber of neural units that elegantly combines the merits of RBF networks
with an SOM-like topology preserving neighborhood relation between
units. A local error measure serves to allocate new units that, since the
neighborhood relation between units is known, can be placed in between
neighbored units. However, although the topology of GCS is much more
flexible than that of the Kohonen map, the problem of fixed topology di-
mension remains. Further, GCS cause problems when cells are to be
deleted.?

There have been numerous attempts (e.g., Sebestyen 1962; Hart 1968;
Reilly et al. 1982; Specht 1990) to realize variable sized clustering and
RBF networks (Platt 1991a; Hakala and Eckmiller 1993). In the latter two,
units are inserted depending on the overall performance of the net, the
center of their receptive field and output being set to the current training
input and output. Unlike Kohonen's feature maps these typical RBF
networks do not utilize a neighborhood relation between units, nor do

2This is due to the lateral connection structure between cells, which has to form
k-dimensional simplices.
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they learn one. We also point out the close relation of all these algorithms
to techniques of case based reasoning in symbolic Al and techniques for
fuzzy rule generation.

The missing attention to problem (2) turned out to be a problem of
missing definition: There has been no rigorous definition of “topology
preserving feature mapping” up to the article of Martinetz (1993). A
rather intuitive and imprecise notion of “topology preservation” pre-
vailed. Having established this definition Martinetz was able to show
that a very simple competitive Hebbian learning rule can learn perfectly
topology preserving feature maps if the neural units are “dense.” Mar-
tinetz (1992) demonstrates that his neural gas algorithm enriched by his
competitive Hebbian learning rule has the potential to learn perfectly
topology preserving mappings. However, the neural gas does not fur-
ther exploit this information and continues to recompute the k nearest-
neighbors of the best matching unit on every presentation of a new stim-
ulus. The very recommendable contribution (Martinetz and Schulten
1994) summarizes these ideas and outlines the relevance of perfect topol-
ogy preservation for practical applications.

The authors’ DCS appear as a natural consequence: Combining the
merits of locally tuned processing units with Martinetz’s idea of per-
fectly topology learning we obtain SOM like ANNs that concurrently
attempt to learn and utilize a perfectly topology preserving map for
an improved training and approximation performance of RBF networks.
DCS promise to solve the problem of perfect topology preservation and
support automatic cluster separation. Compared to Martinetz’s neural
gas algorithm, DCS avoid computational burdens by utilizing the lateral
connection structure (topology) learned so far.

The particular instance of a DCS algorithm presented in this paper
is the DCS-GCS algorithm, which rests on Fritzke’s GCS. We have cho-
sen GCS because of its increasing popularity and because of encouraging
results on a selection of CMU Benchmarks (Fritzke 1993c¢) to which DCS-
GCS can be readily compared. This comparison indicates that DCS-GCS
compares well to GCS while beating most conventional algorithms on
similar tasks. Unlike GCS, however, DCS-GCS does not use a priori infor-
mation about the topology of the feature manifold but learns a perfectly
topology preserving map and is easier to implement. Similar simulations
by Fritzke have confirmed our results (Fritzke, personal communications
on ICANN'94).

2 Foundations

In this section we want to recapitulate the definitions and theorems
of Martinetz concerning the formation of perfectly topology preserving
maps and outline the most important features of Fritzke’s GCS. We also
indicate how their work is extended and synthesized to GCS-DCS.
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2.1 Perfectly Topology Preserving Maps. In the following, let

e G be a graph (network) with vertices (neural units) i, 1 < i < N
and edges (lateral connections) between them weighted by Cj, its
adjacency matrix® (weight matrix).

e M C %P be a given manifold of features v € M,

e S={w;,...,wn} be a set of pointers (synaptic weight vectors) w; €
M, each of which is attached to a vertex i of G,

o Vi={ver?|(lv-—w| < |lv-—wjl,1 <j < N)} the Voronoi
polyhedron belonging to w; € M, and

e V™) =V, M the masked Voronoi polyhedron of V;, 1 <i < N.

1

Definition 1. Two points w;, w; € S are adjacent on M if their masked

Voronoi polyhedra V,-(M), V}M) are adjacent (have some boundary points

in common), i.e., VIV N V}M) # 0.

Definition 2. The graph G forms a perfectly topology preserving map
of M, if pointers w;, w;, which are adjacent on M, belong to wvertices i,j
which are adjacent in G (C;; # 0), and vice versa.

Definition 3. The induced Delaunay triangulation D™ of S, given M, is
defined by the graph, which connects two points w;, w; iff their masked
Voronoi polyhedra V™, V}M} are adjacent, i.e., (C;j #0) & (V,-(M“ N V}-(M) #
0).

Definition 4. The set S = {w;,...,wy} is dense on M if for each v € M
the triangle A(v, w;,,w;) formed by the point w;, which is closest to v,
the point w;,, which is second closest to v, and v itself lie completely on
M, ie, A(v,w;, w;;) € M is valid.

We are now able to quote Martinetz’s central theorem

Theorem 1 (Martinetz 1993). If the distribution of pointers w; € S is dense on
M then the edges (lateral connections) i—j formed by the competitive Hebb rule

_Jyvirvi Yiryi2weynV( <kI<N)
By = { 0; otherwise (2.1)
define a graph (network) G that corresponds to the induced Delaunay triangulation
D(SM) of S and, hence, forms a perfectly topology preserving map of M.

Here, y; = R(||lv—wj;]|) is the activation of the ith unit with w; as the center
of its receptive field on presentation of stimulus v. The mapping R(-):
R’ — [0,1] must be a continuously monotonically decreasing function.
Martinetz (1994) coins the term topology representing network (TRN)
for networks that use equation 2.1 for topology learning.

3The adjacency matrix A of a graph G normally is defined by a; = 1 if node i is
connected with node j, and a; = 0 otherwise. However, our adjacency matrix C is
defined by 0 < ¢;; <1 if node i is connected with node j, and c;; = 0 otherwise. The Cij
may be interpreted as the certainty that 7 is connected with j.
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Of course, when dealing with realistic data from an unknown feature
manifold M, we cannot decide whether a given (learned) set S C M is
dense. Instead, only a (possibly small) set of training data T C M is
available, from which a set of points S(T) has to be constructed such that
D{M) D(M) for some dense set S C M. Moreover, we are often interested
in smalles’t dense sets S C M because these result in the highest data
reduction. A third problem arises if the pattern distribution P(v) is not
stationary. In this case the neighborhood relation may change with time
and thus lateral connections may have to be removed (forgotten): The
same problem appears with dynamic data sets S and T.

A straightforward solution to the last problem is to introduce a for-
getting constant a, 0 < a < 1, such that Cj(t + 1) = aC;(t). In DCS we
started experiments with the competitive Hebbian learning rule

I Vi Yi 2 Y-y V(1 <k I <N) |
C”(f +1) = C,‘f(i‘) <#f (2.2)
aCy(t); otherwise '

where 8, 0 < # < 1, serves as a threshold for deleting lateral connections.
For off-line learning with a training set T of fixed size |T|,

a= Vo (2.3)

is likely to be a good choice because once S(T) is dense on M one further
epoch of training will yield the induced Delaunay triangulation Dsm
For on-line learning the optimal choice of a will depend on P(v) and
the error distribution P(Av) (which most often are unknown). We also
conducted experiments with an alternative to equation 2.2, where

Ci(t+1) = {max{y; ¥ GO}, vy 2y Y1 <kI<N) 24

Equation 2.4 offers the advantage that the induced connection strength
between two units peaks for stimuli lying exactly in between these units.
It can be expected to be less sensitive to noise and to perform better if
S is not dense. Indeed, best results on the tested Benchmarks have been
obtained using equation 2.4.

Martinetz (1992) points out that for reasons of efficiency instead of
decreasing all connections one can decrease the connections to the best
matching unit only, and that these methods are equivalent if each unit
has equal probability of being the best match. Moreover, this method of-
fers an additional advantage for on-line learning situations where equa-
tion 2.2 or 2.4 may lead to a total decay of the connection structure in
regions of the input space which have not been visited for a longer time.

2.2 Growing Cell Structures and Resources. In Fritzke’s GCS, the
network is initialized with a k-dimensional simplex of N = k + 1 neural
units and (k+1)-k/2 lateral connections (edges). Growing of the network
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is performed such that after insertion of a new unit the network consists
solely of k-dimensional simplices again. Thus, like Kohonen’s SOM, GCS
can learn a perfectly topology preserving map only if k meets the actual
dimension of the feature manifold. Assuming that the lateral connec-
tions do reflect the adjacency of units the connections serve to define a
neighborhood for a Kohonen-like adaptation of the synaptic vectors w;
and guide the insertion of new units. Insertion happens incrementally
and does not necessitate a retraining of the network. The principle is to
insert new neurons in such a way that the expected value of a certain
local error measure, which Fritzke calls the resource, becomes equal for
all neurons. For instance, the number of times a neuron wins the com-
petition, the sum of distances to stimuli for which the neuron wins or
the sum of errors in the neuron’s output can all serve as a resource and
dramatically change the behavior of GCS. Using different error measures
and guiding insertion by the lateral connections contributes much to the
success of GCS. For more details about GCS the reader is referred to
Fritzke (1993c).

DCS-GCS works much like GCS with one essential difference: The
topology of the graph G (lateral connection scheme between the neu-
ral units) is not of a predefined and fixed dimensionality k but rather is
learned on-line (during training) according to 2.4. This not only decreases
overhead (Fritzke has to handle sophisticated data structures to maintain
the k-dimensional simplex structure after insertion/deletion of units) but
offers the possibility of learning real (perfectly) topology preserving fea-
ture mappings. Since the isomorphic representation of the topology of
the feature manifold M in the lateral connection structure is central to
performance, DCS-GCS can be expected to outperform GCS (if k is not
constant over M or is not known in advance).

Note that if a DCS algorithm has actually learned a perfectly topology
preserving mapping, cluster analysis becomes extremely simple: Clus-
ters that are bounded by regions of P(v) = 0 can be identified simply
by a connected component analysis. However, without prior knowledge
about the feature manifold M it is, in principle, impossible to check for
perfect topology preservation or the density of S. Noise in the input data
may render perfect topology learning even more difficult. So what can
perfect topology learning be used for? The answer is that for every set
S of reference vectors perfect topology learning yields maximum topol-
ogy preservation® with respect to this set. So in this sense the learned
connection structure C is the best estimate for a topology preserving
neighborhood relation if no a priori knowledge of the dimensionality k
of M is available. Consequently, this is the case where it should be used
for Kohonen-like adaptations of the reference vectors and interpolations
between the outputs of neighbored units—the principle of DCS. Con-

*If topology preservation is measured by the topographic function as defined in
Villmann et al. (1994).
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nected components with respect to C may well serve as an initialization
for postprocessing by hierarchical cluster algorithms.

Admittedly, if k is known in advance (a priori knowledge) then SOM-
like algorithms that utilize k can be advantageous, especially if training
data are sparse.

3 Unsupervised DCS-GCS

In this section we present our algorithm for unsupervised learning DCS-
GCS. Simulations serve to illustrate the dynamics.

The unsupervised DCS-GCS algorithm can be obtained from Figure 3,
the supervised version, by dropping procedures calcOutput(y,v,bmu, o)
and deltaRule(y, bmu,u,n) and neglecting the training outputs u. It starts
with initializing the network (graph) to two neural units (vertices) nl
and n2. Their weight vectors w;,w; (centers of receptive fields) are set to
points v1,v; € M, which are drawn from M according to P(v) in procedure
getNextExample(&v, TRAIN). In procedure enforceConnection(nl,n2,1.0)
they are connected by a lateral connection of weight C;» = Cy = 1.
Note that lateral connections in DCS are always bidirectional and have
symmetric weights.

Now the algorithm enters its outer loop, which is repeated until stop-
pingCriterion( ) is fulfilled. This stopping criterion could, for instance,
be a test whether the quantization error has already dropped below a
predefined accuracy.

The inner loop is repeated A times. In off-line learning A can be set
to the number of examples in the training set T. In this case, the inner
loop just represents an epoch of training.

Within the inner loop, the algorithm first draws an input stimulus
v € M from M according to P(v) by calling getNextExample(&v, TRAIN)
and then proceeds to calculate the two neural units, which weight vectors
are first and second closest to v (by calc TwoClosest(&bmu, &second, v)].

Hwbmu == U” < “ZU,‘ - U”: (1 <i< N)‘:

stecond - U“ g ”wr - U“a (1 o I 7é bmu < N) (31)
In the next step, the lateral connections between the neural units are
modified according to equation 2.4, a competitive Hebbian learning rule.
It is implemented by the procedure competitive Hebb(bmu, second, o, 8). As

already mentioned, it is a good idea to set @ = V8 in off-line learning.
Procedure restrictedKohonen(bmu,v,e5,en) adjusts the weight vectors
w; of the best matching unit and its neighbors in a Kohonen-like fashion:

AWpmy = EB(D - wbmu) and
Aw; exn(v — wj), (k = bmu) A [j € Nh(bmu)] (3.2)
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where the neighborhood Nh(j) of a unit j is defined by
Nh(j) ={i| (C;i # 0,1 <i < N)} (3.3)

The inner loop ends with updating the resource value of the best
matching unit. The resource of a neuron is a local error measure attached
to each neural unit. As pointed out in Section 2.2, one can choose alter-
native update functions corresponding to different error measures. For
our experiments (Section 3.1) we used the accumulated squared distance
to the stimulus, i.e., ATy, = ||V — Wy

The outer loop now proceeds by adding a new neural unit 7 to the
network (addNewNeuron( )). This unit is located in between the unit / with
largest resource value and its neighbor n with second largest resource
value.”

Tis (1<i<N) and
Tis 1 <i#1<N,ne€ Nh(l)] (3.4)

Ti

Vv v

Tn

The exact location of its center of receptive field w, is calculated according
to the ratio of the resource values 73, 7,,, and the resource values of units
n and / are redistributed among r, 1, and I:

1
4 = Tl (T 71 An = %(] — )7 and A7, = -ify'rn (3.5)

w, = w;+'y(w,,—w;), Ty = ATR+A7],T;=‘W—AT;, and
T = Tu— AT, _ (3.6)

This gives an estimate of the resource values if the new unit had been in
the network from the start. Finally the lateral connections are changed:

Cr.' — C:'r = 1: Cm' = Cm =1 and Cnf = Cfn =0 (37)

connecting unit r to unit / and disconnecting #n and I.

This heuristic guided by the emerging lateral connection structure and
the resource values promises insertion of new units at good initial posi-
tions. It is responsible for the better performance of DCS-GCS compared
to algorithms that do not exploit the neighborhood relation between ex-
isting units.

“Fritzke inserts new units at a slightly different location, using not the neighbor with
second largest resource but the most distant neighbor.
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The outer loop closes by decrementing the resource values of all units
[in procedure decrement-ResourceValues([3)]:

i(t + 1) = Bri(t), 1<i<N (3.8)

where 0 < 3 < 1 is a constant. This last step just avoids overflow of the
resource variables. For off-line simulations, 3 = 0 is the natural choice.

3.1 Unsupervised Simulation Results. Before turning to the results
of two simulations of unsupervised DCS-GCS on artificial data, we want
to draw the reader’s attention to the kind of data preprocessing necessary
to obtain satisfying results with GCS and DCS-GCS. First, due to the
insertion strategy, GCS like networks have difficulties unfolding if the
starting units are very close to each other. Maximally distant data points
are best suited for initialization. Second, because learning constants are
usually high and will not be “frozen,” the algorithms are very sensitive
to the order of data presentation. Therefore, we strongly recommend
choosing a random order presentation to prevent erratic oscillations.

In our first example, the training set T consists of 2000 examples
drawn from [0, 100] x [0,100] C ®* according to

1/4; v € [10,40] x [10,40]
1/4; v € [60,90] x [10, 40
1/4; v € [60,90] x [60,90]
1/4; ve{p| (40 < p.=p, <60)}

P(n) = (3.9)

Thus our feature manifold M consists of three squares, two of them con-
nected by a line. The development of our unsupervised DCS-GCS net-
work is depicted in Figure 1, with the initial situation of only two units
shown in the upper left. Examples are represented by small dots, the
centers of receptive fields by small circles, and the lateral connections by
lines connecting the circles. From left to right the network is examined
after 0, 9, and 31 epochs of training (i.e., after insertion of 2, 11, and 33
neural units).

After 31 epochs the network has built a perfectly topology preserv-
ing map of M, the lateral connection structure nicely reflecting the shape
of M: Where M is two-dimensional the lateral connection structure is
two-dimensional, and it is one-dimensional where M is one-dimensional.
Note that a connected component analysis could recognize that the up-
per right square is separated from the rest of M. The parameters for
this simulation were ez = 0.1, ey = 0.006, 3 = 0, and « = V8. The
accumulated squared distance to stimuli served as the resource.

The quantization error E;, = > .7 ||V — Wymu()||* dropped from 100%
(3 units) to 3% (33 units).

The second simulation deals with the two-spirals benchmark. Data
were obtained by running the program “two-spirals” (provided by CMU)
with parameters 5 (density) and 6.5 (spiral radius) resulting in a training
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Figure 1: Unsupervised DCS-GCS on artificial data.
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Figure 2: Unsupervised learning of two spirals.
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void DCS-GCSalgorithm()

{ floatep, en, m, o, B, 0, 6;
InputVector v;
OutputVector u, y;
neuronP nl, n2, bmu, second,;

getNextExample(&v,&u, TRAIN);
nl = insertNewNeuron(v, u);
getNextExample(&wv,&u, TRAIN);
n2 = insertNewNeuron (v, u);
enforceConnection(nl, n2, 1.0);

do{
for ( A times){

getNextExample(&v, &u, TRAIN,);
calculateTwoClosest(&bmu, &second, v);
competitiveHebb(bmu, second, «, 6):
restrictedKohonen(bmu, v, £z, eN);
calculateOutput(y, v, bmu, o);
deltaRule(y, bmu, u, n);
updateResource(bmu, v, y, u);

}

if (stoppingCriterion())break;

addNewNeuron();

decrementResourceValues(/3);
Hoop;

Figure 3: The supervised DCS-GCS algorithm.

set T of 962 examples. The data represent two distinct spirals in the
x-y plane. Unsupervised DCS-GCS at work is shown in Figure 2, after
insertion of 80, 154, and, finally, 196 units. With 196 units a perfectly
topology preserving map of M has emerged, and the two spirals are
clearly separated. Note that the algorithm has learned the separation in
a totally unsupervised manner, i.e., not using the labels of the data points
(which are provided by CMU for supervised learning). Parameters and
the type of resource are the same as in the previous simulation.

4 Supervised DCS-GCS

The algorithm for supervised DCS-GCS (see Fig. 3) differs from the un-
supervised version in just two lines of code: the calls to procedure calc-
Output(y,v,bmu, o) for calculating the output vector y of the network
and procedure deltaRule(y, bmu,u,n) for adjusting the output vectors o;,
(1 <1 < N) according to the teaching output vector u.

It works very similarly to its unsupervised version except

e when a neuron #; is inserted by insertNewNeuron(v,u) an output
vector o; will be attached to it with o; = u. If it is added by addNew-
Neuron( ) its output vector is initialized by o; = 0; + v(0, — 0;)
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e the output y of the network is calculated as a weighted sum of the
best matching unit’s output vector 0y, and the output vectors of
its neighbors 0;, i € Nh(bmu),

= S a,0; (3.10)
i€ {bmuUNh(bmu)}

where g; is the activation of neuron i on stimulus v. We used acti-
vation functions
1

a =
ool —will?+ 1

(3.11)

with o, o > 0 representing the size of the receptive fields. In our
simulations, the sizes of receptive fields have been equal for all
units.

e adaptation of output vectors by deltaRule(y, bmu,u,n): A simple
delta-rule is employed to adjust the output vectors of the best
matching unit and its neighbors:

Aoj = naj(u —y), j € bmu U Nh(bmu) (3.12)

Most important, the approximation (classification) error can be used for
resource updating. This idea of Fritzke leads to insertion of new units in
regions where the approximation error is worst, thus promising to out-
perform algorithms that do not employ such a criterion for insertion. In
our simulations we used the accumulated squared distance of calculated
and teaching output

ATbrrIm = ||y = u“2 (313)

4.1 Variations on DCS-GCS. In this section we want to discuss some
variations on DCS-GCS. While having been tested in our Benchmark
simulations but not significantly affecting performance, it may be useful
to reconsider them in other applications.

4.1.1 Normalized Radial Basis Functions. Normalized radial basis func-
tions have often been reported to result in better interpolation character-
istics. Simply change equations 3.10 and 3.12 accordingly.

4.1.2 Variable Sized and Formed Receptive Fields. In general, one might
benefit from variable sized and formed receptive fields instead of fixed
o. Using local covariance matrix estimation, not only the topology of the
network but also the form of receptive fields can adapt to the topology
of the feature manifold M. However, these modified activation functions
can no longer be used for perfect topology learning that has to be done
separately.
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4.1.3 Error Based Adaptation of Reference Vectors. As stressed by Fritzke,
one of the key ideas of GCS is that the distribution of units generally
should not depend on the input probability distribution P(v) but should
reflect an even distribution of resource values among the units. In GCS,
this idea is supported only by the insertion strategy, whereas the Kohonen
type adaptation still depends on P(v) only. Thus the larger A the more
the distribution of units will be determined by P(v). A first improvement
could be to use the usual stochastic gradient with respect to the output
error for updating the weights of the bmu and its topological neighbors.
This gradient based adaptation (which is also consistent with the delta
rule) would then be responsible for output error minimization, while the
insertion process tries to evenly distribute resource values. Alternative
ideas for error-weighted adaptation aiming at an even distribution of
errors in K-means type algorithms can be found in Chinrungrueng and
Sequin (1993).

4.2 Supervised Simulation Results. We applied our supervised DCS-
GCS algorithm to three CMU benchmarks, the supervised two-spiral
problem, the speaker independent vowel recognition problem, and the
sonar mine/rock separation problem. The first two problems have also
been used by Fritzke to test his GCS, so that we have some indication of
the performance of DCS-GCS relative to GCS on these problem:s.

4.2.1 General Method of Simulation. DCS-GCS like any other algorithm
using a stochastic gradient (sample by sample) following update rule is
sensitive to the order of sample presentation. Moreover, in our simula-
tions the order of sample presentation also determined the two starting
units. We therefore repeated our simulations with 20 different random
orders of sample presentations® and will subsequently report the statis-
tics of these runs. These are e, and 7., the minimal classification error
and number of neural units for this error, énean anNd #mean, the mean class-
ification error and number of units, and o, and o,, the standard deviation
in classification error and number of units.

The second point that needs to be discussed is the choice of an ade-
quate stopping criterion. Only the two spirals provide a concrete objec-
tive: The training error has to be zero. Consequently, this objective to-
gether with the (self-imposed) constraint, that the number of units should
not exceed the number of training samples, defines the stopping criterion.

Things are different with the vowel recognition and the sonar class-
ification benchmark. Here, one has to be as good as possible but the
regulations neither bound classification performance nor number of units.
Furthermore, it is well known (Robinson 1989) that the minimum for the
training set does not coincide with the minimum for the test set. We

6Using just 20 successive “seeds” for the random generator used to mix the training
sets.
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Figure 4: Supervised learning of two spirals.

therefore did not define an explicit stopping criterion but by cross-valid-
ation recorded the performance of the network (classification error and
number of units) on the test set after each epoch of training. The result
of each simulation was then set to the best result thus obtained. A run
was terminated if the number of units exceeded the number of training
samples.

4.2.2 The Two Spirals Problem. Let us first turn to the supervised ver-
sion of the two-spiral problem already introduced in the previous section.
The training set for benchmarking had to be produced by running the
“two spirals” program with parameters 1 (density) and 6.5 (radius), pro-
ducing 194 examples, each consisting of an input vector v € ®2 and a
binary label indicating to which spiral the point belongs. Obviously the
spirals cannot be linearly separated. The task is to train the examples un-
til the learning system can produce the correct output for all of them and
to record the time. No test set is provided. While this task is trivial for
algorithms doing essentially table-lookup, it is a very hard task for MLPs
with sigmoidal activation functions. GCS and DCS-GCS are somewhere
in between, using locally tuned units but not directly placing them on
data points.

The decision regions learned after 135 epochs of supervised DCS-GCS
training are depicted in Figure 4. Black indicates assignment to the first
and white assignment to the second spiral. The network and the exam-
ples are overlaid. The classification error on the training set (measured
in accordance with the CMU regulations) dropped to 0%. Parameters are
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Table 1: DCS-GCS Classification Results on Two Spirals Prob-

lem.

Training set performance Test set performance

€min  Mmin €mean  Hmean Te On  €min  €mean T

00% 135 036% 163 043% 14 07% 15% 07%

Table 2: Epochs for Supervised Learning of Two Spirals.

Network model Number of epochs Reported in
Backpropagation 20000 Lang and Witbrock (1989)
Cross entropy BP 10000 Fahlman and Lebiere (1990)
Cascade-correlation 1700 Fahlman and Lebiere (1990)
GCS 180 Fritzke 1993

DCS-GCS 135 This article

eg =02,en=0012, =0, a = V6, n = 0.3, ¢ = 2.0, and the accumu-
lated squared output error served for resource updating, A7y, = ||y —ul/?,
y,u € {—1,1}. The statistics for this parameter set are presented in Ta-
ble 1. In 10 of 20 runs the training set performance dropped to zero
before utilizing the maximum number of 194 units. Among the other
runs, maximally three training samples have been misclassified. The dif-
ference in classification reflects the dependency on the order of sample
presentation. The performance on the test set is given for reasons of
completeness; it is not required by the benchmark.

Supervised spiral learning nicely demonstrates properties of GCS and
DCS-GCS: The distribution of units does not reflect the input probability
density (which is highest in the center and continuously decreasing to-
ward the periphery) but by trying to equalize resource values is relatively
dense at the periphery. This is not surprising, since due to the decreasing
probability density classification is most difficult at the periphery. The
“unfolding problem” already mentioned in Section 3.1 further contributes
to spatially decreasing classification performance (reference vectors at the
center have experienced more adaptation steps than those at the periph-
ery). On the other hand, topology preservation is rather bad due to the
sparse data.

For comparison we list results obtained by Lang and Witbrok (1989),
Fahlman and Lebiere (1990), and Fritzke (1993¢) in Table 2.

4.2.3 The Speaker Independent Vowel Recognition Problem. The data for
the speaker independent vowel recognition problem comprises a training
set of 582 examples and a test set of 462 examples. The input vector is
10-dimensional, v € [0, 1]10, and we used an 11-dimensional output vector
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Table 3: DCS-GCS Classification Results on Speaker Indepen-
dent Vowel Recognition.

Test set performance Training set performance
€min Mmin €mean Mmean Ge On  €min  fmean O
35% 108 40% 97 2% 32 05% 7% 5%

Table 4: Speaker Independent Vowel Recognition.

Classifier Hidden units Percent correct
Single layer perceptron 33

- Multilayer perceptron 88 31
Modified Kanerva model 528 50
Radial basis function 528 53
Gaussian node network 528 55
Square node network 88 83
Nearest-neighbor 56
3D GCS 158, 165, 154 61, 62, 67
5D GCS 135, 196 66, 66
DCS-GCS 108 65

u with a 1 in the jth position indicating the presence of the jth vowel and
—1 in all the other positions. For details about the preprocessing steps
yielding these input vectors the interested reader is referred to the thesis
of Robinson (1989). With 5 = 0.05, ex = 0.006, 3 = 0, a = 'V, n = 0.075,
o = 2.0 and the same resource as in the previous simulation we obtained
a peak performance of 65% correctly classified test samples with 108
neural units. The statistics for this parameter set are presented in Table 3.
For comparison, Table 4 shows results obtained by others. The upper
part of the table was published by Robinson, reporting final performance
figures after about 3000 trials,” the lower in Fritzke (1992a), reporting
peak performances of some 3D and 5D GCS for particular (unpublished)
parameter sets and orders of presentation.

The figures indicate that DCS-GCS beats the conventional methods on
this problem with respect to average peak classification performance and
qualitatively compares to GCS (peaks above the 60% margin). Since for
single simulation runs the fluctuations can easily wipe out any difference
between methods, and reporting best results may be considered a ques-
tionable method, we do not regard the gap in peak performance between
DCS-GCS and GCS as statistically significant. Note that DCS-GCS does

7Robinson reports a peak performance of about 54% for most models.
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Table 5: DCS-GCS Classification Results on Sonar Target Recog-

nition.

Test set performance Training set performance
€min  min  €mean Mmean Te¢ On  €min  €mean T
5% 88 8% 8 2% 12 0% 2% 3%

not rely on a prespecified connection structure (but learns it by means of
its easy-to-implement competitive Hebb rule).

4.2.4 The Sonar Target Classification Problem. Our last simulation con-
cerns a data set used by Gorman and Sejnowski (1988) in their study on
classification of sonar data. The task is to discriminate between sonar
signals bounced off a metal cylinder and those bounced off a roughly
cylindrical rock. Our input vector is 60-dimensional, v € [0,1]%°, and we
employ a 2D output vector u € {—1,1}?>. The training and the test set
contain 104 examples each.

Gorman and Sejnowski (1988) report best results of 90.4% correctly
classified test examples for a standard BP network with 12 hidden units
and 82.7% for a nearest-neighbor classifier. Supervised DCS-GCS reaches
a peak performance of 95% correctly classified test examples after only 88
epochs of training. Parameters were eg = 0.2, ey = 0.006, 3 =0, a = V3,
n = 0.3, o = 0.5, and the squared output error served as the resource.
The statistics for this parameter set are presented in Table 5.

4.3 Complexity of DCS. We restrict our complexity analysis to the
time a DCS algorithm needs to process a single stimulus (including re-
sponse calculation and adaptation).

Here, the main argument in favor of DCS is that the topologically
nearest neighbors of the best matching unit can be found in linear time
by exploiting the induced Delaunay triangulation. Searching for the best
matching unit can obviously be accomplished in linear time,® too. Hence,
if connection updates (equations 2.2 or 2.4) are restricted to the best
matching unit and its neighbors, the serial time complexity for process-
ing a single stimulus is O(N). Yet for planar manifolds it is well known
(Preparata and Shamos 1985) that the number of edges of the Delau-
nay triangulation is O(N), implying linear time complexity even if all
connections are updated on each stimulus. The number of edges of the
induced Delaunay triangulation also determines the space complexity of
DCS. Clearly, O(N?) is an upper bound (and we are not aware of lower
upper bounds except for the planar case).

*In parallel implementations the best matching unit can be found in constant time,
as has been pointed out in Martinetz (1992).
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Note that the serial time complexity of the neural gas with k nearest-
neighbors is 2(N), approaching O(NlogN) for k — N.

5 Conclusion

We introduced the idea of RBF networks that concurrently learn and
utilize perfectly topology preserving feature maps for adaptation and in-
terpolation. This family of ANNs, which we termed dynamic cell struc-
tures, offers conceptual advantage compared to classical Kohonen-type
SOMs since the emerging lateral connection structure maximally pre-
serves topology. We discussed the DCS-GCS algorithm as an instance
of DCS. Compared to its ancestor GCS of Fritzke, this algorithm ele-
gantly avoids computational overhead for handling sophisticated data
structures. Having linear (serial) worst time complexity, DCS may also
be considered as an improvement of Martinetz’s neural gas idea. The
simulations on CMU-Benchmarks indicate that DCS indeed has practical
relevance for classification and approximation.

Thus encouraged, we look forward to applying DCS at various sites
in our active computer vision project, including image compression by
dynamic vector quantization, sensorimotor maps for the oculomotor sys-
tem, and hand—eye coordination, cartography, and associative memories.
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