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Abstract. We give a contribution to the representation problem of free-
form curves and surfaces. Our proposal is an operational or kinematic
approach based on the Lie group SE(3). While in Euclidean space the
modelling of shape as an orbit of a point under the action of SE(3)
is limited, we are embedding our problem into the conformal geometric
algebra R4,1 of the Euclidean space R

3. This embedding results in a
number of advantages which makes the proposed method a universal
and flexible one with respect to applications. It makes possible the robust
and fast estimation of the pose of 3D objects from incomplete and noisy
image data. Especially advantagous is the equivalence of the proposed
shape model to that of the Fourier representations.

1 Introduction

Shape is a geometric concept of the appearance of an object, a data set or a
function which “can be defined as the total of all information that is invariant
under translations, rotations, and isotropic rescalings. Thus two objects can
be said to have the same shape if they are similar in the sense of Euclidean
geometry.” This quotation from [27] is very general because of the consideration
of scale invariance. By leaving out that property, we can define the shape of an
object as that geometric concept that is invariant under the special Euclidean
group, e.g. SE(3) if we consider 3D shape in Euclidean space R

3. Furthermore,
we allow our objects to change their shape in a well-defined manner under the
action of some external forces which may include also a re-normalization of size.

The literature on shape modelling and applications is vast. Examples are vi-
sualization and animation in computer graphics or shape and motion recognition
in computer vision. The central problem for the usefulness of a model in either
field is the chosen representation of shape.
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(VISATEC), by DFG Grant RO 2497/1-1 (B.R.), and by DFG Graduiertenkolleg
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Here we present a new approach to the modelling of free-form shape of curves
and surfaces which has some features that make it especially attractive for com-
puter vision and computer graphics. In our applications of pose estimation of 3D
objects we could easily handle incomplete and noisy image data for numerically
stable estimations with nearly video real-time capability.

That new representation results from the fusion of two concepts:

1) Free-form curves and surfaces are modelled as the orbit of a point under
the action of the Lie group SE(3), caused by a set of coupled infinitesimal
generators of the group, called twists [19].

2) These object models are embedded in the conformal geometric algebra (CGA)
of the Euclidean space R

3 [17], that is R4,1. Only in conformal geometry does
the (above mentioned) modelling of shape unfold a rich set of useful features.

The concept of fusing a local with a global algebraic framework has been pro-
posed already in [28]. But only the pioneering work of Hestenes, Li and Rockwood
[17] made it feasible to consider the Lie algebra se(3), the space of tangents to
an object, embedded in R4,1, as the source of our shape model instead of using
se(3) in R

3.

The tight relations of geometry and kinematics are known to the mathemati-
cians for centuries, see e.g. [5]. But in contrast to most applications in mechanical
engineering, we are not restricted in our approach by physically feasible motions
nor will we get problems in generating spatial curves or surfaces.

By embedding our design method into CGA, both primitive geometric enti-
ties such as points or objects on the one hand and actions on the other hand will
have algebraic representations in one single framework. Furthermore, objects are
defined by actions, and also actions can take on the role of operands.

Our proposed kinematic definition of shape uses infinitesimal actions to gen-
erate global patterns of low intrinsic dimension. This phenomen corresponds to
the interpretation of the special Euclidean group in CGA, SE(3), as a Lie group,
where an element g ∈ SE(3) performs a transformation of an entity u ∈ R4,1,

u′ = u(θ) = g {u(0)} (1)

with respect to the parameter θ of g. Any special g ∈ SE(3) that represents a
general rotation in CGA corresponds to a Lie group operator M ∈ R

+
4,1 which

is called a motor and which is applied by the bilinear spinor product

u′ = MuM̃ , (2)

where M̃ is the reverse of M . This product indicates that M is an orthogonal
operator. If g is an element of the Lie group SE(3), its infinitesimal generator,
ξ, is defined in the corresponding Lie algebra, that is ξ ∈ se(3). That Lie algebra
element of the rigid body motion is geometrically interpreted as the rotation
axis l in conformal space. Then the motor M results from the exponential map
of the generator l of the group element, which is called a twist:

M = exp

(
−

θ

2
l

)
. (3)



While θ is the rotation angle as the parameter of the motor, its generator is
defined by the five degrees of freedom of a line l in space.

In our approach, the motor M is the effective operator which causes arbi-
trarily complex object shape. This operator may result from the multiplicative
coupling of a set of primitive motors {M i|i = n, ..., 1} ,

M = MnMn−1...M2M1. (4)

Each of these motors M i represents a circular motion of a point around its own
axis.

Based on that approach, rather complex free-form objects can be designed
which behave as algebraic entities. That means, they can be transformed by
motors in a covariant and linear way. To handle complete objects in that way as
unique entities makes sense from both a cognitive and a numeric point of view.

The conformal geometric algebra R4,1 makes this possible. This is due to two
essential facts. First, the representation of the special Euclidean group SE(3)
in R4,1 as a subgroup of the conformal group C(3) is isomorphic to the special
orthogonal group SO+(4, 1). Hence, rigid body motion can be performed as
rotation in CGA and therefore has a covariant representation. Second, the basic
geometric entity of the conformal geometric algebra of the Euclidean space is the
sphere. All geometric entities derived by incidence operations from the sphere
can be transformed in CGA by an element g ∈ SE(3), that is a motor M ∈ R

+
4,1,

in the same linear way, just as a point in the homogeneous Euclidean space R
4.

Because there exists a dual representation of a sphere (and of all derived entities)
in CGA, which considers points as the basic geometric entity of the Euclidean
space in the conformal space, all the known concepts from Euclidean space can
be transformed to the conformal one.

Finally, we can take advantage of the stratification of spaces by CGA. Since
the seminal paper [6] the purposive use of stratified geometries became an im-
portant design principle of vision systems. This means that an observer in de-
pendence of its possibilities and needs can have access to different geometries as
projective, affine or metric ones. So far this could hardly be realized. In CGA
we have quite another situation.

The CGA R4,1 is a linear space of dimension 32. This mighty space repre-
sents not only conformal geometry but also affine geometry. Note that the special
Euclidean group is a special affine group. Because R4,1 is derived from the Eu-
clidean space R

3, it encloses also Euclidean geometry, which is represented by
the geometric algebra R3,0. In addition, the projective geometric algebra R3,1

is enclosed in R4,1. Thus, we have the stratification of the geometric algebras
R3,0 ⊂ R3,1 ⊂ R4,1. This enables to consider metric (Euclidean), projective and
kinematic (affine) problems in one single algebraic framework.



2 Geometric Entities and Motion in Conformal

Geometric Algebra

After giving a bird’s eye view on construction of the conformal geometric algebra,
its features and geometric entities, will present the possibilities of representing
the rigid body motion in CGA.

2.1 CGA of the Euclidean Space

A geometric algebra (GA) Rp,q,r is a linear space of dimension 2n, n = p +
q + r , which results from a vector space R

p,q,r. We call (p, q, r) the signature
of the vector space of dimension n. This indicates that there are p/q/r unit
vectors ei which square to +1/ − 1/0, respectively. While n = p in case of the
Euclidean space R

3, R
p,q,r indicates a vector space with a metric different than

the Euclidean one. In the case of r 6= 0 there is a degenerate metric. We will omit
the signature indexes from right if the interpretation is unique, as in the case of
R

3. The basic product of a GA is the associative and anticommutative geometric
product, indicated by juxtaposition of the operands. There can be used a lot of
other product forms in CA too, as the outer product (∧), the inner product (·),
the commutator product (×) and the anticommutator product ×. The space
Rp,q,r is spanned by a set of 2n linear subspaces of different grade called blades.

The conformal geometry of Euclidean and non-Euclidean spaces is known for
a long time [33] without giving strong impact on the modelling in engineering
with the exception of electrical engineering. There are different representations
of the conformal geometry. Most disseminated is a complex formulation [20].
Based on an idea in [14], in [17] and in two other papers of the same authors in
[29], the conformal geometries of the Euclidean, spherical and hyperbolic spaces
have been worked out in the framework of GA.

The basic approach is that a conformal geometric algebra (CGA) Rp+1,q+1

is built from a pseudo-Euclidean space R
p+1,q+1. If we start with an Euclidean

space R
n, the construction R

n+1,1 = R
n ⊕ R

1,1, ⊕ being the direct sum, uses a
plane with Minkowski signature for augmenting the basis of R

n by the additional
basis vectors {e+,e−} with e2

+ = 1 and e2
− = −1. Because that model can be

interpreted as a homogeneous stereographic projection of all points x ∈ R
n to

points x ∈ R
n+1,1, this space is called the homogeneous model of R

n. Further-
more, by replacing the basis {e+,e−} with the basis {e,e0}, the homogeneous
stereographic representation will become a representation of null vectors. This
is caused by the properties e2 = e2

0 = 0 and e · e0 = −1. The relation between
the null basis {e,e0} and the basis {e+,e−} is given by

e := (e− + e+) and e0 :=
1

2
(e− − e+). (5)

Any point x ∈ R
n transforms to a point x ∈ R

n+1,1 according to

x = x +
1

2
x2e + e0 (6)



with x2 = 0.

In fact, any point x ∈ R
n+1,1 is lying on an n-dimensional subspace Nn

e ⊂
R

n+1,1, called horosphere [17]. The horosphere is a non-Euclidean model of the
Euclidean space R

n.

It must be mentioned that the basis vectors e and e0 have a geometric
interpretation. In fact, e corresponds the north pole and e0 corresponds the south
pole of the hypersphere of the stereographic projection, embedded in R

n+1,1.
Thus, e is representing the points at infinity and e0 is representing the origin of
R

n in the space R
n+1,1.

By setting apart these two points from all others of the R
n makes R

n+1,1 a ho-
mogeneous space in the sense that each x ∈ R

n+1,1 is a homogeneous null vector
without having reference to the origin. This enables coordinate-free computing
to a large extent. Hence, x ∈ Nn

e constitutes an equivalence class {λx, λ ∈ R}
on the horosphere. The reduction of that equivalence class to a unique entity
with metrical equivalence to the point x ∈ R

n needs a normalization.

The CGA R4,1, derived from the Euclidean space R
3, offers 32 blades as

basis of that linear space. This rich structure enables one to represent low order
geometric entities in a hierarchy of grades. These entities can be derived as
solutions of either the IPNS or the OPNS depending on what we assume as the
basis geometric entity of the conformal space, see [22]. So far we only considered
the mapping of an Euclidean point x ∈ R

3 to a point x ∈ N3
e ⊂ R

4,1. But
the null vectors on the horosphere are only a special subset of all the vectors of
R

4,1. All the vectors of R
4,1 are representing spheres as the basic entities of the

conformal space. A sphere s ∈ R
4,1 is defined by its center position, c ∈ R

3, and
its radius ρ ∈ R according to

s = c +
1

2
(c − ρ)2e + e0. (7)

And because s2 = ρ2 > 0, it must be a non-null vector. A point x ∈ N3
e can

be considered as a degenerate sphere of radius zero and a plane p ∈ R
4,1 can be

interpreted as a sphere of infinite radius. Hence, spheres s, points x and planes
p are entities of grade 1. By taking the outer product of spheres si, other entities
of higher grade can be constructed.
So we get a circle z, a point pair q and a point y as entities of grade 2, 3 and 4,

respectively, which exist outside the null cone in R
4,1,

z = s1 ∧ s2 (8)

q = s1 ∧ s2 ∧ s3 (9)

y = s1 ∧ s2 ∧ s3 ∧ s4 (10)

as solutions of the IPNS. If we consider the OPNS on the other hand, we are
starting with points xi ∈ N3

e and can proceed similarly to define a point pair Q,
a circle Z and a sphere S as entities of grade 2, 3 and 4 derived from points xi



on the null cone of R4,1 according to

Q = x1 ∧ x2 (11)

Z = x1 ∧ x2 ∧ x3 (12)

S = x1 ∧ x2 ∧ x3 ∧ x4. (13)

These sets of entities are obviously related by the duality u∗ = U .
In OPNS, for lines L and planes P , we have the definitions

L = e ∧ x1 ∧ x2 (14)

P = e ∧ x1 ∧ x2 ∧ x3 (15)

and in IPNS we get the lines l and the planes p as entities of grade 2 and 1 as
the dual of L and P , respectively. Finally,

X = e ∧ x

is called the affine representation of a point [17]. This representation of a point
is used if the interplay of the projective with the conformal representation is of
interest in applications as in [25]. The same is with the line L and the plane P .

Let us come back to the stratification of spaces mentioned in Section 1. Let
be x ∈ R

n a point of the Euclidean space, X ∈ R
n,1 a point of the projective

space and X ∈ R
n+1,1 a point of the conformal space. Then the operations which

transform the representation between the spaces are for R3 −→ R3,1 −→ R4,1

X = e ∧ X = e ∧ (x + e−), (16)

and for R4,1 −→ R3,1 −→ R3

x = −
X

X · e−
=

((e+ · X) ∧ e−) · e−

(e+ · X) · e−
· (17)

2.2 The Special Euclidean Group in CGA

A geometry is defined by its basic entity, the geometric transformation group
which is acting in a linear and covariant manner on all the entities which are
constructed from the basic entity by incidence operations, and the resulting
invariances with respect to that group. The search for such a geometry was
motivated in Section 1. Next we want to specify the required features of the
special Euclidean group in CGA.

To make a geometry a proper one, we have to require that any action A of
that group on an entity, say u, is grade preserving, or in other words structure
preserving. This makes it necessary that the operator A applies as versor product
[23]

A{u} = AuA−1. (18)



This means that the entity u should transform covariantly [16], [3]. If u is com-
posed by e.g. two representants u1 and u2 of the basis entities of the geometry,
then u should transform according to

A{u} = A{u1 ◦ u2} = (Au1A
−1) ◦ (Au2A

−1) = AuA−1. (19)

The invariants of the conformal group C(3) in R
3 are angles. The conformal

group C(3) is mighty [20], but other than (18) and (19) it is nonlinear and
transforms not covariantly in R

3. Besides, in R
3 there exist no entities other

than points which could be transformed.
As we have shown in Section 2.1, in R4,1 the situation is quite different be-

cause all the geometric entities derived there can be seen also as algebraic entities
in the sense of Section 1. Not only the elements of the null cone transform covari-
antly but also those of the dual space of R4,1. Furthermore, the representation
of the conformal group C(3) in R4,1 has the required properties of (18) and (19),
see [17] and [16]. All vectors with positive signature in R4,1, that is a sphere,
a plane as well as the components inversion and reflection of C(3) compose a
multiplicative group. That is called the versor representation of C(3). This group
is isomorphic to the Lorentz group of R4,1. The subgroup, which is composed
by products of an even number of these vectors, is the spin group Spin+(4, 1),
that is the spin representation of O+(4, 1). To that group belong the subgroups
of rotation, translation, dilatation, and transversion of C(3). They are applied

as a spinor S, S ∈ R
+
4,1 and SS̃ = |S|2. A rotor R,R ∈ 〈R4,1〉2 and RR2 = 1,

is a special spinor. Rotation and translation are represented in R4,1 as rotors.
The special Euclidean group SE(3) is defined by SE(3) = SO(3) ⊕ R

3.
Therefore, the rigid body motion g = (R, t), g ∈ SE(3) of a point x ∈ R

3 writes
in Euclidean space

x′ = g {x} = Rx + t. (20)

Here R is a rotation matrix and t is a translation vector. Because SE(3) ⊂ C(3),
in our choice of a special rigid body motion the representation of SE(3) in CGA
is isomorphic to the special orthogonal group, SO+(4, 1). Hence, such g ∈ SE(3),
which does not represent the full screw, is represented as rotation in R4,1. This
rotation is a general one, that is the rotation axis in R

3 is shifted out of the
origin by the translation vector t.

That transformation g ∈ SE(3) is represented in CGA by a special rotor M

called a motor, M ∈ 〈R4,1〉2. The motor may be written

M = exp

(
−

θ

2
l

)
, (21)

where θ ∈ R is the rotation angle and l ∈ 〈R4,1〉2 is indicating the line of the
general rotation. To specify l by the rotation and translation in R

3, the motor
has to be decomposed into its rotation and translation components. The normal
rotation in CGA is given by the rotor

R = exp

(
−

θ

2
l

)
(22)



with l ∈ 〈R3〉2 indicating the rotation plane which passes the origin. The trans-
lation in CGA is given by a special rotor, called a translator,

T = exp

(
et

2

)
(23)

with t ∈ 〈R3〉1 as the translation vector. Because rotors constitute a multiplica-
tive group, a naive formulation of the coupling of R and T would be

M = TR. (24)

But if we interprete the rotor R as that entity of R4,1 which should be trans-
formed by translation in a covariant manner, a better choice is

M = TRT̃ . (25)

We call this special motor representation the twist representation. Its exponential
form is given by

M = exp

(
1

2
et

)
exp

(
−

θ

2
l

)
exp

(
−

1

2
et

)
. (26)

This equation expresses the shift of the rotation axis l∗ in the plane l by the
vector t to perform the normal rotation and finally shifting back the axis.

Because SE(3) is a Lie group, the line l ∈ 〈R4,1〉2 is the representation of the
infinitesimal generator of M , ξ ∈ se(3). We call the generator representation a
twist because it represents rigid body motion as general rotation. It is parame-
terized by the position and orientation of l which are the Plücker coordinates,
represented by the rotation plane l and the inner product (t · l), [25],

l = l + e(t · l). (27)

The most general formulation of the rigid body motion is the screw motion [24].
It is formulated in CGA as

M s = T sTRT̃ (28)

with the pitch translator

T s = exp

(
d

2
el∗

)
, (29)

where l∗ ∈ 〈R3〉1 is the screw axis as the dual of l and ts = dl∗ is a translation
vector parallel to that axis and of length d. If we formulate M s as

M s = exp

(
−

θ

2
(l + em)

)
(30)

with the vector m ∈ 〈R3〉1

m = t · l −
d

θ
l∗, (31)



then all special cases of the rigid body motion, represented in the CGA R4,1 can
be derived from (31):

m = 0 : pure rotation (M s = R)
m = t, θ −→ 0 : pure translation (M s = T )
m ⊥ l∗ : general rotation (M s = M)
m 6⊥ l∗ : general screw motion.

A motor M transforms covariantly any entity u ∈ R4,1 according to

u′ = MuM̃ (32)

with u′ ∈ R4,1. An equivalent equation is valid for the dual entity U ∈ R4,1.
Because motors concatenate multiplicatively, a multiple-motor transformation
of u resolves recursively. Let be M = M2M1, then

u′′ = MuM̃ = M2M1uM̃1M̃2 = M2u
′M̃2. (33)

It is a feature of any GA that also composed entities, which are built by the outer
product of other ones, transform covariantly by a linear transformation. This is
called outermorphism [13] and it means the preservation of the outer product
under linear transformations. Let z ∈ 〈R4,1〉2 be a circle, which is composed by
two spheres s1, s2 ∈ 〈R4,1〉1 according to z = s1 ∧ s2. Then the transformed
circle computes as

z′ = MzM̃ = M(s1 ∧ s2)M̃ = 〈M(s1s2)M̃〉2 (34)

= 〈Ms1M̃Ms2M̃〉2 = Ms1M̃ ∧ Ms2M̃ (35)

= s′
1 ∧ s′

2. (36)

Following Section 1, this is an important feature of the chosen algebraic embed-
ding that will be demonstrated in Section 3.

3 Shape Models from Coupled Twists

In this section we will approach step by step the kinematic design of algebraic
and transcendental curves and surfaces by coupling a certain set of twists as
generators of a multiple-parameter Lie group action.

3.1 Constrained Motion in a Kinematic Chain

In the preceding section we argued that each entity ui contributing to the rigid
model of another entity u is performing the same transformation, represented
by the motor M . Now we assume an ordered set of non-rigidly coupled rigid
components of an object. This is for example a model of bar-shaped mechanisms
[19] if the components are coupled by either revolute or prismatic joints. Such
model is called a kinematic chain [18]. In a kinematic chain the task is to for-
mulate the net movement of the end-effector at the n-th joint by movements of



the j-th joints, j = 1, ..., n − 1, if the 0-th joint is fixed coupled with a world
coordinate system. These movements are discribed by the motors M j . Let Tj

be the transformation of an attached joint j with respect to the base coordinate
system, then for j = 1, ..., n the point xj,ij

, ij = 1, ...,mj , transforms according
to

Tj(xj,ij
,M j) = M1...M jxj,ij

M̃ j ...M̃1 (37)

and

T0(x0,i0
) = x0,i0

. (38)

The motors M j are representing the flexible geometry of the kinematic chain
very efficiently. This results in an object model O defined by a kinematic chain
with n segments and described by any geometric entity uj,ij

∈ R4,1 attached to
the j-th segment,

O =
{
T0(u0,i0

), T1(u1,i1
,M1), ..., Tn(un,in

,Mn)|n, i0, ..., in ∈ N
}

. (39)

If uj,ij
is performing a motion caused by the motor M , then

u′
j,ij

= M
(
Tj(uj,ij

,M j)
)

M̃ (40)

= M(M1...M juj,ij
M̃ j ...M̃1)M̃ . (41)

Obviously, this equation describes a constrained motion of the considered
entities.

3.2 The Operational Model of Shape

We will now introduce another type of constrained motion, which can be real-
ized by physical systems only in special cases but should be understood as a
generalization of a kinematic chain. This is our proposed model of operational
or kinematic shape [25]. An operational shape means that a shape results from
the net effect, that is the orbit, of a point under the action of a set of coupled
operators. So the operators at the end are the representations of the shape. A
kinematic shape means the shape for which these operators are the motors as
representations of SE(3) in R4,1. The principle is simple. It goes back to the
interpretation of any g ∈ SE(3) as a Lie group action [19], see equation (1). But
only in R4,1 we can take advantage of its representation as rotation around the
axis l, see equations (21), (25) and (26).

In Section 2.1 we introduced the sphere and the circle from IPNS and OPNS,
respectively. We call these definitions the canonical ones. On the other hand, a
circle has an operational definition which is given by the following.
Let xφ be a point which is a mapping of another point x0 by g ∈ SE(3) in R4,1.
This may be written as

xφ = Mφx0M̃φ (42)



with Mφ being the motor which rotates x0 by an angle φ,

Mφ = exp

(
−

φ

2
Ψ

)
. (43)

Here again is Ψ the twist as a generator of the rotation around the axis l, see
equation (21). Note that Ψ = αl, α ∈ R. If φ covers densely the whole span
[0, ..., 2π], then the generated set of points

{
xφ

}
is also dense. The infinite set{

xφ

}
is the orbit of a rotation caused by the infinite set {Mφ}, which has the

shape of a circle in R
3. The set {xφ} represents the well-known subset concept

in a vector space of geometric objects in analytic geometry. In fact, that circle is
on the horosphere N3

e because it is composed only by points. We will write for
the circle z{1} instead of

{
xφ

}
to indicate the different nature of that circle in

comparison to either z or Z of Section 2.1. The index {1} means that the circle
is generated by one twist from a continuous argument φ. So the circle, embedded
in R4,1, is defined by

z{1} =
{
xφ| for all φ ∈ [0, ..., 2π]

}
. (44)

Its radius is given by the distance of the chosen point x0 to the axis l and its
orientation and position in space depends on the parameterization of l. That
z{1} is defined by an infinite set of arguments is no real problem in the case
of computational geometry or applications where only discretized shape is of
interest. More interesting is the fact that in the canonical definitions of Section
2.1 the geometric entities are all derived from either spheres or points. In the
case of the operational definition of shape, the circle is the basic geometric entity
instead, respectively rotation is the basic operation.

A sphere results from the coupling of two motors, Mφ1
and Mφ2

, whose twist
axes meet at the center of the sphere and which are perpendicularly arranged.
The following twists are possible generators, but any other orientation is even
good,

Ψ1 = e12 + e(c · e12) (45)

Ψ2 = e31 + e(c · e31) (46)

with the sphere center c, and e12, e31 are two orthogonal planes.
The resulting constrained motion of a point x0,0 performs a rotation on a

sphere given by φ1 ∈ [0, ..., 2π] and φ2 ∈ [0, ..., π],

xφ1,φ2
= Mφ2

Mφ1
x0,0M̃φ1

M̃φ2
. (47)

The complete orbit of a sphere is given by

s{2} =
{
xφ1,φ2

| for all φ1 ∈ [0, ..., 2π] , φ2 ∈ [0, ..., π]
}

. (48)

Let us come back to the point of generalization of the well-known kinematic
chains. These models of linked bar mechanisms have to be physically feasible.



Instead, our model of coupled twists is not limited by that constraint. Therefore,
the sphere expresses a virtual coupling of twists. This includes both location and
orientation in space, and the possibility of fixating several twists at the same
location, for any dimension of the space R

n. There are several extensions of the
introduced kinematic model which are only possible in CGA.

First, while the group SE(3) can only act on points, its representation in R4,1

may act in the same way on any entity u ∈ R4,1 derived from either points or
spheres. This results in high complex free-form shapes caused from the motion
of relatively simple generating entities and low order sets of coupled twists.

Second, only by coupling a certain set of twists, high complex free-form
shapes may be generated from a complex enough constrained motion of a point.

Let u{n} be the shape generated by n motors Mφ1
, ...,Mφn

. We call it the
n-twist model,

u{n} =
{
xφ1,...,φn

| for all φ1, ..., φn ∈ [0, ..., 2π]
}

(49)

with

xφ1,...,φn
= Mφn

...Mφ1
x0,...,0M̃φ1

...M̃φn
. (50)

Then the last equation may also be written

xφ1,...,φn
= Mφn

...Mφ2
x{φ1,0,...,0}M̃φ2

...M̃φn
. (51)

By continuing that reformulation, we get finally

xφ1,...,φn
= Mφn

x{φ1,...,φn−1,0}M̃φn
. (52)

This corresponds also to

xφ1,...,φn
= Mx0,...,0M̃ (53)

with M = Mφn
...Mφ1

. The set
{
xφ1,0,...0

}
represents a circle and the set{

xφ1,...,φn−1,0

}
represents an entity which, coupled with a circle, will result in

{
xφ1,...,φn

}
. While equation (50) is representing a multiple-parameter Lie group

form of SE(3), where the nested motors are carrying the complexity of u{n}, the
complexity is stepwise shifted to u{n−1} in equation (52). Furthermore, while
both equations (52) and (53) are linear in the motors, equation (53) looks so
simple because the parameters of the resulting motor M are now a function in
the space spanned by the parameters of the generating twists Ψ1, ..., Ψn and the
arguments of the motors φ1, ..., φn. Instead of using the single-parameter form
(53), we prefer equation (50).

3.3 Free-form Objects

There are a lot of more degrees of freedom to design free-form objects embedded
in R4,1 by the motion of a point caused by coupled twists. While a single rotation-
like motor generates a circle, a single translation-like motor generates a line as
a root of non-curved objects. Of course, several of both variants can be mixed.

Other degrees of freedom of the design result from the following extensions:



– Introducing an individual angular frequency λi to the motor Mφi
also in-

fluences the synchronization of the rotation angles φi.
– Rotation within limited angular segments φi ∈ [αi1 , ..., αi2 ] with 0 ≤ αi1 <

αi2 ≤ 2π is possible.

Let us consider the simple example of a 2-twist model of shape,

u{2} =
{
xφ1,φ2

| for all φ1, φ2 ∈ [0, ..., 2π]
}

(54)

with

xφ1,φ2
= Mλ2φ2

Mλ1φ1
x0M̃λ1φ1

M̃λ2φ2
, (55)

λ1, λ2 ∈ R and φ1 = φ2 = φ ∈ [0, ..., 2π].
That model can generate not only a sphere, but an ellipse (λ1 = −2, λ2 = 1),

several well-known algebraic curves (in space), see [25], such as cardioid, nephroid
or deltoid, transcendental curves like a spiral, or surfaces. For the list of examples
see Table 1.

Table 1. Simple geometric entities generated from up to three twists

Entity Generation Class

point twist axis intersected with a point 0twist curve
circle twist axis non-collinear with a point 1twist curve
line twist axis is at infinity 1twist curve
conic 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = −2
line segment 2 twists, building a degenerate conic 2twist curve λ1 = 1, λ2 = −2
cardioid 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = 1
nephroid 2 parallel non-collinear twists 2twist curve λ1 = 1, λ2 = 2
rose 2 parallel non-collinear twists, j loops 2twist curve λ1 = 1, λ2 = −j

spiral 1 finite and 1 infinite twist 2twist curve λ1 = 1, λ2 = 1
sphere 2 perpendicular twists 2twist surface λ1 = 1, λ2 = 1
plane 2 parallel twists at infinity 2twist surface
cylinder 2 twists, one at infinity 2twist surface
cone 2 twists, one at infinity 2twist surface
quadric a conic rotated with a third twist 3twist surface

Interestingly, the order of nonlinearity of algebraic curves grows faster than
the number of the generating motors.

By replacing the initial point x0 by any other geometric entity, u0, built from
either points or spheres by applying the outer product, the concepts remain the
same. This makes the kinematic object model in conformal space a recursive
one.

The infinite set of arguments φi of the motor Mφi
to generate the entity

u{n} will in practice reduce to a finite one, which results in a discrete entity
u[n]. The index [n] indicates that n twists are used with a finite set of arguments
{φi,ji

|ji ∈ {0, ...,mi}}.



The previous formulations of free-form shape did assume a rigid model. As
in the case of the kinematic chain, the model can be made flexible. This happens

by encapsulating the entity u[n] into a set of motors
{

Md
j |j = J, ..., 1

}
, which

results in a deformation of the object.

ud
[n] = Md

J ...Md
1u[n]M̃

d

1...M̃
d

J (56)

Finally, the entity ud
[n] may perform a motion under the action of a motor

M , which itself may be composed by a set of motors {M i|i = I, ..., 1} according
to equation (4),

ud′

[n] = Mud
[n]M̃ . (57)

But a twist is not only an operator, it may also play in CGA the role of an
operand,

Ψ ′ = MΨM . (58)

This causes a dynamic shape model as an alternative to (56). If the angular
argument of M is specified by, e.g. θ = 2πt , t∗ ≤ t ≤ t∗, then the twist axis
l may move along the arc of a circle. An interesting application is the so-called
ball-and-socket joint required to accurately model shoulder and hip joints of
articulated persons [11].

So far, the entity u{n} was embedded in the Euclidean space. Lifting up the
entity to the conformal space, u{n} ∈ R4,1, is simply done by

u{n} = e ∧
(
u{n} + e−

)
= e ∧ U{n} (59)

with U{n} being the shape in the projective space R3,1.

4 Twist Models and Fourier Representations

The message of the last subsection is the following. A finite set of coupled twist
(or nested motors) performs a constrained motion of any set of geometric entities,
whose orbit uniquely represents either a curve, a surface or a volume of arbitrary
complexity. This needs a parameterized model of the generators of the shape.
In some applications the reverse problem may be of interest. That is to find
a parameterized twist model for a given shape. That task can be solved: Any
curve, surface or volume of arbitrary complexity can be mapped to a finite set of
coupled twists, but in a non-unique manner. That means, that there are different
models which generate the same shape.

We will show here that there is a direct and intuitive relation between the
twist model of shape and the Fourier representations. The Fourier series decom-
position and the Fourier transforms in their different representations are well-
known techniques of signal analysis and image processing [21]. The interesting
fact that this equivalence of representations results in a fusion of concepts from



geometry, kinematics, and signal theory is of great importance in engineering.
Furthermore, because the presented modelling of shape is embedded in a confor-
mal space, there is also a single access for embedding the Fourier representations
in either conformal or projective geometry. This is quite different from the recent
publications [30], [31]. It will hopefully enable image processing which is con-
formally embedded and, in the case of image sequences, the pose in space can
be coupled with image analysis in a better way than in [32]. Our first attempt
to formulate projective Fourier coefficients [25] showed some serious problems
which have to be overcome in future work. We will not go into details here.

4.1 The Case of a Closed Planar Curve

Let us consider a closed curve c ∈ R
2 in a parametric representation with t ∈ R.

Then its Fourier series representation is given by

c(t) =

∞∑

ν=−∞

γν exp

(
j2πνt

T

)
(60)

with the Fourier coefficients γν , ν ∈ Z as frequency and j, j2 = −1, as the
imaginary unit and T as the curve length.

This model of a curve has been used for a long time in image processing
for shape analysis by Fourier descriptors (these are the Fourier coefficients) [34],
[10]. Furthermore, affine invariant Fourier descriptors can be used [1] to couple
a space curve to its affine image.

We will translate this spectral representation into the model of an infinite
number of coupled twists by following the method presented in [26]. Because
equation (60) is valid in an Euclidean space, the twist model has to be reformu-
lated accordingly. This will be shown for the case of a 2-twist curve c{2}. Then
equation (55) can be written in R3 for φ1 = φ2 = φ as

xφ = Rλ2φ

(
(Rλ1φ(x0 − t1)R̃λ1φ + t1) − t2

)
R̃λ2φ + t2 (61)

= p0 + V 1,φp1Ṽ 1,φ + V 2,φp2Ṽ 2,φ. (62)

Here the translation vectors have been absorbed by the vectors pi and the V i

are built by certain products of the rotors Rλiφ. We call the pi the phase vectors.
Next, for the aim of interpreting that equation as a Fourier series expansion, we
rewrite the Fourier basis functions as rotors of an angular frequency i ∈ Z, in
the plane l ∈ R2, l2 = −1,

Rλiφ = exp

(
−

λiφ

2
l

)
= exp

(
−

πiφ

T
l

)
. (63)

All rotors of a planar curve lie in the same plane as the phase vectors pi. After
some algebra, see [26], we get for the transformed point

xφ =

2∑

i=0

pi exp

(
2πiφ

T
l

)
(64)



and for the curve as subspace of R
3 the infinite set of points

c{2} = {xφ| for all φ ∈ [0, ..., 2π] and for all i ∈ {0, 1, 2}} . (65)

A general (planar) curve is given by

c{∞} = {xφ| for all φ ∈ [0, ..., 2π] and for all i ∈ Z} , (66)

respectively as Fourier series expansion, written in the language of kinematics

c{∞} =

{
lim

n−→∞

n∑

i=−n

pi exp

(
2πiφ

T
l

)}
(67)

=

{
lim

n−→∞

n∑

i=−n

RλiφpiR̃λiφ

}
. (68)

A discretized curve is called a contour. In that case equation (67) has to consider
a finite model of n twists and the Fourier series expansion becomes the inverse
discrete Fourier transform. Hence, a planar contour is given by the finite sequence
c[n] with the contour points ck,−n ≤ k ≤ n, in parametric representation

ck =

n∑

i=−n

pi exp

(
2πik

2n + 1
l

)
, (69)

and the phase vectors are computed as a discrete Fourier transform of the contour

pi =
1

2n + 1

n∑

k=−n

ck exp

(
−

2πik

2n + 1
l

)
. (70)

These equations imply that the angular argument φk is replaced by k. If the
contour can be interpreted as a satisfactory sampled curve [21], the curve c{∞}

can be reconstructed from c[n].

4.2 Extensions of the Concepts

The extension of the modelling of a planar curve, embedded in R
3, to a 3D

curve is easily done. This happens by taking its projections to either e12, e23,
or e31 as periodic planar curves. Hence, we get the superposition of these three
components. Let c

j

[n] be these components in the case of a 3D contour with the

rotation axes l∗j perpendicular to the rotation planes lj . Then

c[n] =

3∑

j=1

c
j

[n] (71)



with the contour points of the projections cj
k, j = 1, 2, 3 and −n ≤ k ≤ n,

cj
k =

n∑

i=−n

p
j
i exp

(
2πik

2n + 1
lj

)
. (72)

Another useful extension is with respect to surface representations, see [26]. If
this surface is a 2D function orthogonal to a plane spanned by the bivectors
eij , then the twist model corresponds to the 2D inverse FT. In the case of an
arbitrary orientation of the rotation planes lj instead, or in the case of the surface
of a 3D object, the procedure is comparable to that of equation (72). The surface
is represented as a two-parametric surface s(t1, t2) generated as a superposition
of the three projections sj(t1, t2).

In the case of a discrete surface in a two-parametric representation we have
the finite surface representation s[n1,n2],

s[n1,n2] =
3∑

j=1

s
j

[n1,n2]
(73)

with the surface points of the projections sj
k1,k2

, j = 1, 2, 3 and −n1 ≤ k1 ≤ n1,
−n2 ≤ k2 ≤ n2,

sj
k1,k2

=

n1∑

i1=−n1

n2∑

i2=−n2

p
j
i1,i2

exp

(
2πi1k1

2n1 + 1
lj

)
exp

(
2πi2k2

2n2 + 1
lj

)
(74)

and the phase vectors

p
j
i1,i2

=
1

2n1 + 1

1

2n2 + 1
p

j′

i1,i2
(75)

p
j′

i1,i2
=

n1∑

k1=−n1

n2∑

k2=−n2

sj
k1,k2

exp

(
−

2πi1k1

2n1 + 1
lj

)
exp

(
−

2πi2k2

2n2 + 1
lj

)
. (76)

Finally, we will formulate an alternative model of a curve c ∈ R4,1 [25]. While
equation (67) expresses the additive superposition of rotated phase vectors in
Euclidean space, the following model expresses a multiplicative coupling of the
twists directly in conformal space.

c{∞} =

{
lim

n−→∞

(
−n∏

i=n

T λiφ

)
O

(
n∏

i=−n

T̃ λiφ

)}
. (77)

This equation results from the assumption that the point x0 = (0, 0, 0) ∈ R
3,

expressed as the affine point O ∈ R4,1, O = e ∧ e0, is translated 2n + 1 times
by the translators

T λiφ =
1 + etλiφ

2
(78)



with the Euclidean vector

tλiφ = RλiφpiR̃λiφ. (79)

It turns out that equation (77) has some numeric advantages in application [25].
The discussed equivalence of the twist model and the Fourier representation

has several advantages in practical use of the model. The most important may
be the applicability to low-frequency approximations of the shape. For instance
in pose estimation [25] the estimations of the motion parameters of non-convex
objects can be regularized efficiently in that way. Instead of estimating motors,
the parameters of the twists are estimated because of numeric reasons.

It turned out that the paper [15] already proposed an elliptic approximation
to a contour. The authors call their Fourier transform (FT) the elliptic FT. The
generating model of shape is that of coupled ellipses. Later on, after Bracewell
[2] rediscovered that this type of FT has been already proposed in [12] as real-
valued FT, it is well-known as Hartley transform. Taking the Hartley transform
instead of the complex-valued FT has the advantage of reducing the computa-
tional complexity by a factor of two in both contour and surface based free-form
objects. In the case of a surface model equation (73) involves three complex-
valued 2D Fourier transforms. Instead of that one single quaternion-valued 3D
Fourier transform can be applied. This leads to a slight reduction of the compu-
tational complexity. But finally, neither of the presented versions of the Fourier
transform must be applied in real time. Instead, precomputing and table look
up is the fastest version.

In some applications it is not necessary to have at hand the global shape
of an object as an inverse discrete Fourier transform. Instead, a local spectral
representation of the shape would be sufficient. The Gabor transform [9] could
be a candidate. But a better choice is the monogenic signal [7]. This is computed
by scale adaptive filters [8] for getting the spectral representations of oriented
lines in the plane. That approach is comparable to the model of coupled twists.
But in contrast to our former assumption, the orientation of the orientation
plane l is not fixed but adapted to the orientation of the shape tangents in the
plane. An extension to lines in R

3 and to its coupling to the twist model is work
in progress.

5 Summary and Conclusions

We presented an operational or kinematic model of shape in R
3. This model is

based on the Lie group SE(3), embedded in the conformal geometric algebra R4,1

of the Euclidean space. While the modelling of shape in R
3 caused by actions of

SE(3) is limited, a lot of advantages result from the chosen algebraic embedding
in real applications. One of these is the possibility of conformal (and projective)
shape models. We did not discuss any applications in detail. Instead, we refer the
reader to the website http://www.ks.informatik.uni-kiel.de with respect to the
problem of pose estimation. In that work we could show that the pose estimation



based on the presented shape model can cope with incomplete and noisy data.
In addition to that robustness, pose estimation is numerically stable and fast.

Because the chosen twist model is equivalent to the Fourier representation
(in some aspects it overcomes that), the proposed shape representation unifies
geometry, kinematics, and signal theory. It can be expected that this will have a
great impact on both theory and practice in computer vision, computer graphics
and modelling of mechanisms.
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