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Abstract. In this tutorial paper we will report on our experience in
the use of geometric algebra (GA) in robot vision. The results could be
reached in a long term research programme on modelling the perception-
action cycle within geometric algebra. We will pick up three important
applications from image processing, pattern recognition and computer
vision. By presenting the problems and their solutions from an engineer-
ing point of view, the intention is to stimulate other applications of GA.

1 Introduction

In this paper we want to present a survey on applications of geometric alge-
bra (GA) in robot vision. We will restrict our scope to results contributed by
the Kiel Cognitive Systems Group in the last few years. For more details and
for getting a wider view on this topic a visit of the publications on the web-
site http://www.ks.informatik.uni-kiel.de is recommended. We will take on an
engineer’s viewpoint to give some impression of the need of such complex mathe-
matical framework as geometric algebra for designing robot vision systems more
easily. In fact, we are using GA as a mathematical language for modelling. This
includes the task related shaping of that language itself.

The aim of robot vision is to make robots seeing, i.e. to endow robots with
visual capabilities comparable to those of human. While contemporary appli-
cations of robots are restricted to industrial artificial environments, the hope is
that future generations of robots are able to cope with real world conditions. The
term robot vision indicates a concentration of research activities onto modelling
of useful visual architectures. In the framework of behaviour-based robotics the
coupling of (visual) perception and action is the key paradigm of system design.
A behaviour is represented in the so-called perception-action cycle. Of practical
importance are the projections of the perception-action cycle: “vision for action”
means controlling actions by vision and “action for vision” means controlling the
gaze (or body) for making vision more easier.

Robot vision is emerging from several contributing disciplines which are as
different as image processing, computer vision, pattern recognition and robotics.
Each of these have their own scientific history and are using different mathe-
matical languages. The demanding task of system design is aiming at a unique



framework of modelling. With respect to the quest of a useful cognitive architec-
ture the perception-action cycle may be the right representation. With respect
to unifying the mathematical language geometric algebra is hopefully the frame-
work of merging the above mentioned disciplines in a coherent system.

Such system has to be an embodiment of the geometry and the stochastic
nature of the external world. This should be understood in a dynamic sense
which enables internal processes converging at reasonable interpretations of the
world and useful actions in the environment.

While merging the different disciplines is one main motivation of using ge-
ometric algebra in robot vision, the other one is to overcome several serious
limitations of modelling within the disciplines themselves. These limitations re-
sult from the dominant use of vector algebra. A vector space is a completely
unstructured algebraic framework endowed with a simple product, the scalar
product, which only can destroy information originally represented in the pair
of vectors by mapping them to a scalar.

Imagine, for instance, that a cognitive system as a human could reason on
the world or could act in the world only by its decomposition into sets of points
and having no other operations at hand than the scalar product. This in fact
is an impossible scenario. The phenomena of the world we can cope with are of
global nature at the end in comparison to the local point-like entities we have
in vector space. They are phenomena of higher order in the language of vector
algebra. Hence, most of the basic disciplines of robot vision are getting stuck
in non-linearities because of the complexity of the problem at hand, which are
non-tractable in real-time applications.

In fact, only the tight relations of GA to geometric modelling [12] have been
considered, yet. We are just starting with the fusion of stochastic modelling and
GA. The benefit we derive from using GA in geometric modelling is rooted in the
rich algebraic structure of the 2"-dimensional linear space R, ; , resulting from
the vector space RP*%". The indexes p, ¢, r with p+ ¢+ r = n mark its signature.
By choosing a certain signature the decision for certain geometries adequate to
the problem at hand can be made. On the other hand, the blade structure of a GA
represents higher-order relations between vectors which, once computed, can be
further processed in a linear manner. Hence, multi-dimensional or higher-order
phenomena can be reduced to one-dimensional or linear representations. This
has not only impact on modelling of geometric problems but also of stochastic
ones. Therefore, there is need of using GA in context of higher-order statistics
too.

In the following sections we want to show the advantages of using GA in three
different areas of robot vision. These are signal analysis, pattern recognition
using the paradigm of neural computing, and computer vision. In each case we
will emphasize the inherent limitations of modelling in the classical scheme and
the benefits we gain from using GA instead. In the conclusion section we will
give a summary of all these advantages in a more general way.



2 Analysis of Multi-dimensional Signals

Image analysis as a fundamental part of robot vision does not mean to deliver
complete descriptions of scenes or to recognize certain objects. This is in fact
the subject of computer vision. Instead, the aim of image analysis is deriving
a set of rich features from visual data for further processing and analysis. In
(linear) signal theory we are designing (linear shift invariant) operators which
should extract certain useful features from signals. The Fourier transform plays
a major role because representations of both operators and images in spectral
domain are useful for interpretation.

In this section we want to give an overview on our endavours of overcoming
a not well-known representation gap in Fourier domain in the case of multi-
dimensional signals. In fact, the well-known complex-valued Fourier transform
cannot explicitely represent multi-dimensional phase concepts. The Fourier trans-
form is a global integral transform and amplitude and phase are global spectral
representations. In practice more important is the incompleteness of local spec-
tral representations in the multi-dimensional case. This is a representation prob-
lem of the Hilbert transform which delivers the holomorphic complement of a
one-dimensional real-valued signal. Therefore, the aim of this section is showing
generalizations of both Fourier and Hilbert transform from the one-dimensional
to the multi-dimensional case which are derived from embeddings into geometric
algebra.

In that respect two different concepts of the term dimension of a function
have to be distinguished. The first one is the global embedding dimension, which
is related to the Fourier transform. The second one is the (local) intrinsic di-
mension, which is related to the Hilbert transform and which means the degrees
of freedom that locally define the function.

2.1 Global Spectral Representations

It is well-known that the complex-valued Fourier transform, F¢ € C,
Fé(w) = 7 {7 (x)) = [ £60) exp(—2mu-x) dVx &

enables computing the spectral representations amplitude A¢(u) and phase ¢¢(u),
A(a) = [F*(u)| (2a)

P°(u) = arg (F(u)), (2b)

of the real-valued N-dimensional (ND) function f(x) , x € RY. Although it is
commonsense that the phase function is representing the structural information
of the function, there is no way in the complex domain to explicitly access to ND
structural information for N > 1. This problem is related to the impossibility of



linearly representing symmetries of dimension N > 1 in the complex domain.
In fact, the Fourier transform in the 1D case can be seen as a way to compute
the integral over all local symmetry decompositions of the function f(x) into an
even and an odd component according to

f(l‘) :fe(x)+fo(x> (3>

Fo(u) = FE(u) + F3(u). (4)
This results from the Euler decomposition of the Fourier basis functions
Q°(u,z) = exp(—j2nux) = cos(2rux) — j sin(2wux). (5)

In the case of 2D complex Fourier transform the basis functions can also be
separately decomposed,

Q°(u,x) = exp(—j2mux) = exp(—j2rux) exp(—j2mvy). (6)

From this results a signal decomposition into products of symmetries with re-
spect to coordinate axes,

Fo(a) = FE (u) + Fo,(u) + Fo.(u) + F¢, (). (7)

But this concept of line symmetry is partially covered in the complex domain
because of the limited degrees of freedom. If F'5,(u) and Fy(u) are the real and
imaginary components of the spectrum, respectively, F°(u) = Fg(u) + jFf(u),
then

Fr(u) = F&.(u) + F,(u) , Ff(u) = F¢(u) + Fg (u). (®)

If we consider the Hartley transform [10] as a real-valued Fourier transform,
F"(u), then also in the 1D case the components F (u) and F} (u) are totally
covered in F" € R. This observation supports the following statement [6]. Given
a real valued function f(x) , x € R, all its global decompositions into even
and odd symmetry components with respect to coordinate axes are given by the
Clifford valued Fourier transform F € Ry,

N
Flu) = FU{f(x)} = / f(x) H exp(—ip2mugxy) dVx. (9)
RY k=1
In the 2D case the Fourier transform has to be quaternionic, F'¢ € H,
Fl(u) =F{f(x)} = / f(x) exp(—i2muz) exp(—j2mvy) d*x (10)
RQ

with

Q%(u,x) = exp(—i2rux) exp(—j2mvy). (11)
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Fig. 1. Left: basis functions of the complex 2D Fourier transform. Right: basis functions
of the quaternionic 2D Fourier transform. Only the even/even-even part is shown each.

Because

Fi(u) = Fi(u) + iFf(u) + jFi(u) + kF}L(u) (12a)

Fi(u) = FE (u) + Fj, (0) + F (u) + F7, (w), (12b)

all symmetry combinations are explicitely accessible by one real and three imagi-
nary parts. As figure 1 visualizes, the basis functions according to (11) are intrin-
sically two-dimensional in contrast to those of (6) and, thus, they can represent
2D structural information. This can also be seen in the polar representation of
the quaternionic Fourier transform [6], where ¢ and 6 represent each a 1D phase,
1 is a 2D phase.

Fi(u) = [F(a)| exp (ip(u)) exp (ky(u)) exp (j6(u)) . (13)

2.2 Local Spectral Representations

We call functions of local energy, e(x), (or amplitude, a(z) = y/e(x)), and local
phase, ¢(x), as local spectral representations:

e(z) = f(z) + fiz(z) (14a)

¢(z) = arg(fa(x)), (14b)

which are derived from a complex-valued extension, f4(z), of a real 1D function
f(x) by an operator A,

fa(z) = A{f(2)} = f(2) + j fu(z). (15)



In signal theory fa(z) is called analytic signal and fg(z) is derived from f(x)
by a local phase shift of —Z, which is gained by the Hilbert transform, H, of

f(), .
fu(2) = H{f(2)} (16)

In the complex analysis this corrresponds to computing the holomorphic com-
plement of f(x) by solving the Laplace equation. In the complex Fourier domain
the Hilbert transform reads

H(u) = —J'T (17)

ul’
thus, the operator of the analytic signal is given by the frequency transfer func-
tion
U
Alu) =14 —. (18)
|ul

The importance of the analytic signal in signal analysis results from the eval-
uation of the local spectral representations, equations (14a) and (14b): If the
local energy exceeds some threshold at z, then this indicates an interesting loca-
tion. The evaluation of the local phase enables a qualitative signal interpretation
with respect to a mapping of the signal to a basis system of even and odd sym-
metry according to equation (3). In image processing we can interprete lines as
even symmetric structures and edges as odd symmetric ones, both of intrinsic
dimension one. But in images we have as an additional unknown the orientation
of lines or edges. Hence, the operators A or H, respectively, should be rotation
invariant. Although the analytic signal is also used in image processing since one
decade, only by embedding into GA, this problem could be solved.

Simply to take over the strategy described in section 2.1 from global to local
domain is not successful. The quaternionic analytic signal [7], which is derived
from a quaternionic Hilbert transform, delivers no rotation invariant local en-
ergy. Hence, the applied concept of line symmetry cannot succeed in formulating
isotropic operators. Instead, an isotropic generalization of the Hilbert transform
in the case of a multidimensional embedding of a 1D function can be found by
considering point symmetry in the image plane. This generalization is known in
Clifford analysis [3] as Riesz transform.

The Riesz transform of a real ND function is an isotropic generalization of
the Hilbert transform for N > 1 in an (N +1)D space. In Clifford analysis, i.e. an
extension of the complex analysis of 1D functions to higher dimensions, a real ND
function is considered as a harmonic potential field, f(x), in the geometric algebra
Ry41. The Clifford valued extension of f(x) is called monogenic extension and
is located in the hyperplane where the (N 4 1)th component, say s, vanishes. Tt
can be computed by solving the (N +1)D Laplace equation of the corresponding
harmonic potential as a boundary value problem of the second kind for s = 0
(see [8]).

Let us consider the case of a real 2D signal, f(x), represented as es-valued
vector field f(x) = f(x)es in the geometric algebra R3. Then in the plane s =0
a monogenic signal fj; exists [9],



Fig. 2. The phase decomposition of a monogenic signal expressing symmetries of a
local i1D structure embedded in Rg. The great circle is passing | f ,,|es and f,, defines
the orientation of a complex plane in R3.

far(x) = £(x) + fr(x), (19)

where fr(x) is the vector of the Riesz transformed signal. In our considered case
the monogenic signal is a generalization of the analytic signal, equation (15), for
embedding an intrinsically 1D function into a 2D signal domain. Similarly the
Riesz transform with the impulse response

Xes

x
h = = — 20
R(X) 27T|X|3 27T|X|3e31 + 27T|X|3e23 ( )
and the frequency transfer function
HR(ll) = ﬁI;l y Ig = €12 (21)
u

generalizes all properties known from the Hilbert transform to 2D.

The local energy, derived from the monogenic signal is rotation invariant.
Furthermore, the phase generalizes to a phase vector, whose one component is
the normal phase angle and the second component represents the orientation
angle of the intrinsic 1D structure in the image plane. Hence, the set of local
spectral features is augmented by a feature of geometric information, that is the
orientation. In figure 2 can be seen how the complex plane of the local spectral
representations rotates in the augmented 3D space. This results in an elegant
scheme of analyzing intrinsically 1D (i1D) structures in images.

So far, we only considered the solution of the Laplace equation for s = 0.
The extension to s > 0 results in a set of operators, called Poisson kernels and



conjugated Poisson kernels, respectively, which not only form a Riesz triple with
quadrature phase relation as the components in equation (19), but transform the
monogenic signal into a representation which is called scale-space representation.
In fact, the s-component is a scale-space coordinate. A scale-space is spanned
by (x,s). This is a further important result because for nearly 50 years only the
Gaussian scale-space, which results as a solution of the heat equation, has been
considered as scale-space for image processing. One advantage of the Poisson
scale-space in comparison to the Gaussian scale-space is its alibity to naturally
embed the complete local spectral analysis into a scale-space theory. Recently
we could demonstrate the superiority of using the monogenic scale space for
signal reconstruction from phase in comparison to the use of the orientation
selective phase of an analytic signal. Recently we extended the generalization
of the monogenic signal to 3D images. The 3D monogenic signal represents a
phase vector with three components. In the context of image sequence analysis
our first application is computing the optical flow. There one of the orientation
angles represents the velocity of motion.

Regrettably, this nice theory derived from the Clifford analysis framework
is relevant only for i1D signals, yet. The extension to i2D structures in images
like curved lines/edges, crosses or any other more general structure in a linear
way will be matter of future research. Nevertheless, in [8] a so-called structure
multivector is proposed from which a rich set of features can be derived for a
special model of an 12D structure. That is built from two perpendicularly crossing
lines/edges. The linear operator model uses spherical harmonics up to the order
three. The local image structure is represented by a set of five independent
features which are main orientation, two local i1D amplitudes and two local i1D
phases. That local filtering scheme enables classification between i1D and i2D
structures. But a linear approach to filtering a more flexible model is not at hand,
yet. Instead, we recently used a tensor representation of the monogenic signal
resulting from two crossing lines/edges with flexible angles for decomposing that
mixed signal into both single contributing monogenic signals. The idea is based
on an eigenvalue decomposition of the local signal tensor. But the used tensor
model is a non-linear one.

3 Knowledge Based Neural Computing

Neural nets are computational tools for learning certain competences of a robot
vision system within the perception-action cycle. A net of artificial neurons as
primitive processing units can learn for instance classification, function approx-
imation, prediction or control. Artificial neural nets are determined in their
functionality by the kind of neurons used, their topological arrangement and
communication, and the weights of the connections. By embedding neural com-
puting into the framework of GA, any prior algebraic knowledge can be used for
increasing the performance of the neural net. The main benefit we get from this
approach is constraining the decision space and, thus, preventing the curse of
dimensionality. From this can follow faster convergence of learning and increased



generalization capability. For instance, if the task is learning the parameters of
a transformation group from noisy data, then noise does not follow the algebraic
constraints of the transformation group and will not be learned.

In subsection 3.1 we will consider such type of problems under orthogonal
constraints. Another advantage of embedding neural computing into geometric
algebras is related to learning of functions. Neural nets composed by neurons
of perceptron type - this is the type of neurons we will consider here - are able
to learn nonlinear functions. If the nonlinear problem at hand is transformed in
an algebraic way to a linear one, then learning becomes much easier and with
less ressources. We will consider such problems in the case of manifold learning
in subsection 3.1 and in the case of learning non-linear decision boundaries in
subsection 3.3. In subsection 3.2 we will show the learning of the cross-ratio with
a Mébius transform by using only one spinor Clifford neuron in Ry 5.

3.1 The Spinor Clifford Neuron

In this subsection we will consider the embedding of perceptron neurons into a
chosen geometric algebra. The output, y, of such neuron for a given input vector
x and a weight vector w, x,w € R™, is given by

y=g(f(x;w)). (22)

The nonlinear function g : R — R is called activation function. It shall be
omitted in the moment, say, by setting it to the identity. More important for
our concern is the propagation function f : R" — R,

f(x) = Z w;x; + 0, (23)

where 0 € R is a bias (threshold). Obviously, one single neuron can learn a
linear function, represented by equation (23), as linear regression by minimizing
the sum of squared errors over all samples (x7,77) from a sufficiently composed
sample set (universe). We assume a supervised training scheme where 77/ € R is
the requested output of the neuron. By arranging a certain number of neurons
in a single layer fully connected to the input vector x, we will get a single layer
perceptron network (SLP). A SLP obviously enables task sharing in a parallel
fashion and, hence, can perform a multi-linear regression. If x,y € R™, then

y=Wx (24)

is representing a linear transformation by the weight matrix W.

After introducing the computational principles of a real-valued neuron, we
will extend now our neuron model by embedding it into the GA Ry, 4,p+¢q = n,
see [5]. Hence, for x, w, 6 € R,, ; the propagation function f : R, ;, — R,, , reads

f(x) =wx+0, (25)



where wx is the geometric product instead of the scalar product of equation
(23). A neuron with a propagation function according to equation (25) is called a
Clifford neuron. The superiority of equation (25) over equation (23) follows from
explicitly introducing a certain algebraic model as constraint by choosing R, 4
for learning the weight matrix of equation (24) instead of additionally learning
the required constraints. It is obviously more advantageous to use a model than
to perform its simulation. This leads in addition to a reduction of the required
resources (neurons, connections). By explicitly introducing algebraic constraints,
statistical learning will become a simpler task.

We will further extend our model. If the weight matrix W in equation (24)
is representing an orthogonal transformation, we can introduce the constraint of
an orthogonal transformation group. This is done by embedding the propagation
function now into R} . Instead of equation (25) we get for f: R}  — R} -

f(x) = wxw + 6. (26)

We will call a neuron with such propagation function a spinor Clifford neuron be-
cause the spinor product of the input vector with one weight vector is computed.
The representation of an orthogonal transformation by a spinor [12] has several
computational advantages in comparison to a matrix representation which will
not be explicitly discussed here.

3.2 Learning the Cross-Ratio with Mo6bius Transformation

In this subsection we will describe the application of the concept of spinor Clifford
neurons to a really hard problem which cannot be learned in practice by real
neurons. We will see that only one single spinor neuron in the algebra Ry o is
sufficient, although some effort will be needed.

The cross-ratio is an important projective invariant. It is defined in the fol-
lowing way. Let A, B, C, D be four collinear points with the coordinates a, b, ¢
and d in the real projective plane Ry ;. Then their collinearity may be expressed
by ¢ = aa + 8b and d = ~va + b for suitable numbers «, 3,7,d, € R. The
cross-ratio, [a, b, ¢, d], is then defined by the ratio of the ratios §/a and 6/7,

By

[a,b,c,d] = o5 (27)
To compute the cross-ratio in the real projective plane is the standard way if
projective transformations mapping lines to lines are of interest. This will be
also our concern. But instead of using real numbers «, 3, -, d, we will use com-
plex numbers z,q,7,s € Ry; of the complex plane. Then there exists a known
theorem [14] which states: The cross-ratio [z, g, 7, s] is the image of z under that
Mobius transformation that maps g to 0, r to 1 and s to oo, respectively. The
Mobius transformation m(z) € M(0,1) of a complex number z € Ry is the
fractional, bilinear transformation

az+b
cz+d

m(z) = (28)



with a,b,c,d € Ry; and ad — be # 0. A Mdbius transformation is a conformal
transformation of the extended complex plane. It is uniquely determined by three
points of the complex plane. The Mobius group M (p, ¢) of the geometric algebra
R, 4 is covered by the orthogonal group O(p + 1, + 1) of R,11 41 [11]. Hence,
by embedding our problem, which is formulated in Ry 1, into the algebra R; 2, we
can interpret Mobius transformations as orthogonal ones. Then we are able to
learn those transformations and, thus, also the cross-ratio, by one single spinor
neuron in Ry . This has been published in [4, 5]. Details of the implementation
will therefore be omitted here. Instead, in tables 1 and 2 the results are shown
for the following components of the cross-ratio: ¢ = 0.2 + 0.37,7 = 0.4 — 0.7¢
and s = 0.6 — 0.2¢. In table 1 we compare the learned parameters of the Mobius
transformation with the expected ones. The results are quiet acceptable. In table
2 we see the learned cross-ratios in comparison to the true ones for several test
points.

Parameter“ Value |Learned parameters
a 0.2 + 0.51 |0.20019 + 0.50010 i
b 0.11 - 0.16 1 |0.11001 - 0.15992 i
c -0.2+1 |-0.20079 4 0.99939 i
d - 0.08 - 0.64 i|- 0.07930 - 0.64007 i

Table 1. Transformation parameters

zZ H Value [Clifford neuron output|
2+ 3i |0.3578 - 0.3357 1[0.3577 - 0.3364 i
4-71 /0.4838 - 0.3044 i]0.4838 - 0.3051 i
0.3 + 0.1 1}|0.0077 - 0.6884 i|- 0.0082 + 0.6884 i
Table 2. Cross-ratios of test points (rounded).

As a whole, the presented results are a convincing demonstration of the pro-
posed model of a Clifford spinor neuron for linear learning of orthogonal trans-
formations in the chosen algebraic domain which are non-linear transformations
in the Euclidean domain.

3.3 The Hypersphere Neuron

In subsection 3.1 we neglected the activation function in describing our algebraic
neuron models. This is possible if a kind of function learning is the task at hand.
In the case of a classification task the non-linear activation function is manda-
tory to complete the perceptron to a non-linear computing unit which in the
trained state represents a linear decision boundary in R™. The decision bound-
ary enables solving a 2-class decision problem by dividing the sample space in
two half-spaces. Regrettably, the higher the dimension n of the feature vectors,
the less likely a 2-class problem can be treated with a linear hyperplane of R™.
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Fig. 3. The decision boundaries and the first two principal components of three toy
objects rotated by 360° in steps of one degree.

Therefore, parallel (SLP) or sequential (MLP - multilayer perceptron) composi-
tions of neurons are necessary for modelling non-linear decision boundaries.

One special case is a hypersphere decision boundary. This can be only very
inefficiently modelled by using perceptrons. But spheres are the geometric basis
entities of conformal geometry. That is, in conformal geometry we can operate
on hyperspheres in a linear manner just as operating on points in Euclidean
geometry (points are the basis entities of Euclidean geometry).

In the last few years the conformal geometric algebra (GA) Ry, 41 441 [13] became
an important embedding framework of different problems relevant to robot vision
because of several attractive properties. We will come back to that point in
section 4. As mentioned above, the conformal group C(p,q), which is highly
non-linear in R?? transforms to a representation which is isomorphic to the
orthogonal group O(p+1,¢+1) in Ry1q 4+1. Second, a subspace of the conformal
space R" ™51 which is called horosphere, N, is a non-Euclidean model of the
Euclidean space R™ with the remarkable property of metrical equivalence. This
is the property we want to exploit for constructing the hypersphere neuron. Here
we need in fact only the vector space R" ™11 = (R,, 41 1)1 of the CGA.

Any point x € R" transforms to a point x € R"*!:! with x? = 0. That is, points
are represented as null vectors on the horosphere. Because hyperspheres are the
basis entities of R"t! a point x can be seen as a degenerate hypersphere s
with radius zero.

Let be x,y € R™ two points with Euclidean distance d(x,y) = ||x — y|| and let
be x,y € N ¢ R**1! with distance d(x,y) = x -y (scalar product), then

1

d(§7 X) = 7§d2(xay.)' (29)



Therefore, the distance of a point x to a hypersphere s will be

>0 if x isoutsides
d(x,s) : < =0 if x isons (30)
<0 if x isinsides.

That distance measure is used for designing the propagation function of a hy-
persphere neuron [1]. If the parameters of the hypersphere are interpreted as
the weights of a perceptron, then by embedding any data points into R™+11,
the decision boundary will be a hypersphere. In fact, the hypersphere neuron
subsumes the classical perceptron because a hypersphere with infinite radius is
a hyperplane.

To simplify the implementation we take advantage of the equivalence of the
scalar products in R"™1 and in R"*2. This enables a data coding which makes
the hypersphere neuron to a perceptron with a second bias component. For an
example see figure (3).

4 Pose Estimation of Free-form Objects

As a rather complex example for using GA in robot vision we will report on
estimating the pose of an object which is moving in 3D space. In that example
computer vision and robotics meet very obviously. As pose we denote position
and orientation. Hence, pose estimation means estimating the parameters of
the special Euclidean transformation in space by observations of the rigid body
motion in the image plane. Pose estimation is a basic task of robot vision which
can be used in several respects as part of more complex tasks as visual tracking,
homing or navigation. Although there is plenty of solutions over the years, only
CGA [13] gives a framework which is adequate to the problem at hand [15].

The diversity of approaches known so far results from the hidden complexity
of the problem. Estimation of the parameters of the special Euclidean trans-
formation, which is composed by rotation and translation, has to be done in a
projective scenario. But the coupling of projective and special Euclidean trans-
formations, both with non-linear representations in the Euclidean space, results
in a loss of the group properties. Another problem is how to model the object
which serves as reference. In most cases a set of point features is used. But this
does not enable to exploit internal constraints contained in higher order entities
as lines, planes, circles, etc. Finally, it can be distinguished between 2D and 3D
representations of either model data and measurement data.

To be more specific, the task of pose estimation is the following: Given a
set of geometric features represented in an object centered frame and given
the projections of these features onto the image plane of a camera, then, for a
certain parametrized projection model, determine the parameters of the rigid
body motion between two instances of an object centered frame by observations
in a camera centered frame.

In our scenario we are assuming a 2D-3D approach, i.e. having 2D measure-
ment data from a calibrated full perspective monocular camera and 3D model



data. As model we are taking either a set of geometric primitives as points,
lines, planes, circles or spheres, or more complex descriptions as a kinematic
chain (coupled set of piecewise rigid parts) or free-form curves/surfaces given
as CAGD-model. From the image features we are projectively reconstructing
lines or planes in space. Now the task is to move the reference model in such a
way that the spatial distance of the considered object features to the projection
rays/planes becomes zero. This is an optimization task which is done by a gradi-
ent descent method on the spatial distance as error measure. Hence, we prevent
minimizing any error measure directly on the manifold.

4.1 Pose Estimation in Conformal Geometric Algebra

We cannot introduce here the conformal geometric algebra (CGA) [13] because of
limited space. There is plenty of good introductions, see e.g. the PhD thesis [15]
with respect to an extended description of pose estimation in that framework.

We are using the CGA Ry ; of the Euclidean space R?. If R? is spanned by
the unit vectors e;, ¢ = 1,2, 3, then Ry ; is the algebra of the augmented space
R4 = R3O @ RY! with the additional basis vectors e, (representing the point at
origin) and e (representing the point at infinity). The basis {e,, e} constitutes
a null basis. From this follows that the representation of geometric entities by
null vectors is the characteristic feature of that special conformal model of the
Euclidean space.

The advantages we can profit from within our problem are the following.
First, Ry; constitutes a unique framework for affine, projective and Euclidean
geometry. If R3 o is the geometric algebra of the 3D Euclidean space and R ; is
that one of the 3D projective space, then we have the following relations between
these linear spaces:

Rg’o C Rg,l C R4,1.

Because the special Euclidean transformation is a special affine transformation,
we can handle either kinematic, projective or metric aspects of our problem in
the same algebraic frame. Higher efficiency is reached by simply transforming
the representations of the geometric entities to the respective partial space.
Second, the special Euclidean group SE(3) is a subgroup of the conformal
group C(3), which is an orthogonal group in R} ;. Hence, the members of SE(3),
represented in Ry 1, which we call motors, M, are spinors representing a general
rotation. Any entity u € Ry ; will be transformed by the spinor product,

u = MQI\N/I. (31)

Let be R € Ril a rotor as representation of pure rotation and let be T € Ril
another rotor, called translator, representing translation in R3, then any g €
SE(3) is given by the motor

M = TR. (32)



Motors have some nice properties. They concatenate multiplicatively. If e.g. M
= Mng, then

v’ = MuM = Myu'M, = M;M;uM;M,. (33)

Furthermore, motors are linear operations (as used also in context of spinor
Clifford neurons). That is, we can exploit the outermorphism [11], which is the
preservation of the outer product under linear transformation.

This leads directly to the third advantage of CGA. The incidence algebra of
projective geometry generalizes in CGA. If s;,s, € (Ry,1)1 are two spheres, then
their outer product is a circle, z € (Ry.1)2,

z =8 NSy (34)
If the circle is undergoing a rigid motion, then
z = MzM = M(s; As,)M = Ms;MAMs,M = sjAs).  (35)

In very contrast to the (homogeneously extended) Euclidean space, we can han-
dle the rigid body motion not only as linear transformation of points but of
any entities derived from points or spheres. These entities are no longer only
set concepts as subspaces in a vector space but algebraic entities. This enables
also to handle any free-form object as one algebraic entity which can be used
for gradient based pose estimation in the same manner as points. That is a real
cognitive approach to the pose problem.

Finally, we can consider the special Euclidean group SE(3) as Lie group
and are able to estimate the parameters of the generating operator of the group
member. This approach leads to linearization and very fast iterative estimation
of the parameters. Although this approach is also applicable to points in an
Euclidean framework, in CGA it is applicable to any geometric entity built from
points or spheres.

The generating operator of a motor is called twist, ¥ € se(3), represented in
Ry 1. The model of the motor as a Lie group member changes in comparison to
equation (32) to

M = TRT. (36)

This equation, which expresses a general rotation as Lie group member in Ry i,
can be easily interpreted. The general rotation is performed as normal rotation,
R, in the rotation plane 1 € (R3)s, which passes the origin, by an angle 6 € R,
after correcting the displacement t € (R3); of the rotation axis 1* € (Rg); from
the origin with the help of the translator T. Finally, the displacement has to be
reconstructed by the translator T. From this follows equation (36) in terms of

the parameters of the rigid body motion in R,

e ) -



This factorized representation can be compactly written as

M = exp (—g@) . (38)
Here
U=1+e(t-] (39)

is the twist of rigid body motion. Geometrically interpreted is the twist repre-
senting the line 1 € (R4 1)2 around which the rotation is performed in Ry ;.

Now we return to our problem of pose estimation. The above mentioned
optimization problem is nothing else than a problem of minimizing the spatial
distance of e.g. a projection ray to a feature on the silhouette of the reference
model. If this distance is zero, then a certain geometric constraint is fulfilled.
These constraints are either collinarity or coplanarity for points, lines and planes,
or tangentiality in case of circles or spheres.

For instance, the collinearity of a point x € (R4 1)1, after being transformed
by the motor M, with a projection line 1, is written as their vanishing commu-
tator product,

(MxM) x 1, =0. (40)

This equation has to be written in more details to see its coupling with the
observation of a point x in the image plane of the camera:

A ((M;ﬁ) X (e A (O A x))) ey =0. (41)

This in fact is the complete pose estimation problem written as a symbolic
dense but nevertheless algebraic correct equation. The outer product O A x
of the image point x with the optical center O of the camera results in the
projection ray representation in projective space Rs ;. By wedging it with e, we
transform the projection ray to the conformal space R4, hence, 1, = e AO Az.
Now the collinearity constraint can be computed in Ry ;. Finally, to assign the
constraint an Euclidean distance zero, the expression has to be transformed to
the Euclidean space (R3);1 by computing the inner product with the basis vector
e, which is derived from the null basis and by scaling with A € R. In reality
the commutator product will take on a minimum as a result of the optimization
process.

4.2 Twist Representations of Free-form Objects

So far we only considered the pose estimation problem on the base of modelling
a rigid object by a set of different order geometric entities. In robotics exists
another important object model which is piecewise rigid. A kinematic chain is
the formalization of several rigid bodies coupled by either revolute or prismatic
joints. If pose estimation is applied to observatons of e.g. a robot arm for con-
trolling grasping movements, this is the adequate model. Each of the parts of an



arm is performing movements in mutual dependence. Hence, the motion of the
j-th joint causes also motions of the preceding ones. If u; € Ry 1 is a geometric
entity attached to the j-th segment, e.g. a fingertip, its net displacement caused
by a motor M, represented in the (fixed) base coordinate system, is given by

11/- = M(Mleg]Mjﬁl)M (42)

Here, the motors M; are representing the constrained motion of the i-th joint.
While in the homogeneous space R* this equation is limited to points as moving
entities and in the framework of the motor algebra [2] lines and planes can be
considered in addition, there is no such restriction in CGA.

The idea of the kinematic chain can be further generalized to a generator
of free-form shape. We will consider the trajectory caused by the motion of the
entity u in space as the orbit of a multi-parameter Lie group of SFE(3). This
multi-parameter Lie group represents a possibly very complex general rotation
in R4,; which is generated by a set of nested motors, contributing each with its
own constrained elementary general rotation. If the entity u would be a point,
then the orbit can be a space curve, a surface or a volume. But u can also
be of higher order (e.g. a tea pot). Hence, the generated orbit may be of any
complexity.

This kinematic model of shape in CGA [16] has not been known before,
although there is a long history of relating kinematics and geometry, e.g. with
respect to algebraic curves, or of the geometric interpretation of Lie groups.

The mentioned generalization of the model of a kinematic chain is twofold.
First, the rotation axes of the motors must not be positioned at the periphery
of the shape but may be (virtually) located anywhere. Second, several different
oriented axes may be fixed at the same location.

The principle of constructing higher order 3D curves or surfaces as orbit of
a point which is controlled by only a few coupled twists as generators is simple.
Let be x, an arbitrary point on a circle z, that is x, - z = 0, and let be M(L;0)
the corresponding motor, then for all 6 € [0, ..., 27]

x(V = Mx. M (43)

generates the circle z. If the motor is representing a pure translator, then any
arbitrary oriented line 1 will be generated. Such primitive curves will be called
3D-1twist curves.

By coupling a second twist to the first one, either a 3D-2twist curve or surface
will be generated. In fact, already this simple system has a lot of degrees of
freedom which enable generating quite different figures [15]. This can be seen by
the following equation:

x = M2M1KCM1 M, (44)

with

M;(L;; Ni, 0;) = exp <— )\;69 Wz) ; (45)



Here \; € R is the ratio of the angular frequency, 6; € [aq, ..., as] is the angular
segment which is covered by 6; and finally ¥; defines the position and orientation
of the general rotation axis 1, and the type of motion, that is rotation-like,
translation-like, or a mixed form.

Finally, the twist model of a closed shape is equivalent to the well-known
Fourier representation, we started with this survey. Since the Fourier series ex-
pansion of a closed 3D curve C(¢) can be interpreted as the action of an infinite
set of rotors, Rf, fixed at the origin of (Rs);, onto phase vectors pg, there is no
need of using CGA. A planar closed curve is given by

C(o) = hm Z Pk exp( k¢ > = lim Z R ka¢ (46)

N~>oo

The phase vectors py are the Fourier series coeflicients. Instead of the imaginary
unit of the harmonics, the unit bivector 1 € Rs,1?> = —1, is used which defines
the rotation plane of the phase vectors. Based on the assumption that any closed
3D curve can be reconstructed from three orthogonal projections, a spatial curve
is represented by

_ngnooz Z py eXp< 7’f¢1 > (47)

m=1k=—N

This scheme can be extended to free-form surfaces as well and has been
used for pose estimation in the presented framework. In that respect the in-
verse Fourier transform of discretized curves/surfaces was applied. The necessary
transformation of the Euclidean Fourier representation, C'g(¢), to a conformal
one, Cc(¢), can simply be done by the following operation:

Co(¢) =en(Cr(d) +e), (48)

where e_ stands for the homogeneous coordinate of the projective space Rj ;
and wedging with e again realizes the transformation from R3; to Ry ;.

One advantage of using the Fourier interpretation of the twist approach in
pose estimation is the possibility of regularizing the optimization in the case
of non-convex objects. This is demonstrated in figure (4). During the iteration
process, which needs for that object only a few milliseconds, successively more
Fourier coefficients are used. Hence, getting stuck in local minima is prevented.

The presented methods used in pose estimation clearly demonstrate the
strength of the applied algebraic model of conformal geometric algebra.

5 Conclusions

We have demonstrated the application of geometric algebra as universal math-
ematical language for modelling in robot vision. Here we will summarize some
general conclusions.
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Fig. 4. Regularization of iterative pose estimation by Fourier representation (numbers
indicate the iteration steps).

First, GA supports generalizations of representations. In section 4 we used
the stratification of spaces of different geometry. This enables simple switching
between different aspects of a geometric entity. Instead of points, in a certain
GA as CGA, higher order entities take on the role of basis entities from which
object concepts with algebraic properties can be constructed. We have shown
that kinematics, shape theory and Fourier theory are unified in the framework
of CGA. Besides, in section 2 we could handle multi-dimensional functions in a
linear signal theory.

Second, the transformation of non-linear problems to linear ones is another
important advantage. This could be demonstrated in all presented application
fields. In learning theory this enables designing algebraically constrained knowl-
edge based neural nets.

Third, GA is a mathematical language which supports symbolic dense for-
mulations with algebraic meaning. We are able to lift up representations where
besides the above mentioned qualitative aspects also reduced computational
complexity results. This is important in real-time critical applications as robot
vision.

We can state that the progress we made in robot vision could only be possible
on the base of using geometric algebra and this enforces its use also in other
application fields.
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