
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

PARITY SYMMETRY IN MULTI-DIMENSIONAL SIGNALS

Gerald Sommer and Di Zang

Institute of Computer Science
Christian-Albrechts-University

24118, Kiel, Germany

(Communicated by Aim Sciences)

Abstract. Parity symmetry is an important local feature for qualitative signal
analysis. It is strongly related to the local phase of the signal. In image
processing parity symmetry is a cue for the line-like or edge-like quality of
a local image structure. The analytic signal is a well-known representation
for 1D signals, which enables the extraction of local spectral representations
as amplitude and phase. Its representation domain is that of the complex
numbers. We will give an overview how the analytic signal can be generalized
to the monogenic signal in the nD case within a Clifford valued domain. The
approach is based on the Riesz transform as a generalization of the Hilbert
transform with respect to the embedding dimension of the structure. So far we
realized the extension to 2D and 3D signals. We learned to take advantage of
interesting effects of the proposed generalization as the simultaneous estimation
of the local amplitude, phase and orientation, and of image analysis in the
monogenic scale-space.

1. Introduction. Image analysis based on local spectral representations, that is
amplitude and phase, has been a well-known method of signal processing for years
[24]. The aim is to assign a structural or/and geometric interpretation to an image
point. We call that task of computing the split of identity. This obviously only
makes sense with respect to the coupling of a pixel with its immediate environment
and can, thus, be realized by local operators. Because local structure is specific for
a certain scale it lives at, a multi-resolution scheme is recommended. Besides being
bandpass filters, the operators have to be quadrature pairs [2] to make the local
symmetry accessible. In the multi-dimensional case, local symmetry is entangled
with local orientation. Regrettably, until recently no construction rule for isotropic
multi-dimensional quadrature filter pairs was known. Therefore, efficient steering
[22, 39] of the orientations of directed quadrature filters was a matter of research for
several years with the aim of disentangling local spectral features and orientation,
and for designing artificial visual architectures [21].

Our group also spent a lot of work with qualifying steerable filter design [36, 44,
48]. But in parallel work we were looking for a more general solution to extract
local spectral representations in a rotation invariant manner. Our approach differs
from other efforts in either linear [25, 6] or nonlinear [31] schemes of extending
the analytic signal to higher dimensions. This paper reports on the common design
principles of the class of isotropic band-pass quadrature filters which work on signals
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of dimension one, two or three. But the results can be generalized to any dimension.
The way we have gone is a generalization of the analytic signal which cannot be
found in the domain of complex numbers. Instead, to provide a more powerful
algebraic system, the modelling of our problem at hand has to be done best in
Clifford algebra or geometric algebra, respectively [27, 34].

A great bulk of results goes back to the PhD thesis of M. Felsberg [13]. For
people working in signal theory or image processing the chosen approach may be
a new one. But only the recent results in Clifford analysis [3, 45, 32] enabled us
to understand correctly the underlying deep representation problems we met and
to close the representation gap coherently. Hence, our approach of extracting the
local parity symmetry of a multi-dimensional signal must be seen as an application
of Clifford harmonic analysis.

We will show that the approach we are presenting solves the problem of com-
puting local spectral representations in the case of multi-dimensional signals in a
rigorous and general way. We call that gained signal representation the monogenic
signal [16]. To mention only some main results: First, the isotropic quadrature
filters enable to measure local spectral representations in a rotation invariant man-
ner and they deliver the exact orientation information nearly for free, completely
without steering. Second, the even more fundamental result is a new scale-space
concept which, in contrast to the Gaussian scale-space not only relates the signal
intensity to the scale of the operators, but unifies scale concepts of local ampli-
tude, phase, and orientation in one single framework, the monogenic scale-space
[20]. Third, the coupling of the monogenic signal representation with the second
fundamental theorem of differential geometry enables in the 2D case the handling
of all intrinsic dimensions. The monogenic curvature tensor delivers the monogenic
signal as a special case for i1D structures. Finally, the generalized monogenic cur-
vature scale-space is the most general framework for local representation of a 2D
signal in a scale-space concept.

2. Foundations of Signal Theory.

2.1. Local Spectral Representations. In this subsection we want to summarize
the relations of the term parity symmetry in the title of this paper with the task
of computing the split of identity. Parity refers to the invariance of a process with
respect to a reflection operation. Parity symmetry is understood as the structural
feature of a signal we derive from the local phase. That is, phase analysis results in
a mapping of a signal to a basis spanned by even and odd symmetry.

In the case of a 1D signal f : R −→ R this mapping is a rather simple task.
The theoretic approach is to compute the analytic signal fA : R −→ C [23] in either
spatial or Fourier domain. Let F be the Fourier transform, then FA(u) = F{fA(x)}
with

fA(x) = f(x) + jfH(x) (1)

FA(u) = F (u) + jFH(u) = (1 + sign (u))F (u). (2)

The components f and fH of the complex valued signal fA are phase shifted by
−π

2 , they are in quadrature phase. The imaginary completion fH is computed from
the real signal f by applying the Hilbert transform H in either spatial or Fourier
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domain, fH(x) = (f ∗ PV h)(x) with PV denoting the principal value,

h(x) =
1

πx
and H(u) = −j sign (u). (3)

Then the local energy e(x) and the local phase φ(x), respectively are defined by

e(x) = f2(x) + f2
H(x) (4)

φ(x) = arg fA(x). (5)

In the case that the local energy exceeds a certain threshold of significance, then the
parity symmetry of the local phase enables a local structure analysis. The following
ideal cases occur: peak: φ(x) = 0, pit: φ(x) = π, decreasing slope: φ(x) = π

2 ,
increasing slope: φ(x) = −π

2 . Both peak and pit indicate even symmetry, while
slopes indicate odd symmetry. In the case of a real signal a symmetry somewhere
in between may be assigned to a certain location. Because the Hilbert transform
is an allpass operator, in practice quadrature filter pairs [24] are preferred. Being
bandpass filters, they have to guarantee the quadrature phase relation only within
a passband. This is achieved by coupling two filters of even and odd symmetry
according to

hq(x) = he(x) + jho(x). (6)

The Gabor filter [23] is a widely used example. Convolution of f with each filter of
the quadrature pair {he, ho} results in the complex valued output function

g(x) = ge(x) + jgo(x). (7)

In that case the real axis in the complex domain indicates pure even symmetry and
the imaginary axis indicates pure odd symmetry. Gabor filters are used as standard
quadrature filters in image analysis [24]. Because their lack of rotation invariance,
they are applied as oriented filters.
While in 1D things are simple, we will get all possible couplings of symmetry in
the multi-dimensional case. This causes the lack of a general multi-dimensional
phase model. At this point the term intrinsic dimension [53] of a signal comes into
play. It is related to the geometric interpretation of a local structure. We have to
distinguish between the global embedding dimension n of a signal and its (local)
intrinsic dimension d. The term intrinsic dimension as used in image processing
corresponds to the term codimension in mathematics: If S ⊂ Rn is a subspace,
then

d(S) = codim S = n− dim S. (8)

In the 1D case, a point x ∈ R is of topological dimension [28] zero and of intrinsic
dimension one. A signal, which is constant for all x ∈ R, is of intrinsic dimension
zero.
In the 2D case of f(x), x ∈ R2, we meet the following intrinsic d-dimensional signals
(idD signals):

f(x) ∈



{i0D} if f(x) = const for all x ∈ R2

{i1D} if f(x) = f(αx + βy) , α 6= 0 or β 6= 0
{i2D} else

(9)

While for a constant signal f(x) ∈ {i0D} we get e(x) = 0, for f(x) ∈ {i1D} we get
e(x) = 0 only in the orientation θ = arctan β

α and e(x) 6= 0 for all other angles
different from θ. In the case of i2D signals points are the considered subspaces
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S ⊂ R2. There exists no general rule for finding a single orientation which enables
phase analysis. But nevertheless, by assuming certain signal models, also in the i2D
case a phase can be defined. So i1D signals in Rn concern the important case of
transferring the 1D concepts of symmetry analysis to higher dimensions. If n = 2
and d = 1, even symmetry is a feature of lines and odd one such of edges. Because
we do not know their orientation in advance, orientation steering [22] comes into
play. We will show for the cases n = 2, 3 and d = 1, how steering can be prevented
and how this emerges coherently from the case n = 1. The more demanding task
of analysing i2D signals in image processing, see [13, 31], is related to problems of
corner detection or junction classification. From our contemporary point of view
that intensively investigated area of research seems to be not generally solvable.
But we will give a sketch of preliminary results for i2D signals concerning the case
of two (not necessarily perpendicular) crossing i1D structures in section 4.5, which
are based on a monogenic curvature tensor representation. This will enable us in
image analysis to apply the well-known approach of differential geometry, enriched
by a local spectral analysis in a monogenic framework.

As we will show, also in the 3D case the presented method works for i1D signals,
but these are now planar structures.

2.2. Global Spectral Representations. If phase analysis is done by linear and
shift invariant (LSI) filters, it must have a representation also in the Fourier domain.
It is well-known [24] that any real function f : Rn −→ R at any location x ∈ Rn

may be decomposed by reflection into an even and an odd part,

f(x) = fe(x) + fo(x). (10)

A real function is of even symmetry (parity invariance) if f(−x) = f(x) and of odd
symmetry (parity variance) if f(−x) = −f(x) for all x ∈ Rn. Only in the case of
a 1D function, the Fourier transform preserves that symmetry decomposition in an
integral manner because of the parity symmetry properties of its basis functions

Q(u, x) = exp (−j2πux) = cos (2πux)− j sin (2πux). (11)

Hence,

F (u) = Fe(u) + Fo(u) (12)

for all u ∈ R with Fe = F {fe}, Fo = F {fo}, and FR = Fe is the real spectrum and
FI = −jFo is the imaginary spectrum. The amplitude spectrum A(u) = |F (u)| is
of even symmetry and the phase spectrum Φ(u) = arg F (u) is of odd symmetry.

Quite different is the situation already in the 2D case. Although in that case we
have also a parity symmetry in the Fourier domain, this differs from that in the
spatial domain. Independent of the dimension of a real signal its complex Fourier
spectrum is of Hermitian symmetry, that is

F (−u) = FT (u), (13)

from which immediately follows that the real part is even and the imaginary part
is odd. Let

Q(u,x) = exp (−j2πu · x) = exp (−j2π(ux + vy)) (14)
= exp (−j2πux) exp (−j2πvy))

for x, u ∈ R2 be the basis functions of the 2D Fourier transform,

F (u) = Fee(u) + Foo(u) + Feo(u) + Foe(u). (15)
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Then

FR(u) = Fee(u) + Foo(u) , FI(u) = −j (Feo(u) + Foe(u)) (16)

as a result of the algebraic properties of the 2D basis functions (and similarly in the
case of any dimension n > 1). Here (ee) means even symmetry with respect to both
x and y, and so forth. Hence, we get no access to the single symmetry concepts
in 2D signals by analysing the 2D Fourier spectrum. There exists no 2D phase
representation in the complex domain which enables to represent all the possible
interplays of 1D symmetries in local neighborhoods. To overcome that problem, we
studied the quaternionic Fourier transform for 2D signals and in general Clifford val-
ued Fourier transforms [5] of dimension 2n for n- dimensional signals. The idea was
that each coordinate of a signal should be represented by its own complex domain
and their relations by certain additional DOFs of the chosen algebra. Although
that was insofar the right way, as we could explicitly represent the symmetries of
the single coordinates and some symmetries of their combination, the approach had
the drawback of being not rotation invariant. This became especially obvious in the
case of the designed quaternionic analytic signal [6] and quaternionic Gabor filters
[7] as quadrature filter quadruples.

At this point two conclusions have to be drawn. First, it seems to be hopeless to
design a Fourier transform in an algebraic domain as huge as ever to make explicit
all possible combinations of parity symmetries we can meet already in 2D signals.
Therefore, we concentrated to the problem of specifying the geometry, that is the
orientation, of local intrinsic 1D structures in 2D or 3D images together with the
local spectral features. Second, the missed rotation invariance of the quaternionic
analytic signal has its reason in the use of line symmetry (reflections at coordinate
axes) for the parity decomposition of the signal. Instead, we have to consider point
symmetry to design an isotropic generalization of the Hilbert transform respectively
an isotropic filter pair in quadrature phase. This is independent of the Fourier
transform because the nD Fourier transform is both Cartesian and isotropic at the
same time as a result of the rotation invariance of the scalar product (x · u) of the
basis functions.

3. Foundations of Geometric Algebra.

3.1. Geometric Algebras of Euclidean Spaces. Geometric algebras constitute
a rich family of algebras as generalizations of vector algebra [27]. Their advantages
in comparison to vector algebra result from a powerful subspace structure which,
in contrast to subspaces of a vector space, are not restricted to interpretations
within set theory but have geometric interpretations. These subspaces are called
blades. In general, a geometric algebra (GA) Rp,q,r is a linear space of dimension 2n,
n = p+q+r, which results from a vector space Rp,q,r. We call (p, q, r) the signature
of the quadratic space over a vector space of dimension n. It indicates the number
p/q/r of unit vectors ei which square to 1/−1/0, respectively. By choosing the
right signature, the GA will take on certain (geometric) properties which enables
adaption of the embedding framework to the task at hand, see e.g. [43]. With
our recent research in computer vision [42] we enforced for instance the use of the
conformal GA R4,1 in the area of robot vision for modelling the (homogeneous)
conformal geometry of the Euclidean space R3.

But for the problems we want to solve here, we only need the Euclidean GAs
R2, R3, and R4 over the Euclidean spaces R2, R3, and R4, respectively. In these
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cases we have n = p. We will not go much into details. A good source for studies
of these Euclidean GAs is [34]. The chosen dimensions of the vector spaces result
from the fact that we need an (n + 1)-dimensional vector space for embedding
our n-dimensional signals. Some more subspaces in comparison to the original n-
dimensional one are needed to model operators and filters acting on the signal and
to have enough DOFs for modelling all the features we want to extract locally from
the signal.

The basic product of a GA is the geometric product, indicated by juxtaposition
of the operands. This product is associative and non-commutative. There can be
formulated a lot of other product forms too, as the outer product (∧) and the inner
product (·). Let a, b ∈ Rn be two vectors, Rn ≡ 〈Rn〉1, then their geometric
product,

ab =
1
2
(ab + ba) +

1
2
(ab− ba) (17)

= a · b + a ∧ b = 〈ab〉0 + 〈ab〉2 = α + A2,

results in the sum of a scalar α ∈ 〈Rn〉0 and a bivector A2 ∈ 〈Rn〉2. Here 〈·〉k
indicates the grade k part of the algebraic entity. A blade of grade k, a k-blade Bk,
results from the outer product of k independent vectors {a1, · · · ,ak} ∈ Rn,

Bk = a1 ∧ ... ∧ ak = 〈a1...ak〉k. (18)

There are lk =
(
n
k

)
different blades of grade k, hence

∑n
k=0 lk = 2n is the dimension

of GA. Unit blades of grade k, Ik ≡ ei1 ...ik
= ei1∧...∧eik

, with 1 ≤ i1 < . . . < ik ≤ n
are given by the outer product of k unit vectors of Rn. They define the direction of
a blade. The unit blade of grade n, In, is called unit pseudoscalar. It is important
for mapping a multivector A to its dual one, A∗, hence, changing its basis within
the GA by the inner product

A∗ = A · I−1
n . (19)

If A ∈ 〈Rn〉k, then A∗ ∈ 〈Rn〉n−k. Let Ak be a k-vector of Rn, Ak = a1 . . . ak.
Then the main anti-automorphism of Rn, also called the reversion, is defined by
Ãk = ak . . . a1 and the main involution of Rn, also called the parity conjugation is
defined by Âk = (−1)ka1 . . . ak, see [26]. A multivector A is called even if Â = A

and is called odd if Â = −A.
Let us give a short view on the bases of R2 and R3:

1. dim(R2) = 4
basis(R2) = {e0, e1, e2, e12}
e0 ≡ 1, e12 ≡ I2, e2

0 = e2
1 = e2

2 = 1, e2
12 = −1

2. dim(R3) = 8
basis(R3) = {e0, e1, e2, e3, e23, e31, e12, e123}
e0 ≡ 1, e123 ≡ I3, e2

0 = e2
1 = e2

2 = e2
3 = 1,

e2
23 = e2

31 = e2
12 = −1, e2

123 = −1.

In R4 we can proceed similarly that way. But there are remarkable differences.
Only to mention some: First, I2

4 = 1 and second, the dual of a bivector is a bivector
again. But also the geometry in R4 is hardly to imagine, see [34]. While in both
R2 and R3 a bivector represents a plane, in R4 this is not generally the case. Also
the rotation of a 4-ball in R4 happens quite different to that of a 3-ball in R3 or to
that of a 2-ball in R2.
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3.2. Spinors in Euclidean Spaces. We want to save as many concepts as possible
from complex valued signal processing to the domains we intend to use now for
modelling signal analysis. But, of course, we have to generalize them in such a way
that a coherent model will emerge. This is most simple in R2. Besides representing
the vector space R2, there exists an even subalgebra R+

2 with the basis {e0, e12}.
Hence, there is the isomorphism R+

2 ' C, and I2 takes on the role of the imaginary
unit j ∈ C. In R3 the algebra of {e0, e123} is isomorphic to C. So I3 takes on
the role of the imaginary unit in that subalgebra. Besides, in R3 and R4 any even
subalgebra over the pair {e0, B}, B being a normalized bivector, is isomorphic to
C.

In our approach we want to handle signals f as vectors in the respective GA
and mappings of the kind A : f −→ fA of a (multi-dimensional) real signal to a
(generalized multi-dimensional) analytic signal as operations of scaling-rotation in
the respective GA. We call such operators spinors [34]. A spinor S ∈ R+

n is an even
multivector with the norm SS̃ = |S|2. If |S|2 = 1, then the spinor will be called
a rotor [26]. The spinor operation is of fundamental importance for understanding
our multi-dimensional phase concept. Therefore, we will give a very short sketch of
the ideas of computing with spinors.

A complex number z ∈ C, z = x + jy = rexp(jθ) = r(cosθ + jsinθ) is replaced
in R+

2 by the multivector Z = x + yI2 = rexp(θI2) which rotates e1 ∈ R2 to
x = xe1 + ye2 by x = e1Z. Because of the non-commutativity of the geometric
product in GA, we can also write x = Ze1 with Z being the conjugate of Z,
Z = rexp(−θI2). Besides, because of exp(θI2) =

(
exp

(
θ
2I2

))2
, we will introduce

the spinor S = rexp
(

θ
2I2

)
as an element of the spin group Spin(2), see [34], and its

conjugate S = rexp
(− θ

2I2

)
. Written in terms of that operator, scaling-rotation is

given by the spinor product x = Se1S with SS = Z. Using the spinor representation
for scaling-rotation has the advantage of being generalizable to higher dimensions.

A normalized spinor is called a rotor, R. It describes a rotation independent
of the dimension of the embedding space. By interpreting a rotation as a Lie
group action, in R2 the pseudoscalar I2 is the generator of the rotation. The same
is with I3 in R3. There the rotation plane may be represented by the bivector
B = r1e23 + r2e31 + r3e12 which is also B = rI3 = −rI−1

3 with r being the
dual of B, the rotation vector. Then, because of exp(rI3) = cos|r| + I3

r
|r| sin|r|,

R = exp
(

1
2rI3

)
is the rotor describing the rotation of any vector x ∈ R3 to x′ with

respect to the axis r by the angle |r|,

x′ = RxR̃, (20)

with R̃ = exp
(− 1

2rI3

)
indicating the reverse of R. With respect to the group

Spin(4) in R4 we advise the reader to [34].
Finally, we want to give an idea of extracting both the amount of a rotation

(in classical terms the rotation angle) and its direction in the respective vector
space Rn. This is fundamental for extracting both the parity symmetry (the phase
angle) and its orientation in space from the phase of the generalized analytic signal.
Thinking in terms of signal theory, we can imagine the analytic (or monogenic)
signal as the impulse response of a spinor acting on a unit pulse oriented along the
respective real axis of the signal model. So the spinor causes a rotation and a scaling
of the unit impulse in a complex plane lying in the space Rn. Hence, additional
(generalized) imaginary signal components are generated lying in the dual space
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of the original real signal within the embedding space of our signal model. The
logarithm of the exponential spinor representation gives us access to its generators:
scaling corresponds to the local energy and rotation corresponds to the local phase
(including orientation in space). Because of our simple model of rotation in a single
plane, see [34], the R+

n -logarithm of a spinor S ∈ R+
n for n = 2, 3, 4 in our case reads

log (S) = log (|S|) +
〈S〉2
|〈S〉2| atan

( |〈S〉2|
〈S〉0

)
. (21)

The scalar part 〈 log (S)〉0 = log(|S|) corresponds to the logarithm of the local
energy and the bivector part of log (S), 〈 log (S)〉2 = arg (S), corresponds to the
respective phase representation in Rn. While in R2 this is the well-known phase
angle, represented as bivector, in R3 and R4 the actual phase indicating parity
symmetry is enhanced by one or two orientation angles, respectively.

3.3. Harmonic Fields in Euclidean Spaces. Although the term analytic signal
immediately should evoke associations to the term analytic function, its relation
to the complex analysis is widely unknown in the image processing community.
But the understanding of some basic facts of complex analysis will be necessary
for extending it to higher dimensional spaces. Our presented approach to parity
symmetry estimation in the multi-dimensional case is based on Clifford harmonic
analysis [3, 45, 32]. Let n be the dimension of the scalar signal f(x), that is
x ∈ Rn, x = x1e1 + . . . + xnen. We will denote the original signal by fn(x). Then
the embedding dimension of the signal will be n + 1. Instead of using the scalar
field representation fn(x), we are considering the analysis of harmonic vector fields
fn+1(x) in GAs Rn+1, n = 1, 2, 3. In that framework a 2D harmonic field directly
corresponds to a 1D analytic function and an (n + 1)D harmonic field corresponds
to an nD monogenic function. Again we restrict ourselves to some necessary key
ideas of the derivation of a function theory of Rn+1-valued functions derived from
harmonic (n + 1)D vector fields.

Let gn+1(x) =
∑n+1

i=1 gn+1
(i) ei be a vector field of dimension n + 1. Then it is

called a harmonic field if it is the gradient field of a harmonic potential pn+1(x),
which itself is a scalar field of dimension n + 1,

gn+1 = ∇n+1pn+1, (22)

with the Dirac operator in Rn+1 defined by the vector

∇n+1 =
n+1∑

i=1

ei
∂

∂xi
. (23)

Then the Dirac equation

∇n+1gn+1 = 0 (24)

represents in Rn+1 a compact generalized equivalent of the Cauchy-Riemann equa-
tions, which are known from complex vector field analysis. But in addition to the
Dirac equation, the generalized Cauchy-Riemann equations tell us that also all n+1
components gn+1

(i) of gn+1 themselves are harmonic. These components constitute
an (n + 1)-tuple of harmonic conjugates of each other. Splitting the geometric
product of equation (24) into its scalar part, ∇n+1 · gn+1 = 0, and into its bivec-
tor part, ∇n+1 ∧ gn+1 = 0, indicates both zero divergence and zero curl of gn+1,
respectively, in a generalized sense. Because ∇n+1 · gn+1 = ∇n+1 · ∇n+1pn+1 =
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∇n+1∇n+1pn+1 = ∆n+1pn+1, zero divergence means that pn+1 fulfills the Laplace
equation

∆n+1pn+1 = 0, (25)

with ∆n+1 being the (n + 1)-dimensional Laplace operator. The fundamental solu-
tion of equation (25) takes on different forms in Rn+1, n = 1, 2, 3 :

p2(x) =
log (|x|)

π
, p3(x) = − 1

2π|x| , p4(x) = − 1
4π2|x|2 , (26)

and the respective gradient fields read

g2(x) =
x

π|x|2 , g3(x) =
x

2π|x|3 , g4(x) =
x

2π2|x|4 . (27)

In the equations (26) and (27) and in the following pn+1(x) and gn+1(x) explicitly
indicate scalar or vector valued functions, respectively, defined over x ∈ Rn+1.
While the components x1, . . . , xn of x are the normal signal coordinates, xn+1 will
take on a special role as we will see in section 4.2. The components of g2 form a
Hilbert pair and those of g3 and g4 form a Riesz triplet and a Riesz quadruple,
respectively. Each component can be transformed into the other one by either the
Hilbert transform (n = 1) or the Riesz transform (n = 2, 3) [47].

What remains open is the way to arrive at the analytic signal, respectively the
monogenic signal as its generalization, from a (multi-dimensional) real signal. This
requires to extend the real function of dimension n in such a way that the resulting
function of dimension n + 1 fulfills the Cauchy-Riemann equations or the Dirac
equation, respectively, in the framework of a vector field model of our signal. This
solution can be identified with a harmonic field. The analytic/monogenic completion
of a real (multi-dimensional) function fn(x), n = 1, 2, 3, has its solution in Rn+1. It
can be derived from the boundary value problem (Dirichlet problem for the upper
half-space) [9],[1]

∆n+1pn+1(x) = 0 for xn+1 > 0 (28)

and

en+1
∂

∂xn+1
pn+1(x) = fn(x)en+1 for xn+1 = 0. (29)

The unique solution of these equations results finally in the analytic signal and the
monogenic signal, respectively, represented as vector field, fn+1(x) = ∇n+1pn+1(x)
for xn+1 > 0. For xn+1 = 0 the en+1-component of fn+1(x), fn+1

(n+1)(x), corre-
sponds to the original signal fn(x). The other components fn+1

(1) (x), ..., fn+1
(n) (x) of

fn+1(x) are the Hilbert/Riesz transformed signal components as part of the ana-
lytic/monogenic signal. As we see, the original real signal is directed to the ad-
ditional coordinate axis en+1, and the Hilbert/Riesz components are lying in the
original space Rn.

4. 2D and 3D Monogenic Signals. After having summarized the signal theo-
retic foundations of our problem at hand and after having sketched the algebraic
framework we use for embedding our signals, we will now present the solutions more
in detail as indicated in section 3.3. This makes necessary to first specify our signal
model and to comment the handling of operators and filters, both in spatial and
frequency domain. After that we will derive the monogenic signals and discuss their
respective local spectral representations. Of special interest, of course, will be the
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gained phase concept. Finally, we will shortly discuss the new scale-space that is
intrinsic to the presented solution.

4.1. Basics of Signal Theory in Geometric Algebras. As mentioned in section
3.3, we are using a vector field representation, fn+1(x), of our real signals fn(x),
n = 1, 2, 3, to get the analytic signal fA(x), x ∈ R2 and the monogenic signals
fM (x), x ∈ R3 or x ∈ R4, respectively. The vector field of the original signal in
Rn+1 in our chosen embedding for xn+1 = 0 reads

fn+1(x) = fn+1(x1e1 + . . . + xn+1en+1) = fn(x1, ..., xn)en+1, (30)

The Fourier transform of a general multivector valued function gn+1(x), x ∈
Rn+1, in Rn+1 is given by

Gn+1(u) = Fn {gn+1(x)} (u), (31)

where Fn means that the Fourier transform is only performed with respect to the
original signal coordinates x1, ..., xn. The imaginary unit is replaced by I2 in the
1D case and by I3 in the 2D case. In the 3D case also I3 is used because I4 does
not square to minus one. This special choice of the Fourier transform is adapted
to our models of signals and operators. For a more general Fourier transform on
multivector valued functions with application in image processing see [12]. What
we also need is that all bivectors of R3 and R4 square to minus one and, thus,
enable access to the complex domain rotating in the embedding space. The Fourier
transform is isotropic in each case, but its effect looks different in dependence of
the function g.

A signal representation fn+1(x) = fn+1
(1) (x)e1 + ... + fn+1

(n+1)(x)en+1 in Rn+1, n =
1, 2, 3, transforms according to

Fn+1(u) = Fn {fn+1(x)} (u) = Fn+1
(1) (u)e1 + ... + Fn+1

(n+1)(u)en+1 (32)

with Fn+1
(i) = Fn+1,e

(i) + Fn+1,o
(i) In+1 for n = 1, 2 and i = 1, . . . , n + 1. This indicates

an advantage of using a vector valued signal representation in comparison to the
classic approach in multiple dimensions: each component of the signal is transformed
separately. In the 3D case we get

F4(u) = F 4,e
(1) (u)e1 + F 4,o

(1) (u)e23 + F 4,e
(2) (u)e2 + F 4,o

(2) (u)e31

+ F 4,e
(3) (u)e3 + F 4,o

(3) (u)e12 + F 4,e
(4) (u)e4 + F 4,o

(4) (u)I3. (33)

Filter kernels, h(x), are supposed to be spinor valued to map a vector valued sig-
nal to a vector valued signal by convolution. But instead of applying the expo-
nential form of a spinor and designing a convolution based on the sandwich form
of the spinor product, see equation (20), a left hand convolution theorem reads
Fn {(h ∗ f)(x)} (u) = H(u)F(u) with x, u ∈ Rn. Just as the vector valued signal,
a spinor h transforms component-wise but with another symmetry, H(−u) = H(u),
e.g. for n = 2:

H3(u) = F2 {h3(x)} (u) (34)
= H0(u) + H23(u)e23 + H31(u)e31 + H12(u)e12.

Hence, the frequency response of a spinor is spinor valued again. The same is with
that one of a scalar. The Fourier transform of a scalar potential field, p(x), as a
special case of a spinor, is given for n = 1, 2 by

Pn+1(u) = Fn {pn+1(x)} (u) = P e
n+1(u) + P o

n+1(u)In+1 (35)
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and for n = 3 by P4(u) = F3 {p4(x)} (u) = P e
4 (u) + P o

4 (u)I3.
The most important operator, which is not a filter in the above mentioned sense

in our embedding scheme, is the derivative operator (Dirac operator) ∇n+1 =∑n+1
i=1 ei

∂
∂xi

. It is a vector which, nevertheless, can be reformulated as a filter
by multiplication with a vector valued Dirac delta function. The Fourier transform
of its action to a vector valued function gn+1(x) in Rn+1 reads for

n = 1 : F1 {∇2g2(x)} (u) = 2πuI2G2(u)
n = 2 : F2 {∇3g3(x)} (u) = 2πuI3G3(u)
n = 3 : F3 {∇4g4(x)} (u) = 2πuI3G4(u).

(36)

The second derivative is given by the Laplace operator ∆n+1 with its Fourier trans-
form Fn {∆n+1(x)} (u) = −4π2u2 independent of n.

4.2. Poisson Kernel and Riesz Transform. Now we will have a closer look on
the fundamental solutions, equations (26), of the Laplace equation (25), respectively
on the gradient fields, equations (27), for signals embedded according to equation
(30). First, we consider the en+1-component, fn+1

(n+1)(x), of fn+1(x), x ∈ Rn+1.
According to equation (30) this component corresponds to the original real signal
fn(x) for xn+1 = 0. Next, we are interested in the changes happening in the half
space xn+1 > 0. The en+1-component for that case will be obtained from the
xn+1-derivative of pn+1(x)en+1. This results in the scalar function

fn+1
(n+1)(x) = (fn+1 · en+1)(x) = en+1

∂

∂xn+1
pn+1(x)en+1, (37)

which for x ∈ Rn reads

ln+1(x, xn+1) = (fn+1 · en+1)(x, xn+1) =
anxn+1

|x + xn+1en+1|n+1
(38)

with an = π−
n+1

2 Γ
(

n+1
2

)
.

This scalar valued function is the nD Poisson kernel [47, 45]. A convolution of
the original signal, embedded into Rn+1 according to f0

n+1(x) = f(x1e1 + . . . +
xnen)δ0(xn+1), with the Poisson kernel results in the signal representation f l

n+1(x)
for any chosen xn+1 > 0, see [1],

f l
n+1(x, xn+1) =

(
ln+1 ∗ f0

n+1

)
(x, xn+1), x ∈ Rn. (39)

Here xn+1 takes on the role of a parameter. The effect of that convolution can be
seen best in the frequency domain. Because the choice of f0

n+1 leads to an absorption
of the convolution over the xn+1-coordinate, we get

Fl
n+1(u, xn+1) = F {

f l
n+1

}
(u, xn+1) = Ln+1(u, xn+1)F0

n+1(u) (40)

with u ∈ Rn. The Fourier transform of the Poisson kernel,

Ln+1(u, xn+1) = exp (−2π|u|xn+1), (41)

indicates a lowpass characteristic, which is parameterized by the augmented co-
ordinate xn+1 of our chosen embedding. Hence, xn+1 has to be interpreted as a
scale parameter and the vector x ∈ Rn+1 spans a linear scale-space, the Poisson
scale-space [20], whose generating blurring operator is the Poisson kernel. We will
come back to that point in section 4.4.
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Now we will enlighten the components fn+1
(1) (x), . . . , fn+1

(n) (x) of fn+1(x), x ∈
Rn+1, in the half space xn+1 > 0. They constitute the bivector

(fn+1 ∧ en+1)(x) =
n∑

i=1

ei
∂

∂xi
pn+1(x)en+1. (42)

For x ∈ Rn this bivector in Rn+1 reads

hn+1(x, xn+1) = (fn+1 ∧ en+1)(x, xn+1) =
anxen+1

|x + xn+1en+1|n+1
. (43)

This function is the conjugate Poisson kernel [45]. It represents a compound oper-
ator, which again best can be seen in the Fourier domain with u ∈ Rn,

Hn+1(u, xn+1) = F {hn+1(x, xn+1)} (u, xn+1)

=
u
|u|I

−1
n+1 exp (−2π|u|xn+1), (44)

or

Hn+1(u, xn+1) = Rn(u)Ln+1(u, xn+1), (45)

respectively. While Ln+1 is known from equation (41) to be the Poisson kernel,
Rn(u) is the Riesz transform in Fourier representation. The Riesz transform [47] is
the formerly mentioned generalization of the Hilbert transform with respect to the
dimension. It coincides with the Hilbert transform for n = 1. Its definition in Rn+1

for x, u ∈ Rn is given by the bivector

rn(x) =
anxen+1

|x|n+1
, (46)

and

Rn(u) =
u
|u|I

−1
n+1, (47)

respectively. This isotropic operator is identical with the first order nD spherical
harmonic.

The analytic signal as well as the Hilbert transform are well known to practi-
tioners in signal processing. However, their multi-dimensional generalizations to the
monogenic signal and the Riesz transform were not known so far. Only in year 2000
some researchers simultaneously came to the solution for n = 2, see [13] for refer-
ences. For n = 3 we presented the first application in image sequence analysis in
[30]. Quite other is the situation in mathematics in the field of Calderon-Zygmund
theory [8, 46], where also relations to the wavelet theory have been established [35].
Completely unknown was so far the relation of this signal modelling to the linear
scale-space theory until the paper [17] and the report [18]. There is a difference in
the representation of the Hilbert transform between the one which results for n = 1
from equations (46) or (47) and the one in equation (3), which is normally used
in signal processing. While r1 subsumes the imaginary unit as j ≡ e12, h(x) in
equation (3) is real and scalar valued. Equation (46) establishes an n-dimensional
Rn+1-valued monogenic completion of an n-dimensional real valued signal. The
understanding of the relations between the Riesz transform for multi-dimensional
signals and the Hilbert transform for 1D signals may also be supported by remem-
bering the well-known Radon transform, see e.g. [41]. As discussed more in detail
in [16, 13] for n = 2, from the Fourier slice theorem follows that the Riesz transform
may be interpreted as the linear superposition of the oriented Hilbert transforms
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of the intrinsically 1D signal components. But embedding the n-dimensional sig-
nal into Rn+1 according to xn+1 > 0 additionally generalizes this concept by the
emergence of the Poisson kernel. According to equation (45), a smoothed Riesz
transformed signal representation may be computed by either convolving the orig-
inal signal with the conjugate Poisson kernel, by convolving first with the Poisson
kernel, followed by the Riesz transform or by concatenating both operators in the
reverse order. These relations follow from the fact that all involved transforms are
linear ones.

4.3. Monogenic Signal and Phase in nD Case. Now we will discuss more in
detail the monogenic signal, fM (x), as the generalized analytic signal, fA(x), which
corresponds to our vector field fn+1(x) in the last section. In this section we restrict
ourselves to the case xn+1 = 0, but we will sketch the case xn+1 > 0 in the next
section.

The monogenic signal is defined in Rn+1 by

fM (x) = f(x) + fr(x) = f(x) + (rn ∗ f)(x), (48)

respectively

fM (x) = fn(x)en+1 + fr
(1)(x)e1 + . . . + fr

(n)(x)en. (49)

The monogenic signal can be interpreted as the action of a spinor S(x) = en+1fM (x)
which transforms a unit impulse en+1 to fM (x). Remembering equation (21), both
local amplitude

a(x) = |fM (x)| = exp (〈 log (en+1fM (x))〉0) (50)

and generalized local phase, that is the Riesz phase,

Φn(x) = arg (fM (x)) = 〈 log (en+1fM (x))〉2 (51)

can be computed. These local spectral representations suggest a spherical repre-
sentation of the monogenic signal,

fM (x) = a(x) exp (Φn(x)), (52)

which is now R+
n+1-valued.

Most interesting is the study of the Riesz phase bivector Φn(x) because this will
enable us to get access to the local symmetry in the multi-dimensional case. An
intuitive interpretation of the Riesz phase in the nD case can be found by maintain-
ing the model of the 1D phase, embedded into 〈Rn+1〉1. There exists a phase plane
fM (x)∧en+1 = 〈en+1fM (x)〉2, which corresponds to the complex plane known from
1D. Within that plane the phase angle ϕ(x) describes the rotation caused by the
Riesz transform, respectively by the Hilbert transform. In nD, n > 1, there are
additional orientation angles {θ1, . . . , θn−1}, which determine the orientation of the
phase plane within 〈Rn+1〉1.

Figure 1 visualizes that model. As we see, the parity symmetry analysis is
strongly coupled to the orientation analysis of an i1D structure embedded into Rn.
The orientation angles are in the spatial domain. For n = 2 the even and odd parity
symmetries are shown in addition.

To formalize the existence of these components of Φn(x), we will have a closer
look on equation (51). We can write

Φn(x) =
〈en+1fM (x)〉2
|〈en+1fM (x)〉2| atan

( |〈en+1fM (x)〉2|
|〈en+1fM (x)〉0|

)
. (53)
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fM

e1

θ1

e2

e3

ϕ

Figure 1. The figure shows top left the embedding of the mono-
genic signal in Rn+1. Top right, the special case n = 2 is visualized.
Bottom: For n = 2, parity symmetries are shown in addition.

Obviously, the expression of the arc tangent describes the local phase ϕ(x) as the
relation of the magnitudes of the bivector coded Riesz component fr(x) and the
original real valued component f(x) of the monogenic signal according to equation
(48). This rotation happens in the phase plane fM ∧ en+1, whose orientation in
Rn+1 is given by the normalized bivector factor of Φn(x). Because 〈en+1fM (x)〉2 =
en+1fr(x), by means of the inner product

〈en+1fM (x)〉2 · en+1

|〈en+1fM (x)〉2| =
fr(x)
|fr(x)| , (54)

we get the normalized Riesz component of the monogenic signal as a vector repre-
sentation of the orientation. This projection from Rn+1 to Rn is reasonable because
orientation is a geometric feature of Rn. In fact, there are diverse other ways of
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decomposing the nD phase Φn(x). In [13] a rotation vector representation has been
used for n = 2. But this is not applicable in the case n = 3.

In figure 2, the rotation invariance of the amplitude and phase response in the
case of a 3D isotropic signal is demonstrated. The pattern has both even and
odd symmetry. This can be identified in the phase image. These two symmetry
contributions to the amplitude are separately visualized in the two figures at the
bottom. See also [30] for an application of the 3D monogenic signal in phase based
motion estimation.

To summarize the result of this section we can state that the chosen nD signal
model enables a rich local characterization of i1D structures. In a rotation invariant
way three orthogonal local features can be derived. These are the local amplitude
as measure of the signal energy, the local phase as structural feature describing the
parity symmetry, and the local orientation as geometric feature. The last one is
delivered for free without any steering. This multiplet of features forms again a
harmonic vector field.

4.4. Monogenic Scale-Space and Spherical Quadrature Filters. While in
the last section we discussed the case xn+1 = 0 for our augmented signal repre-
sentation in Rn+1, we will sketch in this section the monogenic completion of a
multi-dimensional signal in the half-space xn+1 > 0. Because we already identified
xn+1 in section 4.2 as a scale parameter, we will set now s ≡ xn+1 as scale.

The general signal model of the preceding sections extends the analytic signal
in a natural way to the monogenic signal by the solution of the Laplace equation
(25). If we consider the coupling of that signal model to a scale, several linear
scale-space models will be established. These models are interesting alternatives to
the Gaussian scale-space which results from the heat equation [33]. In contrast to
a Gaussian scale-space theory not only the intensity of the signal and its gradient
can be considered as features of the scaled signal. Instead, local amplitude, phase
and orientation become scale-dependent features, which constitute simultaneously
a Riesz multiplet.

We have to distinguish between the Poisson scale-space, the analytic, and the
monogenic scale-space in dependence on applying either the Poisson kernel, equation
(38), or the conjugate Poisson kernel, equation (43), see [20]. The Poisson scale-
space and its harmonic conjugate form the analytic/monogenic scale-space. In
the analytic/monogenic scale-space the figure flow and the original signal are in
quadrature phase relation at each scale.

To take advantage of that, the expressions for the local amplitude and the local
phase, equations (50) and (51) have to be generalized accordingly. Let

fs
M (x, s) = fs(x, s) + fr

s (x, s) (55)

be the monogenic signal at scale s with x ∈ Rn. Then, the logarithm of the local
amplitude, that is the local attenuation, in the monogenic scale-space reads

A(x, s) =
1
2

log
(|fs(x, s)|2 + |fr

s (x, s)|2) . (56)

The attenuation is introduced instead of the amplitude, because in 1D according to
[37] the local attenuation and the phase response of a minimum phase filter form
a Hilbert pair. In [20] it is shown that this relation under certain conditions can
be extended to nD if i1D signals are considered in the half-plane s > 0. Then, the
local attenuation A(x, s) and the Riesz phase Φn(x, s) constitute a Riesz multiplet,
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Figure 2. The isotropy properties of the monogenic signal in 3D.
Top: Cubic image containing concentric spheres. Middle left: Am-
plitude of the monogenic signal. Middle right: Monogenic phase.
There is a phase wrapping taking place in the plane x = 0. Bottom:
Even and odd parts of the amplitude of the monogenic signal.

that is

Φn(x, s) ≈ (rn ∗A)(x, s). (57)



PARITY SYMMETRY IN MULTI-DIMENSIONAL SIGNALS 17

The Riesz phase in the monogenic scale-space is given by

Φn(x, s) =
fr
s (x, s)
|fr

s (x, s)| atan
( |fr

s (x, s)|
|fs(x, s)|

)
. (58)

In [20] several features of these new scale-space representations are analyzed. Ad-
ditionally, there is a discussion of the reasons why in contrast to the statement of
Iijima [29] besides the Gaussian scale-space also other linear scale spaces should
exist. Interestingly, in [11] the authors come to similar conclusions because of quite
other reasons. Both studies, [20] and [11], are in accordance with another paper
[38]. There the authors propose the so-called α-scale-spaces, generated by smooth-
ing kernels with some properties, where α = 0 corresponds to the identity operator,
α = 0.5 corresponds to the Poisson kernel and α = 1 corresponds to the Gaussian
kernel, see also [10]. Interestingly, in [40] the authors show how Poisson and Gauss-
ian kernels are deducible from certain powers of the Laplacian applied to harmonic
functions without concluding their potential of generating scale-spaces.

An efficient implementation of the monogenic scale-space based on the cosine
transform can be found in [15]. The design of isotropic quadrature filters as band-
pass filters with quadrature phase relations between the components of the mul-
tiplets is another important topic, e.g. for performing a multi-resolution analysis.
The most simple approach is to apply both the Poisson kernel and the conjugate
Poisson kernel at two different scales, say a coarse scale c and a fine scale f with
c > f and f > 0. Then a bandpass filtered monogenic signal results,

f c,f
M (x, s) = fs

M (x, c)− fs
M (x, f) (59)

= (lss ∗ f)(x, c, f) + (hss ∗ f)(x, c, f)

with the Difference-of-Poisson kernel (DOP) lss and the Difference-of-conjugate-
Poisson kernel (DOCP) hss,

lss(x, c, f) = ls(x, c)− ls(x, f) (60)
hss(x, c, f) = hs(x, c)− hs(x, f). (61)

Figure 3 shows the application of these DOP and DOCP filters for the phase
based reconstruction of an image in the monogenic scale-space [49]. The problem
at hand is that phase based image reconstruction based on Gabor filters uses only a
coarse orientation sampling. In the monogenic scale-space instead, the orientation
adapts automatically to the structure at each scale. So the reconstruction with that
approach outperforms the classical one in the complex domain.

In [14] there is a slightly other approach to design two-dimensional polar sepa-
rable bandpass filters. There the z-transform is used to compute the coefficients of
a series of Poisson filters and the coupling with spherical harmonics of higher order
is applied for getting arbitrary radial and azimuthal passbands.

4.5. Extensions to the Intrinsically 2D Case. So far we studied the embedding
of i1D structures in global nD signals with respect to their local analysis of the
phase and thus, of the parity symmetry. In natural images a local patch may be to
a certain degree of intrinsic dimension one and to another degree of another intrinsic
dimension. And this will change in dependence of the scale.

There is no general way to completely specify the symmetry of an arbitrary i2D
structure by applying a pre-designed general operator as in the case of i1D struc-
tures. But it should be possible to use the algebraic principles which we described
in the preceding sections for coping with special cases of i2D structures. Hopefully,
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Figure 3. Image reconstruction in the monogenic scale-space.
Top row: The original image and the absolute error image (the error
measure is multiplied by a factor of ten for visualization purpose).
Middle row: The left image indicates the final reconstruction (the
normalized mean square error (NMSE) is 0.0026). Bottom row
and middle row right: The three intermediate reconstructions are
zoomed in at the same size of the final reconstruction.

by doing that, we learn more about the nature of i2D signals, so that we will be
able in future to analyse also their structures with linear methods. Contemporary
mostly non-linear approaches are applied for the analysis of i2D structures.

Our first attempt of the design of a specific operator is called structure multivec-
tor [19]. The underlying structure model consists of two perpendicularly crossing
i1D structures of arbitrary symmetry. We designed a special set of operators based
on the principles of the monogenic signal. But to cope with the involved sym-
metry combinations, we used complex harmonics of order zero to three instead of
only order one as in the case of the monogenic signal. Let g

(k)
s (x) be the 2D im-

pulse response of a spherical harmonic filter of order k with g
(0)
s (x) ≡ δ(x) and
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Figure 4. Left: Star-like i2D pattern. Right: Amplitude image.
The amplitude output illustrates the rotation invariance property
of the operator.

Figure 5. Left: The original image as superposition of two co-
sine signals with different frequencies, amplitudes and orientations.
Right: Evaluated phase information.

g
(1)
s (x) ≡ r2(x). Then

S(x) =
3∑

k=0

(g(k)
s ∗ f)(x) (62)

enables in R3 a mapping of the local structure to a 7-dimensional multivector,

S = s0 + s1e1 + s2e2 + s3e3 + s23e23 + s31e31 + s12e12, (63)

called structure multivector. Obviously, equation (62) represents a generalization of
the monogenic signal with respect to an i2D structure. Hence, a split of identity of
any 2D signal, projected to the model, can be realized in the scale-space. There are
five independent features derived from the structure multivector. These are the local
(main) orientation, two local i1D amplitudes and two local i1D phases. A major
amplitude and a minor amplitude and their respective phases are distinguished.
The occurrence of a minor amplitude indicates the i2D nature of the local pattern.
For details the reader is referred to [13, 19].

The filter can be used to recognize both i1D and i2D structures, but in contrast to
other filters, which respond either to i1D or to i2D structure or mix the responses in
an unspecific manner, this filter is simultaneously specific to each type of structure.
Regrettably, the evaluation of the structure multivector needs some steering of
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orientation. Besides, the involved model of perpendicularly crossing i1D structures
is too rigid.

In a second approach another way is gone to compute the split of identity with
respect to a more flexible model, where the enclosed angle between two crossing i1D
structures is variable [50]. Interestingly, the model subsumes the monogenic signal
as special case. In the following, we will give a short sketch of the method. More
details can be found in [52].

The monogenic signal is derived from the monogenic extension of a scalar field.
Its restriction to i1D functions, embedded in nD signals, results from taking only
a minimum of information into account, that is the scalar value f(x). But, if
we interpret images as surfaces in R3, the first and second fundamental theorems
of differential geometry would deliver the most general local signal model in the
classical framework. Contemporary we neglect the metric tensor, but concentrate
on the curvature tensor. If we associate a curvature tensor instead of a scalar value
to a location of interest, it is well known that from the mean and the Gaussian
curvature a complete classification of the local structure into the types i2D (elliptic
and hyperbolic), i1D (parabolic) and i0D (planar) in principle can be done.

Our proposal is to embed the entries of the curvature tensor, which in our work
is represented as the Hessian matrix, into R3. The Hessian matrix results from
applying a Hessian derivative operator matrix to an image. The components of
this operator matrix are modelled as even harmonic functions of order zero and
two. This even matrix is monogenically completed by an odd one as the conjugate
of the Hessian operator which consists of spherical harmonics of order one and
three. These tensor valued operators, applied to the image function, result in a
pair of harmonic conjugate signal representations, called even and odd curvature
tensors, Te and To, respectively of the signal. Both together are represented by the
monogenic curvature tensor T (x) = Te(x) + To(x).

By applying the determinant operator to these tensors and by embedding these
responses according to

de = det (Te)e3 = Ae3 (64)
do = e1det (To) = Be1 + Ce2 (65)

into R3, we follow the line drawn by the signal embedding sketched in section
4.3. This results in a novel signal representation which is called the generalized
monogenic curvature signal

fi2D(x) = de(x) + do(x). (66)

The generalized monogenic curvature signal is a generalized monogenic representa-
tion of the Gaussian curvature in classical differential geometry. Because for i0D
and i1D structures the determinants of the curvature tensor must be zero, any
|fi2D| > 0 indicates an i2D structure. In the case of an i1D structure, the trace
operator on the curvature tensors results in a signal model, which corresponds to
the mean curvature in classical differential geometry,

fi1D(x) = trace (Te) + trace (To)e2 = f(x) + (r2 ∗ f)(x). (67)

Hence, in the case of |fi1D| > 0, this signal model is identical to the monogenic
signal, equation (48). And vice versa, we can conclude that the monogenic signal
is a monogenic measure of the mean curvature.
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Interestingly, equation (66) may also be written as

fi2D(x) = de(x) +
(
g(2)

s ∗ de

)
(x), (68)

and it can be shown that |de| = |do|. This equation indicates that a generalized
Hilbert transform, which equals a second order spherical harmonic, g

(2)
s , delivers the

odd part of the monogenic curvature signal from the even one. It has been proved in
[4] that the second order spherical harmonic represents also a valid generalization
of the Hilbert transform. We therefore call the novel signal representation fi2D

generalized monogenic.
From the generalized monogenic curvature signal, local spectral representations

of i2D structures can be computed in a similar way as from the monogenic mean
curvature (monogenic signal). But details should be skipped here. Instead, it should
be mentioned that as generalization of the monogenic scale-space, see sections 4.2
and 4.4, a generalized monogenic curvature scale-space [51] can be formulated that
is defined as

fs
i2D(x, s) = de(x, s) + do(x, s). (69)

In the following two figures we want to give some simple demonstrations for the
generalized monogenic curvature signal. Figure 4 shows to the left the original
pattern and to the right the energy image. The response has the requested rotation
invariance. Finally, in figure 5 we see to the left the original pattern and to the
right the image of the i2D phase.

5. Conclusions. In this paper we reported on the generalization of the analytic
signal to the monogenic one with respect to the dimension of the signal. This will
give access to a complete local structure analysis in the nD case. By evaluating
the local amplitude, phase and orientation, we have the possibility of characterizing
the local signal dynamics, its symmetry, and its geometric embedding. Because
the monogenic signal in the presented approach can be extended to a monogenic
scale-space, all these quantities have to be understood as scale dependent. The
approach establishes a unique embedding of these quantities in a linear scale-space
theory based on the Poisson kernel and on the Riesz transform. The presented
generalization works in a methodical stringent sense in the case of i1D structures.
Its generalization to i2D structures is not generally possible. But there are ways
to attack also such problems for special cases. Especially, considering the local
curvature model in differential geometry, results in a monogenic curvature tensor
representation which covers all intrinsic dimensions of 2D signals. We did not report
on applications in depth. But over the years there have been a lot of them. We
recommend the reader the website “http://www.ks.informatik.uni-kiel.de” for more
details.
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