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ABSTRACT
In this paper we present a Common Genetic Encoding
(CGE) for networks that can be applied to both direct
and indirect encoding methods. As a direct encoding
method, CGE allows the implicit evaluation of an encoded
phenotype without the need to decode the phenotype
from the genotype. On the other hand, one can easily
decode the structure of a phenotype network, since its
topology is implicitly encoded in the genotype’s gene-order.
Furthermore, we illustrate how CGE can be used for the
indirect encoding of networks. CGE has useful properties
that makes it suitable for evolving neural networks. A
formal definition of the encoding is given, and some of
the important properties of the encoding are proven such
as its closure under mutation operators, its completeness
in representing any phenotype network, and the existence
of an algorithm that can evaluate any given phenotype
without running into an infinite loop.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Theory
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1. INTRODUCTION
Neural networks are useful in evolving the control sys-

tems of agents [6]. They provide a straightforward map-
ping between sensors and motors, enabling them to repre-
sent directly the policy (control) or the value function to
be learned. It has been shown using standard benchmark
problems that combinations of neural networks with evolu-
tionary methods (neuroevolution) perform better than tra-
ditional reinforcement learning methods in many problem
domains, especially in domains which are non-deterministic
and only partially observable [2, 9].

In order to design an efficient neuroevolution method that
can evolve both the structures and weights of neural net-
works, a flexible genetic encoding method is needed, and
should possess the following important properties: (1) The
encoding should be complete, in that it should be able to
represent all types of valid phenotype networks. (2) The
encoding scheme should be closed, i. e. every valid geno-
type represents a valid phenotype. Similarly, the encoding
should be closed under genetic operators such as structural
mutation and crossover that act upon the genotype. (3) It
should be possible to apply the encoding to both the direct
and indirect encoding of neural networks.

The main contribution of the work presented in this paper
is to introduce a genetic encoding of networks that satisfies
the above properties, and to formally prove that this genetic
encoding fulfills the first two properties. Such proofs are not
commonly given for other existing genetic encodings. Addi-
tionally, the third property listed above is not satisfied by
most existing methods, and its fulfillment by the presented
encoding can be regarded as a further important contribu-
tion of this work.
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The paper is organized as follows: First, a formal defini-
tion of the common genetic encoding (CGE) is given, and
it is proven that the encoding satisfies the above-mentioned
properties. Next, an example of how CGE can be used for
the indirect encoding of network structures is provided. Af-
ter this, a review of representative works in the area of evo-
lution of neural networks is given, and a comparison of CGE
to other genetic encodings is made. Finally, we provide some
conclusions and a future outlook.

2. COMMON GENETIC ENCODING
In CGE, a genotype consists of a string of genes, whose

order implicitly represents the topology of a network. Each
gene takes on a specific form (allele): it can either be a ver-
tex gene, an input gene, or a jumper gene. A vertex gene
encodes a vertex of a network, an input gene encodes an
input to the network (for example, a sensory signal), and
a jumper gene encodes a connection between two vertices.
A particular jumper gene can either be a forward or a re-
current jumper gene. In addition to the explicitly encoded
connections represented by jumper genes, there are also for-
ward connections that are implicitly encoded in the way the
genes are ordered in the genotype. A forward jumper gene
represents a connection starting from a vertex with higher
depth1 and ending at a vertex with lower depth. A recurrent
jumper gene represents a connection between two vertices
with arbitrary depths. A vertex gene has a unique identi-
fication number, and a number which represents how many
input connections it has. A jumper gene stores addition-
ally the global identification number of the starting vertex
gene. Depending on whether the encoding is interpreted
directly or indirectly, the vertex genes can store different in-
formation such as weights (e.g. when the encoded network
is interpreted directly as a neural network) or operator type
(e.g. when the encoded network is indirectly mapped to a
phenotype network).

2.1 Formal Definition
In this subsection, we provide a formal mathematical def-

inition of our encoding for the case where CGE is used as a
direct encoding. We begin by defining the set of genotypes,
and some functions defined on a genotype’s genes. We then
discuss the criteria for valid genotypes, the genetic operators
used, the development function, and the evaluation function.

2.1.1 The Set of Genotypes G
A genotype g = [x1, ..., xN ] ∈ G is a sequence of genes

xi ∈ X , where X = V ∪ I ∪ JF ∪ JR. V is a set of vertex
genes, I is a set of input genes, and JF and JR are sets
of forward and recurrent jumper genes, respectively. For
a gene x and a genotype g = [x1, . . . , xN ] we say x ∈ g iff
∃ 0 < i ≤ N : x = xi. Each vertex gene has a unique identity
number id ∈ N0 and each input gene stores a label label2.
The set of identity numbers and the set of labels are disjoint.
Each vertex gene xi stores a value din(xi), which can be
interpreted as the number of expected inputs (or the number

1The depth of a vertex is defined as the minimal topologi-
cal distance (i.e. minimal number of connections to be tra-
versed) from an output vertex of the network to the vertex
itself, where the path contains only implicitly defined con-
nections.
2Input genes with the same label refer to the same input
(see definition of D).

of arguments) of xi. A forward or a recurrent jumper gene
stores the identity number of its source vertex gene. Each
gene can store different parameters such as, for example, a
weight wi ∈ R. A subsequence gl,m = [xl, xl+1, . . . , xl+m−1]
of g with xl ∈ V is said to be a subgenome of a genotype g if
the number of expected inputs in gl,m is equal to the number
of produced outputs in gl+1,m (i. e. is equal to m − 1)3.

2.1.2 Functions Defined on the Genes of a Genotype
We define four functions, which will be used in proving

the different properties of the genetic encoding. The first
function v : X −→ Z is defined as follows:

v(xi) =

(
1 − din(xi), if xi ∈ V
1, if xi /∈ V

. (1)

The quantity v(xi) can be interpreted as the number of
produced outputs minus the number of expected inputs of
the gene xi. Using this definition, we let

sK =

K−1X
i=1

v(xi), (2)

where K ∈ {1, . . . , N + 1}. Note that this defini-
tion implies s1 = 0. The quantity sK can be inter-
preted as the number of produced outputs minus the num-
ber of expected inputs in the subsequence g1,K−1. We
can now define the set of output vertex genes as Vo =
{xj ∈ g |xj ∈ V ∧ (si < sj ∀ i : 0 < i < j)} and the set of
non-output vertex genes as Vno = V − Vo. The function
parent : X −→ V ∪ ∅

parent(xj) =

(
∅, if (si < sj ∀ i : 0 < i < j)

xi, if si ≥ sj and sk < sj ∀ k : 0 < i < k < j

(3)
defines a relationship between the genes in a genotype. Note
that for an output vertex gene xj , parent(xj) = ∅. Finally,
we define a function depth : V −→ N as

depth(xj) =

(
0 if parent(xj) = ∅
depth(parent(xj)) + 1, otherwise

.

(4)
Table 1 shows an example of a genotype, along with the

resulting values of the above-defined functions.

2.1.3 Genotype Validity Criteria
A genotype g = [x1, ..., xN ] ∈ XN consisting of N genes

has to fulfill the following criteria to be considered a valid
genotype:

Criterion 1: Each vertex gene xi ∈ V must have at least
one input. In other words, din(xi) > 0.

Criterion 2: There can be no closed loops of forward
jumper connection genes in g. A closed loop exists if there
is a way to visit a vertex gene more than once when following
a series of forward jumpers from a source vertex gene to a
target vertex gene.

Criterion 3: There is no forward jumper gene, whose
source vertex depth is less than the depth of its target vertex.

Criterion 4: For a gene xk ∈ g, sk < sN+1,∀ k ∈
{1, ..., N}.
3Each gene produces exactly one output. In the case of ver-
tex genes, the output is either an implicit forward connection
(see below) or an output of the network.
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Figure 1: An example of a valid phenotype with one
output vertex (0) and two input vertices (x and y).

Table 1: The phenotype in Figure 1 is encoded by
the genotype shown in this table. For each gene xi

of the genotype, the gene’s defined properties and
the values of various functions which operate on the
gene are summarized. In the allele row, V denotes
a vertex gene, I an input gene, JF a forward jumper
gene, and JR a recurrent jumper gene. The source
row shows the id of the source vertex of a jumper
gene and the parent row shows the id of the parent
gene.
gene x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

allele V V V I I I V JF I I JR
id 0 1 3 - - - 2 - - - -
source - - - - - - - 3 - - 0
label - - - x y y - - x y -
weight 0.6 0.8 0.9 0.1 0.4 0.5 0.2 0.3 0.7 0.8 0.2
din 2 2 2 - - - 4 - - - -
v -1 -1 -1 1 1 1 -3 1 1 1 1
s 0 -1 -2 -3 -2 -1 0 -3 -2 -1 0
parent ∅ 0 1 3 3 1 0 2 2 2 2
depth 0 1 2 - - - 1 - - - -

Criterion 5: For every xk ∈ g: parent(xk) = ∅ ⇒ xk ∈
V.

The first criterion ensures that there are no vertex genes
without expected inputs, since a vertex gene with no in-
puts results in unused substructures in the phenotype. The
second and third criteria together guarantee that the devel-
oped phenotype contains no loops of forward connections
and, as a result, that the evaluation of the phenotype will
be completed in a finite amount of time. The last two crite-
ria together ensure that the sum of outputs produced for all
genes in g is equal to the sum of all expected inputs. Kas-
sahun[4] describes how one can sample an initial population
of genotypes that fulfill the above mentioned criteria.

2.1.4 Genetic Operators
The genetic operators to be used in CGE should be de-

signed so that the genotypes they produce fulfill the criteria
of the previous section. In this section, we will give examples
of some genetic operators that can be used with CGE.

Parametric mutation: PA : G −→ G. Parametric mu-
tation changes only the values of the parameters included in

the genes (e. g. the weights wi). The order of the genes in g
and PA(g) remains the same.

Structural mutation: ST : G −→ G. An example
of a structural mutation operator that fulfills the criteria
of Section 2.1.3 follows. When the operator operates on
a genotype, it either inserts a recurrent jumper gene, or a
subgenome. If a recurrent jumper gene xk is inserted, it must
be inserted after a vertex gene xi. The source vertex of this
recurrent jumper can be chosen arbitrarily. The number of
inputs din(xi) will be increased by one. If a subgenome is
inserted, it must be inserted after a vertex gene xi. The
subgenome consists of a vertex gene xk followed by an ar-
bitrary number M > 0 of inputs or forward jumper genes.
The source vertex of a forward jumper gene is not allowed to
have a depth less than the depth of xk. The number of in-
puts of the vertex gene din(xi) is increased by 1. Moreover,
the number of inputs din to xk is set to M and its depth is
set to depth(xi) + 1.

Structural crossover: CR : G×G −→ G. A good exam-
ple of a crossover operator that can be used with CGE is the
operator introduced by Stanley [8]. This operator aligns two
genomes encoding different network topologies, and creates
a new structure that combines the overlapping parts of the
two parents as well as their different parts. The id’s stored
in vertex and jumper genes and the labels can be used to
align genomes.

2.1.5 Set of Valid Phenotypes PCGE and Develop-
ment Function D

Each valid phenotype p ∈ PCGE is a directed graph struc-
ture p = (V, E), consisting of a set of vertices V and a
set of (directed) edges E. The set of edges E is parti-
tioned into two subsets: the set of forward connections
EF , and the set of recurrent connections ER. For each
p = (V, EF ∪ ER) ∈ PCGE , the subgraph pF = (V, EF )
is always a directed acyclic graph (DAG). A vertex with no
incoming edge is called an input vertex.

The development function D : G −→ PCGE creates for
every valid genotype g = [x1, ..., xN ] ∈ G a corresponding
phenotype p ∈ PCGE . For each xi ∈ V, p contains exactly
one vertex x̂i, which has the same identity number as xi.
The set of recurrent connections ER in p has a direct one-
to-one correspondence with JR: for each recurrent jumper
gene xi, the vertex whose id equals xi’s source vertex id is
connected via an edge e ∈ ER to the vertex in p whose id
is equal to that of parent(xi). In the same way, for each
xi ∈ JF there is a corresponding forward connection in EF .
For each xi ∈ I, EF contains a forward connection from the
vertex having xi’s label as id4 to the vertex with the same
id as parent(xi). Additionally, there are connections in EF

that are not explicitly represented in g. Each non-output
vertex gene xi ∈ Vno has an implicit forward connection
with its parent vertex parent(xi). The closure property of
D, i. e. ∀ g ∈ G, D(g) ∈ PCGE , will be proven in Section
2.2. An example of a direct encoding of the neural network
shown in Figure 1 is given in Table 1.

2.1.6 The Evaluation Function E
The evaluation function evaluates the developed pheno-

type p ∈ PCGE . D(g) can be interpreted as an artificial neu-

4There may be several labels possessing the same value for
different input vertices, but for each unique label, there ex-
ists only one vertex in p whose id corresponds to that label.
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ral network in the following way: all input vertices of D(g)
are considered as inputs of the network and all other vertices
as neuron nodes. The vertices corresponding to an output
vertex gene in g are the output neurons of the network.
Each forward and recurrent connection causes the output of
its source neuron to be treated as an input of its target neu-
ron. Each artificial neuron stores its last output oi(t − 1).
Let x̂i be a neuron with incoming forward connections from
the inputs x̂1, ..., x̂k and the neurons x̂k+1, ..., x̂l, and the in-
coming recurrent connections from neurons x̂l+1, ..., x̂m. For
an arbitrarily chosen transfer function ϕ, the current output
oi(t) of the neuron x̂i is computed using

oi(t) = ϕ(

kX
j=1

wjIj(t) +

lX
j=k+1

wjoj(t) +

mX
j=l+1

wjoj(t − 1)),

(5)
where the values of Ij(t) represent the inputs of the neural
network. If the network has p inputs and q output neurons,
we can define E as a function which takes the phenotype
D(g) and p real input values, and produces q real output
values, i.e. E : PCGE × R

p −→ R
q .

It is also possible to implicitly evaluate the encoded phe-
notype without the need to decode this phenotype from the
genotype via D. In order to do this, we traverse the genes
in the CGE encoding in reverse (i. e. from right to left) and
evaluate it according to the Reverse Polish Notation (RPN)
scheme, where the operands (input genes and jumper genes)
come before the operators (vertex genes). Using a stack,
we can compute the output by moving from right to left
through the genotype. If the current gene is an input gene,
we push its current value and the weight associated with it
onto the stack. If the current gene xi is a vertex gene, we
pop din(xi) values with their associated weights from the
stack and push the vertex’s computed result and its asso-
ciated weight back onto the stack. If the current gene is
a recurrent jumper gene, we retrieve the previously stored
value of the source vertex gene whose identification number
is the same as that of the jumper gene. We then weight
this value by the jumper-gene weight, and push it onto the
stack. If the current node is a forward jumper node, we first
copy the subgenome starting from a vertex gene whose iden-
tification number is the same as that of the forward jumper
gene. We then compute the response of the subgenome in
the same way as we would for a CGE genotype. Finally, we
weight the computation result by the forward jumper gene
weight, and push it onto the stack. After traversing the
genome from right to left completely, we pop the resulting
values from the stack.

2.2 Properties of the Encoding
In this section we give a formal proof of the properties of

CGE introduced in Section 1. We prove the closure property
of the development function D, and the completeness of G
with respect to D. Furthermore, we show that G is closed
under the genetic operators introduced in Section 2.1.4. In
addition to this, we will show that D(g) can be evaluated
without ending up in an infinite loop. Although these proofs
deal with the case where CGE is used as a direct encoding
method, similar results can also be easily proven for the in-
direct encoding case. We will begin with some propositions
that lay a foundation for the subsequent proofs.

Proposition 1. For a valid genotype g ∈ G, the number of

expected inputs by all vertex genes
X

xi∈g∧xi∈V
din(xi) is equal

to the number of non-output vertex genes, i. e. |(Vno ∪ I ∪
JF ∪ JR)|.

Proof. Assume
X

xi∈g∧xi∈V
din(xi) > |(Vno∪I∪JF ∪JR)|.

Since sN+1 = |Vo|+|(Vno∪I∪JF ∪JR)|−
X

xi∈g∧xi∈V
din(xi),

it follows that sN+1 < |Vo|. Because of the definition of Vo,
there have to be at least |Vo| indices of s, where s reaches
a new maximum. Since s1 = 0 and si ∈ Z, this implies,
that there exists an index i ≤ N with si ≥ |Vo|. This
further implies that si > sN+1, which is in contradiction
with Criterion 4 for a valid genotype.

Now assume that
X

xi∈g∧xi∈V
din(xi) < |(Vno∪I∪JF ∪JR)|.

This implies sN+1 > |Vo|. Since s1 = 0 and si − si−1 ≤
1∀ 0 < i < N , it follows that there exists an i < N with
si > sj ∀ j < i which is not an output vertex gene (otherwise
sN+1 would be equal to |Vo|). This contradicts criterion 5
for a valid genotype.

Because both assumptions lead to contradictions, the
proposition must be valid.

Proposition 2. For g = [x1, ..., xN ] ∈ G with N genes,
sN+1 is equal to the number of output vertex genes |Vo| in
g.

Proof. For sN+1 the following equation is valid:

sN+1 =
X
xi∈g

v(xi) =
X

xi∈g∧xi /∈V
1 +

X
xi∈g∧xi∈V

(1 − din(xi))

=
X
xi∈g

1 −
X

xi∈g∧xi∈V
din(xi) = N −

X
xi∈g∧xi∈V

din(xi)

Because of Proposition 1, it is true thatX
xi∈g∧xi∈V

din(xi) = |(Vno ∪ I ∪ JF ∪ JR)| = N − |Vo|.

Therefore, sN+1 is equal to the number of output vertex
genes |Vo|.

Proposition 3. For a subgenome gl,m =

[xl, xl+1, . . . , xl+m−1], the sum sl,m =

l+m−1X
i=l

v(xi) is

equal to one.

Proof. The sum sl,m =

l+m−1X
i=l

v(xi) can be written as

sl,m =
X

xi∈gl,m

1 −
X

xi∈gl,m∧xi∈V
din(xi)

= 1 +
X

xi∈gl+1,m

1 −
X

xi∈gl,m∧xi∈V
din(xi)

Since gl,m is a subgenome, the number of expected inputs in
gl,m is equal to the number of produced outputs in gl+1,m,

and therefore
X

xi∈gl+1,m

1 =
X

xi∈gl,m∧xi∈V
din(xi) and sl,m =

1.
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Subgenomes are an important concept in CGE, because they
make it possible to treat developed phenotype structures as
a composition of phenotype substructures that correspond
to the subgenomes. This allows for the independent evolu-
tion of modules that can be used as part of larger structures.

Termination of an Evaluation Strategy
There is an evaluation strategy, which evaluates E(D(g), x)
for all g ∈ G, x ∈ R

n without running into an infinite loop.

Proof. Let p = D(g) be an ANN with n output neurons.
The evaluation of E requires the computation of the present
values of the n output neurons. The value of an output
neuron v̂i can be computed using Equation 5 as

oi(t) = ϕ(

kX
j=1

wjIj(t) +

lX
j=k+1

wjoj(t) +

mX
j=l+1

wjoj(t − 1))

The values of Ij(t) represent the inputs of the neural net-
work, and the values oj(t − 1) are stored in the neuron Vj .
Therefore, the computation of oi(t) requires only the prior
computation of oj(t) for j ∈ k + 1, ..., l. These values can be
computed by recursively exploiting Equation 5. The only
way in which this evaluation strategy can get into an in-
finite loop is if the computation of ok(t) for a neuron Vk

involves the value of ok(t) itself. Assuming that this were
the case, it would imply that for a p = (V, EF∪ER) ∈ PCGE ,
pF = (V, EF ) contains a cycle (i. e. pF is not a DAG). From
this it follows that D(g) /∈ PCGE , which is in contradiction
with the closure of D. Therefore, this evaluation strategy
will not run into an infinite loop.

Completeness of G with respect to D.
Every possible phenotype can be represented by a genotype,
i. e. D is surjective: ∀ p ∈ PCGE ∃ g ∈ G : D(g) = p

Proof. Choose any arbitrary p = (V, EF ∪ER) ∈ PCGE .
We want to construct a genotype g ∈ G, where D(g) = p.
First we construct gF with D(gF ) = pF = (V, EF ). Since pF

is a DAG, it can always be transformed into a forest of rooted
trees by removing edges from it5. The number of trees is the
same as the number of outputs of the phenotype network.
For each tree we can construct a gene sequence by traversing
the tree in a depth-first manner6. For each traversed vertex
v̂, we store the id of the vertex and the number of incoming
edges of v̂ in p as din(v). We then concatenate all gene
sequences in an arbitrary order. After this, all edges which
have been removed from the DAG while transforming it into
a forest are inserted into the concatenated gene sequence. If
one of those edges goes from a vertex v̂j (with id j) to a
vertex v̂k (with id k), and v̂j is an input vertex, we insert
an input gene (with label j) after the vertex gene (with id
k) into the gene sequence. If v̂j is not an input vertex, we
insert a forward jumper gene (with source vertex id j) after
the vertex gene with id k. After constructing gF , we add
all edges in ER into gF in a similar fashion. For an edge in
ER going from vertex v̂j to v̂k, we insert a recurrent jumper
gene (with source vertex id j) after the vertex gene with
id k. Because of g’s construction, D(g) = p is true. An
example of this construction is given in Table 2.
5There are usually many different sets of edges that can be
selected for removal, but the described procedure will result
in a valid g ∈ G for only a few of them (see below in the
proof of criterion 3).
6By performing a depth-first traversal of the tree, it is en-
sured that all edges of the tree are contained in the genotype
as implicit forward connections.

Table 2: The table summarizes the construction of a
genotype for the phenotype shown in Figure 1. The
type of a gene is indicated by the capital letters and
the id/source id/label is denoted by the subscripts.
In step I, the tree (which results when removing the
forward connections x5, x6, x8 and x9, and the recur-
rent connection x11 from the phenotype) is repre-
sented. In step II, the omitted forward connections
are inserted (either as input or as forward jumper
gene), and in step III the only recurrent connection
x11 is added. The resulting genotype is not the same
as that shown in Table 1, since the order of the genes
is not uniquely defined (i. e. D is not injective).

Step I V0 V1 V3 Ix V2 Iy

Step II V0 V1 Iy V3 Iy Ix V2 Ix JF3 Iy

Step III V0 V1 Iy V3 Iy Ix V2 JR0 Ix JF3 Iy

We now show that the constructed g is a valid genotype,
and must therefore pass the test against the five validity cri-
teria. Criterion 1 is fulfilled because only vertices with at
least one child vertex (in the extracted forest) are mapped
onto a vertex gene and thus each vertex gene has at least
one incoming implicit forward connection (din ≥ 1). Crite-
rion 2 is also satisfied because there cannot be a closed chain
of forward jumper genes. Each forward jumper gene corre-
sponds to an edge in a DAG which by definition is acyclic.
Criterion 3 is fulfilled if the correct edges are removed when
extracting a forest f from the DAG pF . All edges in f re-
sult in implicit forward jumpers in g and all removed edges
from pF result in (explicit) forward jumper genes. For each
vertex v ∈ V , we choose the edge to be an implicit forward
connection in such a way that the depth of the vertex gene
in g corresponding to v is maximized. In this case, criterion
3 is satisfied.

Furthermore, criterion 5 is satisfied: Assume that ∃ k <
N : parent(xk) = ∅∧xk /∈ V. This implies that xk ∈ I∪JF∪

JR. For every j < k and xj ∈ V, sj < sk ⇒
k−1X
i=j

v(xi) > 0.

This means that the subsequence [xj , ..., xk−1] contains a
subgenome starting with xj . Therefore, there is no xj ∈ V
to which xk can be connected. Because of the construction
of g, there cannot be any input, forward jumper, or recur-
rent jumper which is unconnected (since each of them has
a corresponding element in p that is connected to a vertex).
Hence the original assumption is wrong, and g satisfies crite-
rion 5. The constructed g satisfies also the fourth criterion:
assume that ∃ k ∈ {1, ...N} : sk ≥ sN+1. Choose the min-
imum k which possesses this property. Since criterion 5 is
satisfied (see above) it follows that xk ∈ V. Consider now
the subsequence [xk, ...xN ]. Because sN+1 ≤ sK , it follows

that
NX

j=k

v(xj) ≤ 0. This means that this subsequence of the

genotype contains less produced outputs than the number of
inputs expected by its vertex genes. Due to the construction
of g, the number of expected inputs is always equal to the
number of produced outputs. Therefore, the assumption is
wrong and criterion 4 is satisfied.
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Closure of D.
The development function maps every valid genotype to a
valid phenotype: ∀ g ∈ G : D(g) ∈ PCGE .

Proof. Given any arbitrary g ∈ G, let p = D(g). The
definition of D implies that p is a graph structure. In order
to prove that p = (V, EF ∪ ER) ∈ PCGE , it is sufficient to
show that pF = (V, EF ) is a directed acyclic graph (DAG),
i. e. that there are no cycles in pF . Because of the second
genotype validity criterion, the forward jumper connections
alone, which are explicitly represented in g, cannot cause
a cycle in pF . We now show that no implicit forward con-
nection can be part of a cycle. Assume that there exists
an implicit forward connection from a vertex v̂i to a ver-
tex v̂j , which is part of a cycle c = [v̂l, . . . , v̂i, v̂j , . . . , v̂l].
Because of the definition of implicit forward connections,
depth(v̂i) = depth(v̂j) + 1 (the depth of a vertex v̂ is set
to the depth of its preimage D−1(v̂) in G). Because cycles
have identical start and end vertices with the same depth,
the cycle c has to include an implicit or explicit forward
connection whose source vertex has a depth less than the
depth of its target vertex. Because of the third genotype-
validity criterion, this is never the case for explicit forward
connections. The same is true for implicit forward connec-
tions, since they always connect from a source vertex with
depth d to a target vertex with depth d − 1. Therefore the
assumption is wrong and there is no cycle in pF .

Closure of G under Mutation Operators.
The set of genotypes G is closed under the mutation opera-
tors PA(g) ∈ G and ST (g) ∈ G ∀ g ∈ G.

Proof. Let us first prove that PA(g) ∈ G ∀ g ∈ G. Since
the parametric mutation operator changes only the param-
eters included in the genes (such as weights, etc.), and none
of the five criteria for a valid genotype is influenced by these
parameters, PA(g) ∈ G is true because g ∈ G.

Next, we show that ST (g) ∈ G ∀ g ∈ G. If ST in-
serts a recurrent jumper gene xk after a vertex gene xi,
the number of inputs of the vertex gene xi is increased
by 1. Therefore, snew

k = sold
i+1 − 1. Since v(xk) = 1,

snew
k+1 = snew

k + 1 = sold
i+1. Because sold

i+1 < sN+1, both snew
k

and snew
k+1 are smaller than sN+1, and hence criterion 4 is

satisfied for ST (g). Furthermore, xk could only violate Cri-
terion 5 if ∀ j < k = i + 1 : sj < snew

k . This is not the
case, since xi is a vertex gene with at least one input (the
newly added recurrent jumper) and therefore v(xi) ≤ 0 and
si ≥ snew

k . Criterion 1 is satisfied because no new vertex
genes are introduced and no jumper and input genes are re-
moved, and therefore din(x) ≥ 1 remains true. Criterion 2
is satisfied because no new forward jumpers are inserted. As
a result, the depths of vertices do not change, and criterion
3 is also satisfied.

If ST adds an entire subnetwork [xk, ..., xk+M ] with M +1
genes after a vertex gene xi, ST (g) ∈ G is also satisfied:

since
MX

j=k

v(xj) = 1, all the considerations concerning Cri-

teria 4 and 5 from above remain the same. Criterion 1 is
satisfied because there is only one newly introduced vertex
gene, xk, with din(xk) = M > 0. Furthermore, Criterion
2 cannot be violated, because each newly added forward
jumper gene has xk as its target vertex. Since xk is newly
introduced, there is no forward jumper with xk as its source
vertex. Therefore, the new forward jumper cannot be part
of a closed chain. Criterion 3 is satisfied because the source

vertices of all newly introduced forward jumpers do not have
a depth less than the depth of their target vertices.

Similarly, one can prove the closure of G under the
crossover operator.

3. CGE FOR INDIRECT ENCODING
We will use the edge encoding of Luke and Spector [5] to

illustrate how CGE can be used for the indirect encoding of
network structures. The authors present an alternative to
Gruau’s cellular encoding technique [3] for evolving graph
and network structures via genetic programming. Accord-
ing to the authors, edge encoding differs from cellular en-
coding in the following ways: (1) Edge encoding grows a
graph by modifying the edges in the graph, whereas cellu-
lar encoding grows a graph by modifying the nodes in the
graph. (2) Edge encoding traverses its chromosome in a
depth-first manner, whereas cellular encoding traverses its
chromosome in breadth-first manner. (3) The leaf nodes in
an edge-encoded chromosome represent unique edges in the
resultant graph, while in cellular encoding, leaf nodes rep-
resent nodes in the resultant graph.

The developmental process when using CGE with an edge
encoding is analogous to the implicit evaluation of a geno-
type in the direct encoding case. In contrast to the the
implicit evaluation process in the direct encoding case pre-
sented in Section 2, while developing an edge encoding phe-
notype, the CGE genotype will be executed from the root
node towards leaf nodes.

Edge Encoding Operators. An edge encoding operator
(i.e. a gene in the chromosome) always receives a single edge
as an input from its parent, as well as a (possibly empty)
stack of graph nodes. This permits a depth-first tree traver-
sal, which better preserves the semantics of building blocks
after the application of a crossover operator. Luke and Spec-
tor argue in [5] that the development operators in Table 3 are
sufficient for describing the topology of all connected graphs
of two or more nodes. The Double operator duplicates an
edge connection between two nodes of the developing graph
structure. The Loop operator takes an edge eab (connecting
from node a to b), and creates a new edge ebb (from node b
to itself). The Reverse operator takes an edge eab, and re-
places it with an edge eba, in which the direction is reversed.
Cut eliminates the edge that is passed to it. Push modifies
the node-stack (NS), adding to it a new node. The Attach
operator takes an edge eab, pops a node c off of the NS, and
creates two new edges, eac and ebc. The last two node types
listed in Table 3 do not operate on edges, but only affect
the execution-flow during the developmental process. The
Input node accepts an edge as its input, and does nothing
with it, terminating the modifications to be made on this
edge. Finally, the Jumper node allows for recursive calls to
subgenomes.

CGE Encapsulation. In order to encapsulate edge encod-
ing with CGE, we make use of vertex genes, input genes,
and forward jumper genes (recursive jumper genes are not
needed). Each vertex gene in the CGE genotype is assigned

7
Jumper connections act differently depending on how many times

they have iterated. If the recursion depth has been reached, a jumper
node pops from the ES and NSS. Otherwise it does nothing, passing
execution to its source node.
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Table 3: Operator types used in edge encoding for
generating graphs, the number of output edges they
generate, and the operations performed on the dif-
ferent stacks. Pop operations are represented as ⇑,
and push as ⇓. The upper group are development
operators, and the lower are execution operators.

Operator
Type

Outputs ES
Operations

NS
Operations

NSS
Operations

Double 2 ⇑ (eab),
⇓ (eab, eab)

- ⇑⇓⇓

Loop 2 ⇑ (eab),
⇓ (ebb, eab)

- ⇑⇓⇓

Reverse 1 ⇑ (eab),
⇓ (eba)

- ⇑⇓

Cut 0 ⇑ (eab) - ⇑
Push 1 - ⇓ (nnew) ⇑⇓
Attach 3 ⇑ (eab),

⇓
(eax, ebx, eab)

⇑ ⇑⇓⇓⇓

Input 0 ⇑ (eab) - ⇑⇓
Jumper7 0 - / ⇑ (eab) - - / ⇑

Table 4: An example of a CGE genotype for indirect
encoding of graphs and networks using edge encod-
ing. P , D, A and L indicate the Push, Double, Attach,
and Loop operators, respectively. I and JF indicate
Input and Forward-Jumper genes.

gene x1 x2 x3 x4 x5 x6 x7 x8 x9

allele V V V I JF V I I I
oper. type P D A - - L - - -
id 0 1 2 - - 3 - - -
source - - - - 1 - - - -
recursion
depth

- - - - 1 - - - -

din 1 2 3 - - 2 - - -
v 0 -1 -2 1 1 -1 1 1 1
s 0 0 -1 -3 -2 -1 -2 -1 0
parent ∅ 0 1 2 2 2 3 3 1
depth 0 1 2 3 3 3 4 4 2

an operator-type attribute which represents one of the de-
velopment operators shown in Table 3. In the case of edge
encoding, a forward jumper gene represents a recursive call
to the subgenome that begins with the jumper gene’s source
vertex gene. The recursion depth is stored as an attribute
of the jumper gene. Recursion of this sort allows for the de-
velopment of repetitive parts of a phenotype network, and
results in a compact genotype whose decoding algorithm
terminates. The input genes terminate the further develop-
ment of the edges they receive as inputs. An example of a
genotype is shown in Table 4.

Development of Networks. One key advantage of using
CGE for representing other encodings is that it allows im-
plicit development to be performed on it. In other words,
there is no need to first decode the genotype before develop-
ing it. To facilitate this development, three separate stacks
are used. The Edge Stack (ES) is responsible for storing
edges, and passing them from parent nodes to child nodes.
The Node Stack (NS) stores a list of nodes that are used by
the Attach operator and the Push operator. The Node-

Figure 2: The first three steps in the developmental
process and a fully developed phenotype network
for the example genotype shown in Table 4. Note
that ES represents the stack of graph edges and NS
represents the stack of graph nodes.

a b

1

ES

ab (1)

NS

c
a b

1

ES

ab (1)

NS

c

2

ab (2)

(a) After Push (b) After Double

a b
1

ES

ab (1)

NS

2

ab (2)

c

ac

bc

a
b

1

ES NS

2

c d

(c) After Attach (d) Final network

Stack Stack (NSS) stores the NS state at various points
during the decoding of the chromosome. Table 3 shows the
sequence of operations performed on each stack by the dif-
ferent operators. Important to note is that, in general, the
operators first pop a NS off of the NSS, then make any
needed changes to this NS, and finally push this modified
NS onto the NSS zero or more times.

The implicit development function Dim, which directly
decodes the genotype into the final network, carries out the
following important steps: (1) Initialize the stack of graph
edges with a single edge. (2) Start from the leftmost gene of
the genotype, and move towards the right while developing
the phenotype. (3) If the current gene is a vertex gene, pop
an edge off the stack of graph edges and push n edges, where
n is the number of operator outputs shown in Table 3. If the
current gene is an input gene, pop an edge from the stack
of graph edges and terminate modifications for the popped
edge. If the current gene is a forward jumper gene, either (a)
copy the subgenome whose root node is the jumper gene’s
source, and execute this subgenome, or (b) pop an edge from
the ES and a node-stack from the NSS. Figure 2 shows the
first three steps in the developmental process and the final
phenotype network of the example genotype shown in Table
4.

4. COMPARISON TO OTHER GENETIC
ENCODINGS

In this section we will give a review of representative works
and compare other existing genetic encodings with CGE. For
a detailed review of the works see [10]. Angeline et al. devel-
oped a system called GNARL (GeNeralized Acquisition of
Recurrent Links) which uses only structural mutation of the
topology, and parametric mutations of the weights as genetic
search operators [1]. The main problem with this method
is that genomes may end up in many extraneous discon-
nected structures that have no contribution to the solution.
The Neuroevolution of Augmenting Topologies (NEAT) [8]
evolves both the structure and weights of neural networks.
It starts with networks of minimal structures and increases
their complexity along the evolution path. The algorithm
keeps track of the historical origin of every gene that is in-
troduced through structural mutation. This history is used
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Table 5: Comparison between some representative
genetic encodings and CGE. G, N, CE, and EE stand
for GNARL, NEAT, Cellular Encoding, and Edge
Encoding, respectively.

Property G N CE EE CGE

Completeness
√ √ √ √ √

Closure
√ √ √ √

Modularity
√ √ √

Support direct en-
coding

√ √ √

Support indirect
encoding

√ √ √

Evaluation without
decoding (direct
encoding case)

√

by a specially designed crossover operator to match genomes
which encode different network topologies. Unlike GNARL,
NEAT does not use self-adaptation of mutation step-sizes.
Instead, each connection weight is perturbed with a fixed
probability by adding a floating point number chosen from
a uniform distribution of positive and negative values.

Gruau’s Cellular Encoding (CE) method is a language for
local graph transformations that controls the division of cells
which grow into an artificial neural network [3]. The genetic
representations in CE are compact because genes can be
reused several times during the development of the network
and this saves space in the genome since not every connec-
tion and node needs to be explicitly specified in the genome.
Defining a crossover operator for CE is still difficult, and it
is not easy to analyze how crossover affects subfunctions in
CE since they are not explicitly represented.

A comparison between some representative genetic en-
codings developed so far and CGE with respect to their
completeness, closure, and modularity properties, as well
as some additional features, is given in Table 5.

For the direct encoding case, the ”evaluation without de-
coding” feature of CGE eliminates a step in the phenotype-
development process that would otherwise require a signifi-
cant amount of time, especially for large and complex pheno-
type networks. NEAT has been adapted to evolve modular
networks in a system called Modular NEAT [7], but NEAT
in its original form does not inherently support the evolution
of modular networks.

5. CONCLUSIONS AND OUTLOOK
A flexible genetic encoding that is suitable for both di-

rect and indirect genetic encoding of networks has been pre-
sented. We have shown that this encoding is both complete
and closed. Additionally, we have illustrated how the en-
coding allows, in the direct encoding case, for a phenotype
to be evaluated without the need to first decode it from the
genotype. Moreover, because the encoding’s genotypes can
be seen as having several subgenomes, it inherently supports
the evolution of modular networks in both direct and indi-
rect encoding cases.

In the future, we will investigate the design of indirect en-
coding operators that can achieve compact representations
and significantly reduce the search space. There is much
work to be done in designing genetic operators. In par-
ticular, we would like to develop genetic operators whose

offspring remain in the locus of similarity to their parents
in both structural and parametric spaces. We believe that
more efficient evolution of complex structures would be fa-
cilitated by such operators. Furthermore, we will conduct
experiments to empirically compare CGE with other encod-
ings.
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