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Summary. In this chapter, a new rotation-invariant generalization of the analytic
signal will be presented to analyze intrinsic 1D and 2D local image structures. By
combining differential geometry and Clifford analysis, the monogenic curvature ten-
sor can be derived to perform a split of identity and to enable simultaneous esti-
mation of local amplitude, phase, main orientation and angle of intersection in a
monogenic scale-space framework.

1 Introduction

The processing and analysis of images and image sequences is a well estab-
lished technology, although not fully satisfactory in some respect. Contem-
porary stated limitations have its reasons in the lack of a well founded and
powerful theory of multi-dimensional signals. Because of the different topology
of multi-dimensional signals in comparison to one-dimensional ones, serious
consequences result with respect to formulation of a multi-dimensional sig-
nal theory. A signal theory should support the modeling of signal structures
we are interested in and the operations we are applying to cope with certain
tasks at hand. For both that signal theory should deliver useful represen-
tations. For instance, it is well known that the complex valued 1D Fourier
transform enables a global view on the parity symmetry decomposition of a
1D function. Less known is the fact that this fails in case of the 2D Fourier
transform because the possible symmetries are partially covered in the real
and imaginary parts of the spectrum [42]. The central problem of modeling is
the so-called representation problem. That is the problem of giving a certain
concept a useful representation form. To cope with that problem in science
and engineering, algebra as a mathematical language often delivers the right
structure of representations. Also analysis and geometry as other resources
of modeling are tightly related to algebra. Let us give two examples: First,
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the holomorphic extension of a real valued 1D function to a complex one
is a well-known method of complex analysis. But doing the same for a nD
function requires another algebraic framework for analysis. The coupling of
analysis with Clifford algebra establishes the Clifford analysis [7] as a useful
approach to multi-dimensional functions. Second, the tight coupling of ge-
ometry with algebra is well-known since Felix Klein. Clifford algebra delivers
algebraic structures for modeling any type of geometry which is particularly
interesting in the case of multiple dimensions. Hence, we have to take advan-
tage of the achievements in math for handling multi-dimensional functions.
There are different interesting mathematical sources available which extend
the representation of real valued multi-dimensional signals with the result that
their structure becomes accessible. A well established concept is tensor algebra
as generalization of vector algebra or matrix algebra [10]. Tensors are well-
known as useful representations of geometry [11]. Clifford algebra or geometric
algebra [22] is another concept, which only recently has been considered in
engineering [40]. These algebras constitute other generalizations of the vector
algebra, namely with respect to the representation of higher-order directed
numbers, called multivectors. Both tensor algebras and geometric algebras
deliver rich subspace structures in comparison to vector algebra. An advan-
tage of geometric algebra over tensor algebra is its easier interpretation with
respect to geometric concepts. Some entities contributing to the formulation
of a problem can immediately represent geometry while possessing algebraic
properties. Vice versa, the advantage of tensor algebra over geometric algebra
is its easier numerical realization. Therefore, in practice it may be advanta-
geous to transform expressions from geometric algebra to tensor algebra, see
e.g. [41].
Very important in signal theory is the use of complex numbers. But ac-
cording to our experience, complex numbers are only adequate to model
one-dimensional signals. As already mentioned above, in the case of multi-
dimensional signals, the algebraic framework has to be extended accordingly,
see e.g. [42]. While Clifford algebra or geometric algebra supports a global
view onto signal structures, Clifford analysis is useful for a local approach to
signal analysis. The Hilbert transform takes over the role of the Fourier trans-
form in the case of locally expanding a real valued one-dimensional function
to a complex one. This corresponds to the holomorphic extension in complex
analysis. In Clifford analysis we instead meet the Riesz transform which de-
livers a Clifford valued expansion of a real valued multi-dimensional function.
The resulting representation is called a monogenic function. In both cases a
real valued function will be completed by a harmonic conjugate which is in
quadrature phase relation to the original real function. This most useful prop-
erty will play a leading role throughout this chapter.
In this contribution, we are fusing the concepts of differential geometry for
local image modeling in a tensor representation with the Clifford analysis
concept of monogenic functions. This delivers a representation, called mono-
genic curvature tensor, which will enable local image analysis from one single
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coherent mathematical point of view. The evaluation of the monogenic cur-
vature tensor [48] delivers two curvature related signal representations which
are specific for either intrinsically 1D or 2D structures. These signal represen-
tations are both generalizations of the well-known analytic signal [20]. From
these Clifford valued signal representations local amplitude and local phase
as local spectral representations as well as some geometric features can be
computed. Because the monogenic curvature tensor is embedded in a mono-
genic scale-space [16], all features derived from it possess their own scale-space
representation. Furthermore, the monogenic scale-space is the unifying frame-
work for the scale related properties of all derived features.
In section 2, we will describe the required properties of the wanted signal
model and the difficulties occurring in related work. In particular, we will
give a short view on tensor based image analysis. In section 3, we will derive
the monogenic curvature tensor and will present its evaluation. Finally, we will
give a short summary and conclusion in section 4. Note that we will not give
an introduction to geometric algebra or Clifford analysis. Instead, the reader
is advised to have a look at [42] for a short introduction which is specific to
the topic of that chapter. Other necessary hints are given at several places of
this chapter.

2 Related Work

2.1 Key Point Detectors and Local Image Features

There are two basic tasks in low-level vision which are building a bottleneck
in practise of image analysis, although plenty of work has been done over
decades to overcome this situation. These tasks are the detection of points of
interest and the analysis of their structure with respect to the neighborhood
by a set of meaningful features. A detector is a local operator which has
to fulfil two contradictory requirements: good recognition of the structure
of interest and good localization accuracy. While the first one is located in
a feature domain, the second one is located in spatial domain. In the case
of LSI-operators and the frequency space as feature domain, the associated
uncertainty principle is well-known [19]. Other problems with detectors are
to model the structures of interest and to gain some invariance. While in 1D
the number of different structures is quite limited, in 2D it is infinite. With
respect to feature descriptors the problem is again to define a meaningful set
of features and to gain certain invariance. Low-level image analysis is always
model based. Because there is no satisfactory theory of multi-dimensional
signal structures, the only chance is a comparison of different approaches out
of a plenty of proposals, see e.g. [38] and [35]. The most prominent feature
detector is SIFT [32]. Its model is very simple and the main bulk of work is
shifted to classification in a high dimensional feature space. Other types of
detectors are based on second order tensors (or matrices), e.g. the structure
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tensor [17]. This detector in essence represents Gaussian smoothed partial
derivatives of first order. Another kind of detector is based on the Hessian
matrix, which is related to the curvature tensor of differential geometry [2],
see e.g. [1]. These tensors are using derivatives of first and second order as
elements. Therefore, they either represent gradient or curvature information.
Because they are real valued, we propose in section 3 to unify the differential
geometric point of view with the representation power of Clifford analysis.

2.2 Required Invariance

The image model we want to formulate should have some invariance prop-
erties. In general, image signals have no invariants in the strong sense of a
quantity that does not change under a specified group of transformations.
But there are some features which only slightly change by moderate changes
of the conditions an image was recorded at. This is called weak invariance. We
will use the term invariance instead in such way that the image representation
we are looking for can cope with all variations of the features of interest and
thus, is complete with respect to that concepts of structure descriptions. This
includes another type of invariance, called relative invariance or equivariance.
In the case of equivariance, a systematic change of input data will cause an-
other systematic change of output data. For instance, it is known in signal
processing that a shift of a function in input space will result in an equivalent
phase change in Fourier domain.

2.2.1 Invariance with Respect to Intrinsic Dimension

An image is locally composed by structures of different intrinsic dimension
[50]. If the signal embedding dimension is two (a normal image signal), then
a locally constant signal has intrinsic dimension zero (i0D), a non-bent edge
or line has intrinsic dimension one (i1D), and all other bent structures in-
cluding corners, junctions and end stopping points are of intrinsic dimension
two (i2D). In figure 1 these types of intrinsic dimensions are demonstrated
for some simple cases. From left to right follow a constant signal (i0D), an
i1D signal which is always a rotated 1D signal and three different examples
of i2D signals. The intrinsic dimension obviously corresponds to the number
of degrees of freedom necessary to model a function. Responding to either
edges/lines or corners/junctions makes a difference between detectors which
are specific to intrinsic dimension. The eigenvalue analysis of the structure
tensor is a well-known example. A special non-linear detector based on a
Volterra series approach which is specific to i2D has been proposed in [29].
On the other hand, the monogenic signal [14], see also section 2.2, is specific to
i1D structures. There is no detector available which responds to either i1D or
i2D structure with a meaningful and rich set of features. It is well-known that
the feature space spanned by mean and Gaussian curvature enables the clas-
sification with respect to intrinsic dimension [2], see also section 2.4. We will
use that fact because we require completeness with respect to that concept.
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Fig. 1. Example functions of different intrinsic dimension.

2.2.2 Invariance with Respect to Parity Symmetry

Parity symmetry locally indicates either symmetry or antisymmetry, respec-
tively even or odd symmetry, of a structure in the case of reflection at a
certain location. This enables e.g. classification as edge-like or line-like struc-
ture in i1D case and similarly in i2D case. Detectors should respond to both
types of symmetry in the same manner but distinguishing. A counterexample
is the structure tensor, which is sensible to edge-like structures because it is
gradient based. Because the first order derivatives operator represents an odd
function, it can only respond to odd structures in the sense of a matching oper-
ator. Because a second order derivative operator represents an even function,
it responds to even structures. Hence, the combinations of both should deliver
the required invariance. But this method has some drawbacks. Instead, most
easily, parity symmetry can be decided from computing the local phase [42].
This can be achieved by so called quadrature filters. These detectors consist
of two components which respond to either even or odd symmetry and which
are in quadrature phase relation. That means, their components differ only
by a phase shift of π

2 . While this is an easy task for 1D signals, in 2D case this
is not true. Nevertheless, the Gabor filter [19] is a popular candidate. Only in
the framework of Clifford analysis certain concepts of multi-dimensional local
phase can be reasonable formulated, because the topological situation can be
modeled with sufficient degrees of freedom and with respect to the relations
existing between these.

2.2.3 Invariance with Respect to Scale

Local image structure is restricted to a certain range of scale, called the in-
trinsic scale. Changing the scale will possibly change all other features. That
is, intrinsic scale is a feature too [30] and a scale-adaptive scheme is advan-
tageous in some cases. Traditionally, the Gaussian scale-space embedding of
feature detection is used. Regrettably, the only feature which is intrinsic to
a Gaussian scale-space is signal intensity. Only recently the monogenic scale-
space has been proposed [16] as an alternative scale-space concept where local
spectral representations, local orientation and other geometric features as an-
gle of intersection become features of one single scale-space theory. This result
from Clifford analysis will be adopted here.
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2.2.4 Invariance with Respect to Rotation

Rotation invariance of detectors is an important requirement. Regrettably, the
design of rotation invariant detectors is a non-trivial task. While the structure
tensor and the Laplacian are rotation invariant, all detectors in the past based
on quadrature filters in multiple dimensions were not [28]. The problem was
that in the complex domain there could not be designed an isotropic odd filter
which is in quadrature phase relation to its even counterpart. Only the Riesz
transform as generalized Hilbert transform turned out to solve that problem
in a Clifford valued domain [14]. This approach will also be used to formulate
the harmonic conjugate part of the monogenic curvature tensor. Orientation
is an important local feature of a structure which should be estimated in a
rotation invariant way. In case of an i1D structure there are different methods
available for orientation estimation, e.g. from the eigenvector analysis of the
structure tensor respectively orientation tensor [3] or by using steerable filters
[18]. These approaches do not give access to the other features mentioned in
this section. Therefore, the monogenic signal is the method of choice because
it delivers besides local energy and local phase also local orientation in a rota-
tionally invariant manner. More complicated is the situation in the case of i2D
structures which are related to multiple orientations meeting in a keypoint.
Steerable filters can cope with that situation as well [34], while the structure
tensor analysis delivers main and minor orientations which must not coincide
with actual orientations of involved i1D structures. The same problems occur
with the analysis of the monogenic curvature tensor. In [37], [21] and [36] dif-
ferent approaches for parametric modeling of corners have been proposed to
cope with multiple orientations. Most interesting is the generalization of the
structure tensor with respect to a multiple orientation model in [43].

2.2.5 Invariance with Respect to Angle of Intersection

Certain models of i2D structures as corners or junctions are described by
superposition of i1D structures which meet in a keypoint. Hence, there are
several geometric features describing such model. The most intuitive one be-
sides orientation is the angle of intersection or apex angle. The detector of
i2D structures should respond independent of the angle of intersection. The
proposals in [36] and [43] are invariant with respect to the angle of intersec-
tion and rotationally invariant. In the framework of the monogenic signal a
generalization has been proposed which is called structure multivector [15].
The involved model is two perpendicularly superimposed i1D structures. This
rigid model has been generalized by the operator which delivers the monogenic
curvature tensor. Another problem is estimating the angles of intersection in
the case of multiple superimposed i1D structures. All mentioned methods
need to know the number of superimposed patterns. For the assumption of
two lines/edges with arbitrary but same phase and amplitude, we will present
a phase based method in section 3 which results from the evaluation of the
monogenic curvature tensor.
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2.3 Monogenic Signal

In this section, we will give a short overview on the basic ideas of the mono-
genic signal as generalization of the analytic signal. More details can be found
in the thesis [12] and in the papers [14, 42]. In the case of a real valued 1D
signal f : R → R the extension to a complex valued signal fA : R → C, called
analytic signal [19], is written in spatial domain as

fA(x) = f(x) + jfH(x) . (1)

The components f and fH are in quadrature phase relation, that is they are
phase shifted by

∣∣π
2

∣∣. The imaginary completion fH is computed from the real
signal f by convolution with the Hilbert transform kernel

h(x) =
1

πx
. (2)

Because the Hilbert transform is an all-pass operator, the use of quadrature
filters hq in practice is preferred,

hq(x) = he(x) + jho(x) . (3)

This pair of even (he) and odd (ho) operators is in quadrature phase relation
within a chosen passband. The best known quadrature filter is the Gabor
filter [19], which is also widely used in image processing, that is in case of
2D signals, as oriented quadrature filter [20]. Convolution of f(x), x ∈ Rn,
with hq(x) results in a separation of the output function, g(x), with respect
to symmetry,

g(x) = ge(x) + jgo(x), (4)

from which the local energy, e(x), and the local phase, ϕ(x), can be computed,

e(x) = g2
e(x) + g2

o(x) (5)

ϕ(x) = arg g(x) . (6)

But the lack of rotation invariance of the Gabor filter results in wrong es-
timates of e and ϕ in most cases. The need of a rotation invariant gen-
eralization of the Hilbert transform in multiple dimensions can be estab-
lished within Clifford analysis [7]. We will assume that an n-dimensional
function f(x) is embedded into an (n + 1)-dimensional space as vector field
f(x, xn+1) = f(x)en+1 with ei, i = 1, . . . , n + 1 being unit vectors. Besides,
we will assume a geometric algebra Rn+1 over the vector space Rn+1. Such
geometric algebra is a linear space with a total number of 2n+1 well distin-
guishable subspaces of different grade. The unit subspace of highest grade is
the so-called unit pseudoscalar In+1 = e1e2 · · · en+1. Then the Riesz trans-
form kernel in either spatial or Fourier domain,

rn(x) =
anxen+1

|x|n+1
and Rn(u) =

u

|u|
I−1
n+1 (7)
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results as solution of the Dirac equation for xn+1 = 0. It is an isotropic all-
pass operator in any signal dimension n. Note that the geometric product of a
geometric algebra is written by juxtaposition of the factors. Hence, in equation
(7) the product xen+1 between the two vectors results in a bivector, belonging
to another subspace as the original vectors. In addition, an = π−

n+1
2 Γ (n+1

2 )
is a constant. If we restrict to the case n = 2, then the monogenic signal [14]
as generalized analytic signal is represented by the vector field

fM (x) = f(x) + fr(x) = f(x) + (r2 ∗ f)(x) (8)

with f(x) = f(x)e3 and

fr(x) = fr
(1)(x)e1 + fr

(2)(x)e2 . (9)

As we see in equation (9), the convolution of the original vector field with the
operator r2 results in additional components which are laying in the image
plane. A comparison with the analytic signal supports the interpretation that
by the monogenic signal three orthogonal components are represented and
that the complex domain is generalized in a certain way. In fact, it is useful to
imagine a complex plane, the phase plane, oriented by the angle θ in R3 and
spanned by the original signal f and the monogenic signal fM . According to
equation (6), any phase angle indicates a certain local symmetry. The Riesz
transform is a rotationally invariant and spinor valued operator which is iden-
tical with the first order circular harmonic. This operator rotates the original
signal f(x) = f(x)e3 to fM (x) by introducing the additional components
fr

(1) and fr
(2). All three components constitute a Riesz triple, that is they are

in quadrature phase. Figure 2 visualizes the effect of the Riesz transform.

fM

e1

ϕ

e
3

e
2

Fig. 2. The embedding of the monogenic signal in R3.

It delivers not only the right local spectral representations (in contrast
to the Gabor filter) but in addition the orientation angle of the local struc-
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ture. This is only half of the story because the complete solution of the Dirac
equation for the open half space xn+1 > 0 gives rise to two additional trans-
formations, represented by the scalar valued Poisson kernel

p(x;σ) =
anσ

|x + σen+1|n+1
and P (u;σ) = exp(−2π|u|σ) (10)

and by the bivector valued conjugate Poisson kernel,

q(x;σ) =
anxen+1

|x + σen+1|n+1
and Q(u;σ) = Rn(u)P (u, σ) (11)

with |u| being the absolute frequency value and σ ≡ xn+1 being a scale param-
eter from which both kernels are parametrically depending on, as indicated
by the semicolon in equations (10) and (11). Hence, (x, σen+1) is spanning a
linear and isotropic scale-space. The representation

fM (x, σ) = fp(x, σ) + f q(x, σ) (12)

with
fp(x, σ) = (p(σ) ∗ f)(x) (13)

and
f q(x, σ) = (q(σ) ∗ f)(x) (14)

is the monogenic scale-space representation [16] of the original real valued
signal f(x) = f(x)en+1. As a consequence, the local spectral representations
as well as the local orientation are getting scale-space representations too.
Regrettably, the monogenic signal and the monogenic scale-space are only ad-
equate multi-dimensional generalizations of the analytic signal with respect to
i1D structures. Obviously, an enrichment of the used Clifford analysis frame-
work with additional geometric modeling resources is needed. Therefore, we
are adopting ideas from differential geometry and its tensor representations
in a Clifford analysis framework as outlined in section 3.

2.4 Basics of Differential Geometry

Differential geometry is applied in image modeling since 1980th, pioneered
by Koenderink and van Doorn [25], [24], and Besl and Jain [2]. An image is
assumed to be a smooth surface S embedded in R3 in an explicit parametric
form with respect to a known coordinate system,

S(f) = {(x, y, z) : x = d(u, v), y = e(u, v), z = f(u, v); (u, v) ∈ R2}. (15)

Besides the parametric representation this is similar to the vector field embed-
ding used in Clifford analysis. Also smoothness is required in both approaches.
For the sake of simplicity often a Monge patch representation [6] is used. This
considerably simplifies the metric tensor M(x) of the first fundamental form
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and the curvature tensor T (x) of the second fundamental form [2] for the
scalar valued image function f(x),

M(x) =
(

1 + f2
x fxfy

fxfy 1 + f2
y

)
(x), T (x) = (1 + f2

x + f2
y )−

1
2 B(x) (16)

with the Hessian matrix

B(x) =
(

fxx fxy

fxy fyy

)
(x). (17)

Although only up to second order derivatives are used, the associated ten-
sor structure delivers rich insight with respect to local geometry. There are
two curvature measures, the Gaussian curvature κ(x) and the mean curva-
ture µ(x) which are derived from the Weingarten mapping matrix W (x) =
(M−1)T (x) according to

κ(x) = det(W )(x) = det(M−1) det(T )(x) (18)

µ(x) =
1
2
trace(W )(x) =

1
2
trace(M−1T )(x). (19)

The determinant operator and the trace operator deliver the algebraic main
invariants of second order tensors. In the Monge patch representation these
curvature measures are written

κ(x) =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
(20)

µ(x) =
1
2

fxx(1 + f2
y ) + fyy(1 + f2

x)− 2fxyfxfy

(1 + f2
x + f2

y )
3
2

. (21)

2.5 Alternative Recent Tensor Representations

In recent years tensor representations became an attractive tool for different
purposes of image analysis, for instance for the analysis of range images in
a differential geometric framework [2] or for the representation of 3D surface
orientations in the framework of quadrature filters [23]. In [44] the orienta-
tions of flow fields in image sequences are estimated. An overview on the use
of tensors for analyzing orientated patterns is given in [3]. Finally, [33] present
a linear tensor voting technique for salient feature inference. Regrettably, all
these proposals are lacking the advantages resulting from a monogenic signal
representation. In the following we will summarize some key features of re-
cent tensor proposals with respect to the invariances mentioned in section 2.2.
As we will show in section 3, all these invariances are fulfilled in the case of
the monogenic curvature tensor. The structure tensor [17] delivers energy and
orientation in a rotation invariant manner. But it responses only reasonable
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to odd symmetric patterns. Thus, phase invariance is missed and no phase
information is contained. The orientation tensor [4] can be also interpreted as
a structure tensor, although a set of directed quadrature filters constitutes its
elements. Nevertheless, it delivers no phase information. It is restricted to i1D
structures but is phase invariant. The energy tensor [13], represents products
of first and second order derivatives of a bandpass filtered image represen-
tation. Although it is invariant with respect to intrinsic dimension its phase
invariance is restricted [27]. It represents no phase information. The gradient
energy tensor [27] is composed by an even and an odd part. It delivers an en-
ergy measure which is invariant with respect to the intrinsic dimension but is
not phase invariant. Most interestingly in our context is the boundary tensor
[26]. As has been shown in [27], this tensor has the interesting property that
its odd part is the Riesz transform of the even part. Nevertheless, although
from that construction several invariances result (intrinsic dimension, phase,
rotation), it represents an energy measure and thus fails to represent phase.

3 Monogenic Curvature Tensor and its Evaluation

In this section, we derive the monogenic curvature tensor by merging the
concept of the monogenic signal with the Hessian matrix from differential
geometry. We will evaluate the monogenic curvature tensor with respect to
its determinant and trace. While the trace results in a representation of i1D
signals, which is identical to the monogenic signal, the determinant delivers
a novel signal representation for i2D signals. We will evaluate that signal
representation with respect to local spectral representations and geometric
features. This set of features will posses all invariance requirements formulated
in section 2.2. Because the monogenic curvature tensor will be embedded in
a monogenic scale-space, all derived features will get the same scale-space
embedding.

3.1 Monogenic Curvature Tensor

Our approach of deriving the monogenic curvature tensor [48, 49] is based on
lifting up a monogenic signal fM ∈ R3 into a tensor representation associated
to the curvature tensor of differential geometry. Instead of taking the complete
curvature tensor we restrict ourselves to the Hessian matrix, equation (17).
We call the resulting tensor, T (x) : R2 → M(2, R3), the monogenic curvature
tensor although it is different from the curvature tensor in equation (16). The
matrix geometric algebra M(2, R3), see [39] is a much more powerful algebraic
framework than the Euclidean geometric algebra R3 which is used in section
2.3. This can be concluded from the isomorphism M(2, Rp,q) ∼= Rp+1,q+1 [31],
hence, M(2, R3) ∼= R4,1. The Hessian matrix with elements in R3, B(x) ∈
M(2, R3), applied to the original signal f(x) reads



12 Gerald Sommer, Lennart Wietzke and Di Zang

B(x) =
(

fxxe3 −fxyI3

fxyI3 fyye3

)
(22)

with I3 = e1e2e3 being the unit pseudoscalar of R3. This results from a
tensorial convolution, ∗τ , of the signal f(x) = f(x)e3 with an even symmetric
Hessian operator He ∈ M(2, R+

3 ), written as

he(x) =
(

∂xx −∂xye12

∂xye12 ∂yy

)
(x), (23)

and the definition of the first order derivative of the vector field f , ∂f(x) =
e1∂xf(x, y)e3+e2∂yf(x, y)e3 = fxe13+fye23. The minus sign in this equation
results from the non-commutativity of the geometric product, hence, e21 =
−e12. Obviously, the elements of the Hessian operator are either scalars or
bivectors. Both multivector types belong to the so-called even subalgebra of
R3, which possesses only even-grade elements, as is indicated by R+

3 . The term
even symmetric as characterization of the Hessian operator follow from the
fact that second order derivative operators are of even symmetry (in contrast
to first order derivative operators which are of odd symmetry) and thus are
responding to even-symmetric structures as lines. In case of odd symmetric
structures their response would be zero. But we want to apply that operator on
the monogenic signal fM instead, and the result will be called the monogenic
curvature tensor, TM . Then it follows

TM = HefM = He(f + fr) = He(I +R)f (24)

with the identity operator I and the operator of the Riesz transform R. Ac-
cording to equation (9), the function fr indicates the monogenic completion
of the function f resulting from the convolution of f with the Riesz kernel
r2, see equation (7). Because fM ∈ C∞(Ω) with Ω as an open region in R2,
the partial derivatives of He will be applied without problems. In addition,
supposed f ∈ L2(R2, R3), then the commutativity HeR = RHe will follow,
see [9] for more details. So we can also formulate an odd Hessian operator
Ho = RHe and the monogenic curvature tensor will be composed by an even
and an odd part,

TM = (He +Ho)f = Te + To = Te +RTe. (25)

To get these relations more explicitly, we are going to the Fourier domain
and express the operator He by polar coordinates u = (%, α). Then the even
Hessian operator is separable,

He(%, α) = −4π2%2

2

(
1 + cos(2α) − sin(2α)e12

sin(2α)e12 1− cos(2α)

)
. (26)

While the radial part He(%) expresses the well known highpass characteris-
tics according to the derivative theorem of Fourier theory, the angular part



Monogenic Curvature Tensor as Image Model 13

He(α) enables the investigation of local geometry. The angular part is writ-
ten in terms of trigonometric functions according to the angular components
of derivatives written in polar coordinates in spectral domain. These matrix
entries can be related to the Fourier representation of circular harmonics of
order m > 0,

Cm(α) = exp(mαe12) = cos(mα) + sin(mα)e12. (27)

Their radial part is constant, Cm(%) = const. We want to express the Hes-
sian operator in terms of regularized derivatives. This means to convert the
highpass characteristic of He(%) to a bandpass characteristic. Because we are
operating our signal analysis in a monogenic scale-space, the Poisson kernel,
equation (10), can be used to define a difference of Poisson (DOP) kernel [16]

HDOP (%;σBP ) = P (%;σf )− P (%;σc) (28)

with σf being a fine scale and σc being a coarse scale so that HDOP will have
its maximum at %BP = 1

σBP
. As a consequence, we are considering damped

circular harmonic functions of order m according to

CP
m(%, α;σ) = HDOP (%;σ)Cm(α) . (29)

From this follows for the even Hessian operator He(%, α;σ) = He(%;σ)He(α),
represented in terms of circular harmonics as

He(%, α;σ) =
1
2

(
CP

0 + 〈CP
2 〉0 −〈CP

2 〉2
〈CP

2 〉2 CP
0 − 〈CP

2 〉0

)
(%, α;σ). (30)

Here 〈 〉0 means the scalar part and 〈 〉2 means the bivector part of CP
2 .

The odd Hessian operator follows simply as the Riesz kernel transformed even
one and by remembering that the Riesz transform corresponds to a circular
harmonic of first order. Hence,

Ho(%, α;σ) = (CP
1 ×τ He)(%, α;σ). (31)

We are calling the operator HM = He +Ho the monogenic Hessian operator,
which applied to the original signal f results in the monogenic curvature
tensor. What remains open is the discussion of its angular part HM (α). As
discussed in detail in [49, 48], it can be interpreted as a rotation invariant
detector of i1D structures superimposed with arbitrary angles of intersection.
This can be seen from re-writing the angular part of He as

He(α) =
(

cos2(α) − 1
2 sin(2α)e12

1
2 sin(2α)e12 sin2(α)

)
. (32)

The two functions on the diagonal and that one on the anti-diagonal, sin(2α) =
cos2(α− π

4 )− sin2(α− π
4 ), constitute four basis functions to steer a detector

for even symmetric i1D structures. In figure 3 their effect on the pattern to
the left is shown. The same arguments lead to the interpretation of the entries
of Ho(α) as rotationally invariant detector of odd symmetric i1D structures.

From this interpretation of the monogenic Hessian operator follows that
it analyzes i2D structures as superposition of i1D structures.
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Fig. 3. Action of the even angular windowing functions on the left most test image.

3.2 Evaluation of the Monogenic Curvature Tensor

In this section, we give a short sketch on the ways the structural information
of the monogenic curvature tensor can be evaluated. More details can be found
in [48]. As a result of the preceding section we can state the invariance of this
representation with respect to scale, parity symmetry and rotation. Here we
will show the invariance with respect to intrinsic dimension and the derivation
of local spectral features as well as geometric features.

3.2.1 Local Representations for i1D and i2D Structures

As is known from real valued differential geometry [2], structures of different
intrinsic dimension can be classified in a space spanned by Gaussian curvature,
κ, and mean curvature, µ. Both are computed from the curvature tensor
by applying either the determinant or the trace operator. If we are doing
the same in our algebraic framework M(2, R3), we get two different signal
representations which are specific to the intrinsic dimension. The first one is
a vector field specific to i1D structures,

f i1D(x) = te(x) + to(x) = trace(Te)(x) + trace(To)e2(x) (33)

= f(x) + (c1 ∗ f)(x) ≡ fM (x). (34)

That is, the trace operation reconstructs the monogenic signal from the mono-
genic curvature tensor. Here c1 is the first order circular harmonic, which is
identical to the Riesz transform. By computing the determinant of T (x) an-
other vector field specific to i2D structures will result.

f i2D(x) = de(x) + do(x) = det(Te)e3(x) + e1det(To)(x) (35)

= de(x) + (e1c2e3 ∗ de)(x) ≡ fMC(x). (36)

Note that the computation of the determinant in the algebraic framework
M(2, R3) is in general rather expensive, see [39]. But a thorough analysis
of our case [48] did yield the same computation as in M(2, R). This signal
representation is called ”generalized monogenic” curvature signal because its
conjugate harmonic part results from the real part by applying a second or-
der circular harmonic as another generalized Hilbert transform [8]. While the
structure of both signal representations is the same, they are coding quite
different properties of a local signal structure. They enable classification with
respect to the intrinsic dimension.
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3.2.2 Local Spectral Representations

Both signal representations can be interpreted as the result of a spinor valued
operator, S, which rotates and scales the original vector field f(x) = f(x, y)e3

so that it will be supplemented by a conjugate harmonic component which
projects to the plane e1 ∧ e2 and fulfills the conditions t2e = t2o and d2

e = d2
o.

The scaling-rotation is performed in the ’phase plane’ expressed by the outer
product fs(x) ∧ e3 = 〈e3fs(x)〉2 with s(x) = e3fs(x) being the respective
spinor and fs ≡ f i1D or fs ≡ f i2D. That is, for both f i1D and f i2D a similar
model for the monogenic extension of the real valued function f is assumed.
Only the involved generalized Hilbert transform differs. Therefore, also the
computation of the local features in both cases is the same. By evaluating
the exponential representation of s with respect to the R+

3 -logarithm, see [12]
and [42] for more details, the local spectral representations can be computed.
These are the local amplitude

a(x) = |fs(x)| = exp(〈log(e3fs(x))〉0) (37)

and the (generalized) monogenic local phase bivector

Φ(x) = arg(fs(x)) = 〈log(e3fs(x))〉2. (38)

From Φ(x) follow the local phase ϕ(x) as rotation angle within the phase
plane,

ϕ(x) = |(Φ(x))?| = arctan
(
|〈e3fs(x)〉2|
|〈e3fs(x)〉0|

)
, (39)

and the orientation angle of the phase plane

θ(x) =
〈e3fs(x)〉2
|〈e3fs(x)〉2|

. (40)

Here the star in equation (39) indicates the duality operation which converts
the local phase bivector Φ(x) into the local rotation vector (Φ(x))?, the mag-
nitude of which is the local phase ϕ(x). The interpretation of the local spectral
representations and of the local orientation derived from the monogenic sig-
nal is well known for i1D structures. I2D structures will be also seen from
the monogenic signal as i1D structures. Hence, it delivers mean orientation
for any phases of the contributing i1D structures and mean phase only in
case of equal phases of the contributing i1D structures. But this is no serious
restriction in reality. The interpretation of the features derived from the gen-
eralized monogenic curvature signal is not so obvious. As has been discussed
in section 3.1, a first hint results from the interpretation of the monogenic
Hessian operator in Fourier domain. That is, i2D patterns are seen by the
operator as superposition of i1D patterns and each of them contributes to
the monogenic curvature tensor representation. Hence, the i1D-view on the
structure as known from the monogenic signal is not left in case of the mono-
genic curvature tensor representation. But a more detailed analysis of this
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fact in Fourier domain has not been done. Instead, a careful analysis of the
monogenic curvature tensor in the Radon domain [47] has been performed.
The results confirm that the monogenic curvature tensor in the case of super-
imposed i1D structures delivers mean phase and mean orientation, just as the
monogenic signal itself. Therefore, the proposed signal representation seems
to be not a sufficient extension for the extraction of local spectral features
of i2D structures. Nevertheless, several applications confirm the usefulness of
the proposed signal representation, e.g. as corner detector or as phase based
constraint in image sequence analysis. It can be shown that the determinant of
the even part of the monogenic curvature tensor equals zero iff the underlying
signal structure is of intrinsic dimension one. These results are illustrated in
figure 4 and can be used as a rotational invariant corner detector.
For further results the reader is advised to have a look on our website
http://www.ks.informatik.uni-kiel.de/.

Fig. 4. Original image and local information by the determinant of the even part
of the monogenic curvature tensor. One representative i2D corner is marked by the
red rectangle.

3.2.3 The Angle of Intersection

The monogenic curvature tensor enables to compute the angle of intersection
or apex angle of two superimposed i1D signals. To calculate the angle of in-
tersection or apex angle α ∈

[
0, π

2

]
of two superimposed i1D signals where

each one of them can have arbitrary phase in terms of the monogenic signal
the following trick is to consider the resulting image structure as one locally
intrinsic i2D hyperbolic saddle point model with absolute main curvature val-
ues. This model is completely described by its two main curvatures κ1 and κ2

which are related to the Gaussian curvature κ = κ1κ2 and the mean curvature
µ = 1

2 (κ1 + κ2). The two main curvatures lie on the two orthogonal bisectors
of the superimposed i1D signals. Only in direction of the two i1D signals the
curvature κ

(
α
2

)
of the normal cut is zero. Now the surface theoretical results

of Euler’s and Meusnier’s theorems [5]



Monogenic Curvature Tensor as Image Model 17

κ
(α

2

)
= lim

ν→0
κ1 cos2

α

2
+ 2ν sin

α

2
cos

α

2
+ κ2 sin2 α

2
(41)

can be used to determine the apex angle of our assumed model

κ
(α

2

)
= 0 ⇒ α = 2 tan−1

√
|κ1|
|κ2|

, (42)

where α
2 is the angle relatively to the orientation with main curvature κ1.

Merging i1D signal theory and differential geometry delivers the exact apex
angle

α = 2 tan−1 |ϕ′1|
|ϕ′2|

. (43)

Here ϕ′i is the i1D phase change at the point of interest in direction of the
main curvatures κi ∀i ∈ {1, 2} which have the same orientation as the two
orthogonal main orientations of the i2D image structure. Applying this re-
sult to the monogenic curvature tensor in scale-space the apex angle can be
computed by

α(x) = 2 tan−1

√√√√∣∣∣∣∣te(x)−
√

t2e(x)− de(x)

te(x) +
√

t2e(x)− de(x)

∣∣∣∣∣. (44)

Each i2D corner can be locally modeled by two superimposed i1D structures in
scale space. The computation of the angle of intersection is illustrated in figure
5 for each test point within the image. At points of intrinsic dimension one
the angle of intersection modulo 180 degrees is zero. Therefore, the intrinsic
dimension can be naturally determined by the angle of intersection. Note, that
in figure 5 inner and outer corners can be also separated and detected by our
approach in a rotational invariant way.

Fig. 5. Original image and local angle of intersection information. The monogenic
curvature tensor is able to differ between inner and outer corners. The black corner
with intersection angle of 270◦ is marked by the red rectangle and the white corner
with intersection angle of 90◦ is marked by the blue rectangle.
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4 Conclusions

This chapter presents a novel approach for local analysis of images. The pro-
posed monogenic curvature tensor results from combining differential geom-
etry and Clifford analysis in the setting of image analysis. The monogenic
extension of a two-dimensional signal is lifted up to a new generalization of
the analytic signal in a non-linear way. The generalized monogenic curvature
signal can be evaluated just in the same way as the monogenic signal. But as
has been shown in other work, the extracted features do no leave the i1D view
on the signal. Therefore, future studies are required to cope with i2D struc-
tures and to derive meaningful local features. One way could be to include
the Weingarten mapping in the signal representation. Another way could be
the extension of the Radon transform for curved lines and to generalize the
monogenic signal in that way. We followed that way and recently we proposed
a conformal monogenic signal [46], [45], in which lines as i1D structures and
circles as i2D structures are handled in the same framework.
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