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Abstract
In this paper we present an adaptive classification

method that features a robust, efficient and simple to use
incremental clustering algorithm. A new assignment strat-
egy for incorporating new data patterns allows clusters to
align more exhaustively with the data structure. This almost
eliminates the sensitivity to the order of input data, many
incremental clustering algorithms suffer from, reduces the
number of clusters needed and thus improves also time effi-
ciency. For updating the clusters’ representations we utilize
an incremental version of PCA which generates its learning
rate automatically from the number of patterns. Further-
more, the size and number of clusters is controlled by the
classification error. So we get a classification method where
nothing but the target error needs to be pre-specified. We
conducted experiments on artificial and real data to demon-
strate the capabilities of the proposed algorithm.

1 Introduction

Clustering and classification problems arise in applica-
tions across many scientific disciplines when dealing with
large databases. In both cases one is interested in represent-
ing the data in an abstract and compressed form that im-
proves organizing and understanding the data. Clustering
is the unsupervised process of grouping data patterns that
are similar w.r.t. a certain metric or taxonomy. Whereas in
classification representations for classes of labeled patterns
have to be learned, which in turn are used to label newly
encountered patterns [5].

In the COSPAL1 project we are confronted with the clas-
sification of a dynamic database. Within this project we de-
velop a learning computer vision system that creates and
constantly modifies a database of appearance-based object
features to recognize and classify objects in camera images.

1The work presented here was supported by the the European Union,
grant COSPAL (IST-2004-71567). However, this paper does not necessar-
ily represent the opinion of the European Community, and the European
Community is not responsible for any use which may be made of its con-
tents.

Classifying data patterns can be seen as two problems:
first, finding an abstract representation for the patterns of
each class and second, keeping these representations dis-
joint. For the first problem we choose an incremental clus-
tering algorithm. Thus, we benefit from the fact that even
non-convex data distributions can be approximated by a set
of simple mathematical concepts like e.g. hyperellipsoids.
And we take care of the dynamic nature of the database. To
solve the second problem we incorporate the classification
error to control the growth of clusters.

Concerning incremental clustering algorithms there are
four common issues that have to be considered. The first is
the selection of a threshold θ called ’vigilance’ parameter. It
defines the range around the cluster’s centroid in which pat-
terns have to ly for being integrated into a cluster. This is
comparable to the problem of the user-specified number of
clusters in non-incremental methods like the k-means algo-
rithm. The second issue is the sensitivity to the order of in-
put data. Typically, clustering results differ significantly for
patterns presented in different sequences. The third issue is
the information loss due to the abstraction model chosen to
summarize a cluster. Finally, incremental methods need pa-
rameters like learning rates or similar to weight the impact
of new data samples and to ensure convergence.

In this paper we propose an adaptive classification algo-
rithm including a new incremental clustering method. The
later follows a new assignment strategy for generating the
clusters making it more robust w.r.t. to the order of input
data. This also lets clusters grow more efficiently into the
data, so less clusters are needed and time complexity is re-
duced. Furthermore, the update algorithm does not require
a manually set learning rate, but derives it from the number
of input patterns. Combined with an automatic selection of
the vigilance parameter this makes our method easy to use.

The remaining of this paper is organized as follows. In
section 2 previous incremental clustering algorithms are
summarized as well as an incremental version of princi-
pal component analysis which will be employed. Section
3 describes the proposed classification and clustering algo-
rithms. In section 4 experimental results are presented and
section 5 concludes the paper.



2 Previous Work

2.1 Incremental Clustering Algorithms

One of the first incremental clustering algorithms was
the Leader algorithm [4]. It uses the aforementioned vigi-
lance parameter θ to determine whether a new pattern can
be assigned to an existing cluster or should form a new one
by itself. Many algorithms follow this principle for cluster-
ing data instances incrementally. The Leader algorithm has
gained popularity because of its neural network implemen-
tation, the ART network [2]. In a neural network clusters are
represented by single neurons, where the neuron’s weights
represent the mean pattern and the range of the cluster.

In [6] Su and Liu present a further development of the
ART network. For a more concise representation of the
data they model the input domains of the neurons as hy-
perellipsoids rather than hyperspheres. For this purpose Su
and Liu replace the linear neurons by quadratic ones. Their
algorithm operates in two steps. In the first step the net-
work is initialized and the neurons are updated or created
by presenting the patterns one by one. In the second step
they determine the optimal value for the vigilance param-
eter. Therefore the neurons’ input ranges are increased by
changing θ with defined step size. As two neurons start to
overlap they are merged into one. It is observed how the
number of neurons changes with the size of θ . The optimal
value for θ , and thus the optimal cluster size and number,
is chosen from the largest interval for which the number of
neurons stays constant.

A method that reduces the sensitivity to the order of in-
put data is presented in [3], the GRIN algorithm. Here the
patterns are merged into clusters following the law of gravi-
tation. According to a statistics-based test for the quality of
a single cluster, clusters are split or merged and then orga-
nized in a hierarchical dendrogram. From the dendrogram
clustering results can be obtained at various levels of ab-
straction. In contrast to the method presented in [6], the
GRIN algorithm also allows for future re-structuring of the
dendrogram, not only at the level of single clusters.

2.2 Incremental Principal Component
Analysis

In our proposed clustering algorithm we need to estimate
the main directions of variation in the data set of each clus-
ter in an incremental way. Therefore, we employ the candid
covariance-free incremental principal component analysis
(CCIPCA) proposed by Weng et. al. [7].

Given a data set X = {x(1), ..., x(n)}, x(i) ∈ Rd with
zero mean2, one can compute the first k dominant eigen-
vectors v1(n), v2(n), ..., vk(n) directly from the patterns
x(n), n = 1, 2, ... where vi(j) specifies the estimate for

2The mean may be incrementally estimated and subtracted out.

the ith eigenvector after presenting the jth pattern x(j). For
updating the eigenvectors from the nth pattern x(n) equa-
tions (1) and (2) are evaluated with i = 1, ..., k

vi(n) =
n− 1

n
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1
n

xi(n)xT
i (n)

vi(n− 1)
‖vi(n− 1)‖

(1)
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‖vi(n)‖
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Initially, x1(n) is set to x(n) and for i = n, vi(n) is set to

xi(n). Equation (1) can be interpreted as pulling the eigen-
vector towards the new pattern by adding a weighted ver-
sion of the pattern vector to the eigenvector. The weight
is composed by the factor 1

n and the projection of xi(n)
onto vi(n − 1), which is exactly the impact of the pattern
within the direction of vi(n − 1). For the computation of
higher order eigenvectors the pattern is reduced by its im-
pact (projection) onto the lower order eigenvectors accord-
ing to equation (2).

3 The Proposed Algorithm

3.1 Adaptive Classification Algorithm

This section describes the intialization steps of the pro-
posed classification algorithm.

First, the vigilance parameter θ is set to a large value
w.r.t. an average distance between two data points. Then,
for all data patterns of the same class the clustering algo-
rithm described in section 3.2 is invoked to find the rep-
resentation of that class. Next, the clusters have to be re-
organized according to the method defined in section 3.3
to achieve a more concise data representation. In a fourth
step the classification error is evaluated on a testing data
set. While the error is greater than a specified target θ is
decreased and clustering and re-organizing are repeated for
each class. By decreasing θ the range of the individual clus-
ters is narrowed which improves the fitting on the data, but
worsens the generalization ability. As in the extreme case of
total over-fitting each pattern is modeled by its own cluster,
convergence is guaranteed.

Once the target error is reached, the classifier has been
initialized. If during the use new labeled patterns arrive,
they are integrated by applying the clustering algorithm, so
constant learning is realized.

3.2 Incremental Clustering Using Hyper-
ellipsoids

Concerning data abstraction we have chosen to model
individual clusters by hyperellipsoids. Their mathematical
concept is still sufficiently simple, but they are more flex-
ible than hyperspheres, so that less clusters are needed to



reach the same level of approximation for a given set of pat-
terns. This is important as time complexity of incremental
clustering algorithms is directly proportional to the number
of clusters. The axes of the hyperellipsoids are aligned with
the eigenvectors of the patterns forming the cluster and have
the magnitude of the corresponding variance scaled with θ.

The actual process of clustering is the following: For
a new pattern x the distances rj(x) to all existing clusters
j = 1, ..., J are calculated. Therefore, x is first transformed
into the eigenspace of cluster j:

x̂ = V̄ T
j (x− bj) , (3)

and then the distance, weighted w.r.t. the scaled eigenvec-
tors, is computed

rj(x) =
d∑

i=1

(
x̂i

θ
√
‖vj,i‖

)2

. (4)

V̄j is the matrix containing the unit eigenvectors, bj the
mean and vj, i the ith eigenvector of cluster j.

In case that rj(x) ≤ 1, cluster j is updated employing
the CCIPCA algorithm described in section 2.2. If no clus-
ters exist or rj(x) > 1 ∀j, a new cluster is initialized by
setting bJ+1(1) = x and vJ+1, 1(1) = x.

It has to be emphazised that in contrast to the neural net-
work presented in [6] we do not have the difficulty of se-
lecting learning rates for a gradient-based update function.
In our approach the learning rate is defined by the ratio of
the factors n−1

n and 1
n which are automatically set by the

number of patterns and ensure convergence as n gets large
[7].

3.3 Re-organize Clusters

To achieve robustness w.r.t. the order of input not only
the best-matching cluster, but all matching clusters are up-
dated with a new pattern. This allows clusters to grow into
the data. In figure 1(a) it can be seen that the development
of clusters following the winner-takes-all strategy, as pro-
posed in [4, 6], yields only small clusters that are not re-
lated to the distribution of the data. Whereas the clusters in
figure 1(b), produced by our algorithm, show a strong corre-
lation to the data. As during their generation many clusters
incorporate the same patterns, they more or less cover the
same space (the space of the patterns). Once the cluster
models are aligned with the data, the redundance is elim-
inated by deleting clusters whose domain is also covered
by other clusters by more than δ1 percent. The indices of
the patterns that loose their coverage are collected for later
re-assignment. Analyzing the coverage of the data can be
efficiently done employing an J ×N assignment matrix A,
where J is the number of clusters and N the number of pat-
terns. The elements aij are set to zero or one in the case that

(a) (b)

(c) (d)

Figure 1. Cluster developement following dif-
ferent assignment strategies: Updating only
best (a) or all (b) matching clusters. Results
after deleting overlapping clusters (c) and af-
ter re-assigning patterns (d).

cluster i covers pattern j. The matrix A is also used to care
for outliers by deleting clusters that cover less than δ2 per-
cent of N . During the re-assignment only the best-matching
of the remaining clusters is updated by each pattern. Thus,
we avoid creating new ill-shaped clusters. Figures 1(c) and
1(d) show the results of reduction and re-assignment, re-
spectively. To show the robustness of our method w.r.t. the
selection of the parameters δ1 and δ2, we have set δ1 = 0.5
and δ2 = 0.01 for all experiments presented in this paper.

4 Experimental Results

In this section we present the results of two experiments.
One on artificial data to demonstrate the algorithms capabil-
ities in principle and one on real data from our application.
For both experiments we use half of the data as training set
and the other half for testing.

Figure 2 shows the clustering and classification results
on three non-convex data classes. It can be seen that the
clusters align well with the data, so that only few are needed
to approximate the patterns. Thus, classification time is
saved, as for each pattern fewer similarity calculations have
to be carried out. These results have been achieved by set-
ting the target error to ε = 0.01. Four of the 550 testing
patterns have been misclassified (marked with circles).



Figure 2. Classification result for non-convex
data. Ellipsoids show good matching quality.

The proposed algorithm also yields good abstraction for
real data. In figure 3 RGB values are displayed in the 3D
RGB cube as they occur in a color segmentation scenario of
our computer vision system. With just 11 clusters (centers
marked with circles) even on this data an error of less than
ε = 0.01 could be reached.

5 Conclusion

In this paper a solution to classification problems for dy-
namic databases is presented. Its main contributions are
w.r.t. finding the abstract representations for the individual
pattern classes, time complexity and the simplicity of us-
ing the method. The first two aspects are tackled by the
new assignment strategy of the proposed incremental clus-
tering algorithm. This strategy allows all clusters in the
vicinity of a new pattern to incorporate it. Thus, all clus-
ters get the chance to align their domains with the structure
of the data. These fully developed clusters represent the
data more concisely than small and ill-shaped ones, result-
ing from winner-takes-all assignments. As time complexity
is proportional to the number of clusters it can be reduced
significantly. Furthermore, the sensitivity to the order of the
input data, an inherent problem of incremental algorithms,
is reduced, as all clusters get the chance for full develop-
ment. The simple use of the method is achieved by em-
ploying the CCIPCA to update the clusters as it is free of
parameters that need to be tuned. We have shown that the
algorithm performs well on artificial and real data of differ-
ent dimensionalities.

Figure 3. Five classes of RGB values are
modeled with 11 clusters (only cnters shown)
achieving a classification error of ε < 0.01.

Despite all positive, there is still room for improvements.
So far all patterns have to be kept in memory for the purpose
of re-organizing the clusters. We believe that this can be
avoided and re-organizing can be done solely on the abstract
summary of the clusters. Furthermore, the introduction of
a quality measure for clusters can improve the process of
deleting overlapped clusters. We also want to investigate
which profits can be made by combining our approach with
the dynamic cell structure (DCS) proposed in [1]. Besides
similar advantages, the DCS also includes neighbourhood
relations which could yield further improvements.
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