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ABSTRACT

In this paper we propose the Local Credibility Concept
(LCC), a novel technique for incremental classifiers. It
measures the classification rate of the classifier’s local
models and ensures that the models do not cross the borders
between classes, but allows them to develop freely within
the domain of their own class. Thus, we reduce the depen-
dency on the order of training samples, an inherent prob-
lem of incremental methods, and make the classifier robust
w.r.t. selecting the algorithm’s parameters. These only in-
fluence the number of models, whereas the performance is
controlled by the LCC automatically on a local scale. In
contrast to other algorithms, the models of our method are
more adaptable as they can also shrink and vanish. This al-
lows classes to move their domains in the data space mak-
ing the LCC-Classifier also applicable to drifting data con-
cepts. We present experiments to demonstrate these capa-
bilities as well as some benchmark tests that show the al-
gorithm’s competitive performance.
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1 Introduction1

For data classification incremental algorithms have become
inevitable. Either the size of databases prohibits the use of
batch learning or constant arrival of new data forces sys-
tems to life-long learning. A great variety of incremental
classifiers [2, 6, 8, 12, 7, 5] has been developed and es-
tablished as state-of-the-art methods that show high perfor-
mance. However, there are still two typical difficulties with
incremental methods that have not been solved sufficiently,
so far. The first problem is the dependency on the order in
which samples are presented when building the data rep-
resentation incrementally. For two different sequences of
the same training samples the topology and classification
quality of the resulting data representation can vary signifi-
cantly. The second problem is estimating the method’s pa-
rameters like e.g. the size for local models or learning rates.

1The work presented here was supported by the European Union, grant
COSPAL (IST-2004-71567). However, this paper does not necessarily
represent the opinion of the European Community, and the European
Community is not responsible for any use which may be made of its con-
tents.

These values depend on the inherent scale and distribution
of the data, which is only revealed during the training pro-
cess. But as many algorithms react very sensitive to these
parameters their selection is a non-trivial task.

Here we propose an incremental classifier that allevi-
ates both problems. For an easier parameter selection we
developed the Local Credibility Criterion (LCC), a qual-
ity measure that uses the classification rate of the individ-
ual local models to control their development. For robust-
ness w.r.t. the order of training samples we adapted our
no-competition strategy for incremental clustering [10] to
the scenario of supervised learning.

In the remainder of the paper, we describe related in-
cremental classification methods in Section 2. Section 3
introduces the Local Credibility Criterion and our classifier
based on it. In Section 4 we show the quality of our method
on various data sets and its robustness w.r.t. parameter se-
lection. Section 5 concludes the paper.

2 Related Work
In this section, we briefly review related incremental clas-
sification technologies. These algorithms are also based on
local models like our method which means that they ap-
proximate a data distribution with a set of local models.
This is quite similar to a mixture of Gaussians, but as many
algorithms do not use Gaussian distributions we prefer the
more general term of local models.

In [2] Carpenter and Grossberg extended their
Adaptive-Resonance-Theory-technology (ART) for incre-
mental clustering to the scenario of supervised classifica-
tion (of maps), calling it ARTMAP. Based on that technol-
ogy a whole family of incremental neural network classi-
fiers [2, 5] has been developed. In all these ARTMAP-like
approaches single neurons model local domains in the in-
put space. Depending on the applied metric, these can be
hyper rectangles, hyper spheres or hyper ellipsoids, either
suited for binary or continuous-valued samples, incorporat-
ing Gaussian distribution or not. For all these approaches,
the process of updating is very similar. Depending on
whether the distance between a neuron’s centroid and a data
sample is greater or less than the global vigilance parame-
ter a neuron is activated i.e. it responds or not. The neuron
with the highest response is updated by including the sam-
ple into its representation. If no neuron (model) responds, a
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new one is created with the new sample chosen as centroid.
In [12] Salzberg proposed the Nested Generalized Ex-

emplar (NGE) using hyper rectangles as local models. In
contrast to ARTMAP these are organized as stand-alone
models attached with class labels. Models that respond to
new samples either grow to integrate the sample into their
representation in the case of correct classification or shrink
to enlarge the distance between different classes. If there is
no correct classification, a new model is instantiated. Note,
that the possibility of shrinking is not shared by many other
methods, but increases the algorithm’s adaptivity.

Another well-known classification technique is the
Learning Vector Quantization (LVQ) [7]. An incremental
version (iLVQ) was presented by Kirstein in [6]. In LVQ
models are represented by single data prototypes (cen-
ters). Classification results from a nearest-neighbor deci-
sion. Centers are updated by either pulling them towards
the sample or pushing them away, depending on correct or
false classification. The size of the impact on the center is
determined by the product ε(t)(xt − bmut) where xt is the
sample presented at time t, bmut is the corresponding best
matching unit (responding center) and ε(t) is the learning
rate modeled by a function decreasing over time, to decide
the plasticity/stability dilemma in favor of stability. Also
in the incremental version a new center is set to xt, if no
correct bmu can be determined w.r.t. a certain threshold.
In contrast to standard LVQ, Kirstein made ε(t) individual
to every center, so that each center has a different age de-
pending on the center’s number of positive classifications
to ensure a balanced development of old and new centers.

The thresholds that have to be chosen in the afore-
mentioned methods are responsible for the number and size
of the models or the resolution of the classifier. Once they
are set, the performance of the classifier and thus the qual-
ity of the chosen values can only be evaluated after the
training phase. There is no on-line assessment that con-
trols the development of models. This makes the correct
choice of parameters comparably difficult and crucial like
e.g. choosing k in k-means. In the next section we in-
troduce the Local Credibility Criterion which reduces the
importance of a perfect parameter selection.

3 LCC-Classification Algorithm

3.1 The Local Credibility Criterion

The Local Credibility Criterion is a mechanism to control
the development of a classifier’s local models by evaluating
the classification rate on a local scale. The classifier’s per-
formance is measured for each individual model whenever
a new training sample is presented, yielding very detailed
information for the models to adapt to the topology of the
training data.

The LCC is based on a set of parameters and the
credibilities (classification rates) of the individual models.
The credibility γ of a model m is defined by the ratio of
the number of correct and total responses: γ = Rc/Rt.

It is used for two purposes. First, a model’s response is
weighted by its credibility and second, together with the pa-
rameters the credibility controls the adaptation of the clas-
sifier i.e. the development of the local models (Section 3.2).

Before introducing the parameters of the LCC we de-
fine the symbols of the data set and the classifier as well
as its equations. Given a data set X = {x1, ..., xN} with
xt ∈ Rd and its labels L = {l1, ..., lN} with lt ∈ {1, ..., J}
we define a classifier for J classes Cj with j ∈ {1, ..., J},
where each class is represented by Mj local models mji

with i = {1, ...,Mj}. Each model mji is defined by its
centroid cji ∈ Rd and a weight matrix wji ∈ Rd×d de-
scribing the range of its local domain. In our case we have
chosen the models to be hyper spheres so that wji = I ·w2

0 ,
where w0 is the initial radius of the hypersphere. The value
for w0 is estimated from the first samples that are available.

We then define the similarity s of sample xt and
model mji to be

s(mji, xt) = 1− (xt − cji)T · w−1
ji · (xt − cji).

A positive similarity states that the sample lies inside the
model’s domain. The model’s response is defined as

r(mji, xt) = s(mji, xt) · γji,

the response of class Cj as

r(Cj , xt) =
Mj∑

i=1, r(mji,xt)>0

r(mji, xt)

and the result of the classifier as

r(xt) = argj max r(Cj , xt), j = 1, ..., J.

The parameters of the LCC control the creation or deletion
of models and the growing or shrinking of their domains.
A new model shall be added to class Cj if the response
r(Cj , xt) for sample xt with lt = j, is below the threshold
θnew = 0.55. The threshold for initializing a new model
could be any positive number, but as the highest possible
response of a model having full credibility and minimal dis-
tance to a sample is 1 motivates a value of less than 1 for
θnew. The deletion of a model depends on its credibility. If
it falls below γdel = 0.3 the model’s classification rate is
considered to be too low and the model is deleted. Also the
thresholds for growing or shrinking a model’s domain are
credibility-orientated. A model is only allowed to extend if
its credibility is at least γgrow = 0.97 and should be shrunk
if the credibility is below γshrink = 0.5. Furthermore, we
define a growing factor fgrow = 1.1 and a shrinking factor
fshrink = 1/fgrow to determine how much the range of
the domain is altered in either case.

All numerical values are chosen arbitrarily just fol-
lowing the expectation that a model should have a certain
credibility when stating that a sample belongs to its class.
The fact that these values lead to good results in all our ex-
periments as presented in Section 4 supports the assump-
tion that the LCC reduces the problem of parameter selec-
tion significantly. In Section 4.2 we present a further dis-
cussion and experiments on the parameter selection.
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(a) (b)

Figure 1. Model development following different assign-
ment strategies: Updating only best (a) or all (b) matching
models.

3.2 The Training Algorithm

When training the classifier all samples xt are presented
individually. For each xt all models mji are updated ei-
ther following the steps in lines 4...10 in Algorithm 1 or
lines 12...17 if the model is of the same class as the sam-
ple or not, respectively. In both cases it is first determined
whether the model responds to the sample or not by com-
puting the similarity s(mji, xt). If it responds the model’s
credibility is increased for being of the same class or de-
creased otherwise. For non-responding models of the cor-
rect class whose credibility allows for growing (i.e. γji ≥
γgrow) it is further checked whether they would respond if
their radius was enlarged by the growth factor fgrow. In the
case they do respond they are updated by moving the center
towards the new sample, enlarging the radius and updating
the credibility. Otherwise, no action is taken. For respond-
ing models of false classes it is checked whether decreasing
their credibility has lead to the case that it has fallen below
either the shrinking or deleting threshold γshrink or γdel,
respectively. In either case the appropriate action is taken
(cf. Algorithm 1 lines 17 and 15). After updating all mod-
els the response for class Cj with j = lt is computed and
for the case that it is below θnew , a new model is added
to Cj with the initial values set to cji = xt, wji = I · w0,
Rc

ji = 1, Rt
ji = 1 and γji = 1 with i = Mj + 1.

3.3 Benefits of the LCC

In this section the features supported by the LCC are dis-
cussed. For robustness w.r.t. to the order of the training
samples we adopted the key idea of our incremental clus-
tering algorithm presented in [10]. In contrast to the more
often applied winner-takes-all strategy, we suggest to up-
date all responding models. Thus, without competition the
models do not bar each other from aligning with the topol-
ogy of the data. For making the effect even more appar-
ent, in Figure 1 we give an example of incremental cluster-
ing using hyper ellipsoids as models. The fact that with-
out competition eventually almost every model converges
to cover the same domain as its neighbors proves that the
order of training samples has lost most of its significance
and makes the resulting classifier more reproducible. An-
other logical consequence is also the resulting redundancy

Algorithm 1: Train Classifier

foreach xt do1

foreach mji do with j = 1...J, i = 1...Mj2

if lt = j then update model of same class3

if s(mji, xt) ≥ 0 then4

γji = (Rc
ji + 1)/(Rt

ji + 1)5

else if γji ≥ γgrow then6

w′
ji = wji · fgrow7

if s(m′
ji, xt) ≥ 0 then8

extend model9

γji = (Rc
ji + 1)/(Rt

ji + 1)10

else if lt 6= j then update model of11

different class
if s(mji, xt) ≥ 0 then12

γji = Rc
ji/(Rt

ji + 1)13

if γji ≤ γdel then14

delete model15

else if γji ≤ γshrink then16

wji = wji · fshrink17

if r(Cj , xt) ≤ θnew then18

initialize new model for class Cj with19

j = lt

which additionally allows for an improvement of the com-
putational complexity as less of these well aligned models
are needed. In the LCC we do not allow competition be-
tween models of the same class but between those of dif-
ferent classes. Thus, models can develop freely within the
domain of their own class, but their growth is stopped at the
border to the next class when they start responding to sam-
ples of different classes and their credibility sinks below
the growing threshold θgrow.

The main guidance for the models’ adaptation is their
own performance. The thresholds of the LCC only influ-
ence the number of training samples needed to converge
and the resolution of the classifier i.e. the number of mod-
els. In other words, the impact of the thresholds is buffered
by an internal control mechanism mainly steered by the
classification rate. So in general, the parameters only have
a small effect on the final performance making the LCC-
Classifier robust w.r.t. their selection.

This internal control mechanism offers even more ad-
vantages: Although models cannot excessively grow into
domains of other classes, they can be instantiated in re-
gions that are covered by foreign models. This is because
models react to the real data samples but not to the exist-
ing model domains which might be outdated. LCC-models
are also able to withdraw themselves from falsely covered
domains by either shrinking or being replaced by smaller
more accurate ones. Thus, resolution is automatically in-
creased in uncertain domains of the input space. In Figure
2, the process of model refinement at class borders is de-
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Figure 2. LCC controls resolution adaptation at class bor-
ders. (a) In absence of circle samples the model for stars ex-
pands over the class border. (b) Responding to circle sam-
ples reduces the credibility of the star model. (c) The sup-
port for star samples is below θnew, therefore a new model
is instantiated. (d) The first star model has been deleted as
its credibility was below γdel.

picted in an idealized scene. In Figure 2(a) the star class,
in absence of counter examples, has developed a big model
that already significantly crosses the class border. In Fig-
ure 2(b), a new model is created for the first circle samples.
As also the star model responses, its credibility decreases
making it more likely for all samples to be correctly clas-
sified. With more circle samples falling into the domain of
the star model (Figure 2(c)), its response to the new star
sample is lower than θnew, so that a new model is created.
Finally, the first star model’s credibility is below the van-
ishing threshold causing it to give room for new models
(Figure 2(d)). For simplicity we omitted the possibility of
shrinking in this example.

The ability of the LCC-Models to abandon covered
domains or to grow into foreign domains enables the clas-
sifier to handle non-stationary data concepts, where the do-
mains of classes change over time. And although, the inte-
gral character of the credibility works towards stability of
the classifier it is still able to adapt quickly to a constant
concept drift. That is because new models have maximum
credibility and ad once insure correct classification even
in a domain covered by another model. In the case of an
outlier the new model will vanish almost as fast as it was
created, so that disturbance is kept low. But, in the case of
concept drift it will mature and eventually replace the other.
See Section 4.3 for experimental results on non-stationary
data sets.

4 Experimental Results
In this section we analyze the influence of the order of train-
ing samples, and whether selecting the algorithm’s param-
eters is critical. We also demonstrate the method’s ability
to cope with drifting data concepts and its competitive per-
formance on some known benchmark tests.

4.1 Influence of Sample Order

The following experiment supports our hypothesis that the
allocation and adaptation of models becomes more ro-
bust w.r.t. the order of the training samples using the no-
competition policy. We used three benchmark data sets
(pendigits [4], twonorm [11] and the circle-in-square) and
split them into training (70%) and testing (30%) sets. Then

Figure 3. Irrespective of the order of training samples the
classification rate stays on a high level.

θnew fgrow γgrow γshrink γdel

fine 0.8 1.05 0.99 0.7 0.2
medium 0.55 1.1 0.97 0.5 0.3
coarse 0.4 1.2 0.95 0.4 0.4

Table 1. Three parameter configurations to produce a fine,
medium or coarse resolution of models.

we produced 100 different permutations of the training sets,
trained a classifier on each and tested it on the testing set. In
Figure 3 it can be seen that the performance of the resulting
classifiers stays very constant for each data set.

4.2 Parameter Selection

Many algorithms react very sensitive to small changes of
their parameter values which makes finding the right con-
figuration a difficult task. Therefore, we analyzed the pa-
rameters’ influence on the classifier’s topology and its per-
formance. We set up three different configurations of the
method’s thresholds (Table 1). The first one fosters a finer
resolution i.e. the development of more but smaller mod-
els, the second is our usual setup and the third one encour-
ages a more coarse resolution having fewer but larger mod-
els. Considering the meaning of the thresholds, it is easy
to understand that low shrinking γshrink and deleting γdel

thresholds let models persist longer and stay larger. A low
growth threshold γgrow lets models grow more often and a
high growth factor fgrow makes them grow faster. Fewer
initializations of new models can be achieved by choosing
a low value for θnew making the adaptation process more
tolerant to uncertainty.

Using these configurations we trained three classi-
fiers incrementally starting with 1% of the training set and
updating the classifier with 0.05% each step until a pre-
specified performance (97%) on a disjoint testing set is
achieved. We performed this test on the twonorm and a
circle-in-square data set. In Figure 4 one can clearly see
that the configuration for a finer/coarser resolution always
yields a classifiers with more/less models than the setting
for medium resolution. By steering the number of models,
one has an instrument to influence the computational com-
plexity as it is linearly proportional to the number of mod-
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(a) (b)

Figure 4. Results of training three classifier with different
parameter configurations, showing that one can tune the
resolution of the classifier (number of models). Irrespec-
tive of the configuration, all classifiers achieve the desired
performance. Comparing the results on the circle-in-square
(a) and the twonorm (b) data, there is no tendency for any
configuration to converge in fewer steps.

els and to decide on the degree of generalizability. There is
no clear tendency which configuration converges faster as
this can be different from case to case. But the more im-
portant fact is that the classifier always reaches the desired
performance (if it is chosen realistically for the specific data
set). This proves that the LCC-Classifier is not sensitive to
the parameter selection which makes it easy to use, even
without special expertise of its inner workings.

4.3 Non-Stationary Data Sets

As non-stationary data we created a two dimensional ring-
shaped data set that can be rotated around its center. The
data set is divided into two classes, the upper half contain-
ing 608 and the lower half containing 632 samples. For
showing the LCC-Classifier’s capabilities with drifting data
concepts two experiments were conducted on this set. In
the first one the data set is rotated into one direction up to
90 degrees. The experiment was repeated for drifting rates
of 1 and 10 degrees per rotation step. In the second exper-
iment the data oscillates i.e. alternately takes five steps of
one degree into either direction. For both experiments the
classifier was updated on each rotation step with 70% of
the data and tested on the remaining 30%. Figure 5 shows
the results for the constantly drifting data. Although this is
a quite strong distortion of the data concept, classification
rate stays on a high level and to the end the number of mod-
els increases slower as models start to drop out when their
credibility falls below γdel. In the case of oscillating data
(Figure 6) the classification rate stays even higher and the
number of models converges. This is due to the fact that
new models are created until resolution in the uncertain re-
gions has reached its optimum. Deletion of models is rather
unlikely as models periodically get positive feedback.

4.4 Benchmark Tests

For comparing the LCC-Classifier to other algorithms we
have chosen the widely used iris [4], pendigits and the
twonorm data sets. On the iris data set we compared our
method with two batch-learning algorithms, a multi-class

Figure 5. Classification results for rotating dataset. Classi-
fication rate and number of models for rotating dataset at 1
degree (solid line) and 10 degrees (dotted line) at each step.

Figure 6. Classification results for rotating dataset. An-
gle, classification rate and number of models when rotating
ring-shaped dataset with alternating direction of rotation.

SVM and a kNN method employing Mahalanobis distance
[13], and an incremental classifier, the Fuzzy Generalized
Exemplar System (FuGES) [8]. As the other authors we
performed 100 runs on different randomly generated 70/30
(training/testing) splits of the data. The iris data set con-
tains 150 samples of 4 dimensions equally distributed in 3
classes. In Table 2 it can be seen that our algorithm shows
comparable and good results.

The pendigits data set contains 10992 16 dimensional
feature vectors of handwritten digits. Table 3 shows our
results compared to two methods based on boosting and
bagging: Nearest-Neighbor Classifiers (NNC) by [1] and
Learning Ensembles (LE) by [3]. Like [1] and [3], we also
used 10-fold cross-validation.

The twonorm data set is an artificial 20 dimensional
two class classification example being frequently used as a
benchmark. It consists of 7400 instances. For comparison
(Table 4) we use the results of the C2-SDMO method pre-
sented in [9] which is an incremental version of a support
vector machine and a reference value from a benchmark
repository2. Again we use the same number of runs (100),
training (400) and testing samples (7000).

5 Conclusion
In this paper we proposed the Local Credibility Criterion
which is a novel technique for incremental classifiers. By

2Benchmark Repository: http://ida.first.fraunhofer.de/projects/bench/
benchmarks.htm
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runs train / test classif. rate

multi-class SVM 100 105 / 45 95.6
LCC-Classifier 100 105 / 45 95.4

kNN Mahal.-dist. 100 105 / 45 95.3
FuGES ? 105 / 45 93.3

Table 2. Classification results on iris data set.

condition classif. rate

LCC-Classifier 10-fold CV 97.8
LE 10-fold CV 96.4

NNC 10-fold CV 96.1

Table 3. Classification results on pendigits data set.

measuring the classification rate of the local models the
LCC ensures that the models do not cross the borders be-
tween classes, but allows them to develop freely within
the domain of their own class. We could show that this
control mechanism has two major advantages: First, the
fact that there is no competition between models of the
same class allows all models to adopt the topology of the
data. Thus, the dependency on the order of the training
samples is reduced significantly. Second, the difficulty of
selecting good parameter values for a high classification
performance could be minimized as well. Parameters of
the LCC do not directly influence the classification perfor-
mance. This is controlled by the LCC automatically by
measuring the classification rate of the individual models.
Via the parameters one can only influence the number and
size of the models, which is far less critical. Besides these
major contributions, we could also show the competitive
performance of our method on some well-known bench-
mark tests. In contrast to many other algorithms that only
extend the coverage of their classes, LCC models have also
the ability to shrink or vanish allowing classes to move their
domains and follow drifting data concepts.

Future work will include extending the local models
to hyper ellipsoids to fully exploit the benefits of the no-
competition policy. Thus, a method to reduce the redun-
dancy of overlapping models becomes even more desirable.
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