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10.1 Introduction

In the last decade the maturation of a new family of intelligent systems
has occured. These systems are designed to model the behavior-based
paradigm. The roots of the paradigm can be found in the rather dis-
parate disciplines of natural science and philosophy. From a technical
point of view they can be summarized as the cybernetic interpreta-
tion of living systems on several levels of abstraction and granularity.
Although not always recognized, the approach aims at the design of
autonomous technical systems.

In this chapter we want to consider the design of behavior-based
technical systems in the frame of a general mathematical language,
that is, an algebra. This algebra should be powerful enough to inte-
grate different contributing scientific disciplines in a unique scheme
and should contribute to overcoming some of the current limitations
and shortcomings inherent to those disciplines. The language we are
using is Clifford algebra [1] in its geometrically interpreted version as
geometric algebra [2]. The use of this algebra results from searching for
the natural science principles forming the basis of systematic system
design according to the behavior-based paradigm of design. There-
fore, we have to consider the motivations of proceeding in this way
and the ideas basic to this approach. The outline of the chapter will
be as follows. In Section 10.2, we will introduce the basic assumptions
of the metaphor of intelligent systems we are using. We will derive its
usefulness from engineering requirements with respect to the desired
features of technical systems. We will then give some arguments in
support of a natural science-based design approach and some already
identified key points will be discussed. One of the most important
of them will be a kind of mathematical equivalence of the perception
and action tasks of a system. Perception will be understood as recogni-
tion of regular spatiotemporal patterns of the perceivable environment,
whose equivalence classes are verified using action. Conversely, action
will be understood as generation of regular spatiotemporal patterns in
the reachable environment, whose equivalence classes are verified us-
ing perception. From this mutual support of perception and action the
need of a mathematical framework like that of geometric algebra will be
deduced. This will be done in Section 10.3 together with a description
of its basic features for modeling geometric entities and operations on
these entities in Euclidean space. We will omit the analysis of man-
ifolds. Instead, in Section 10.4 we will demonstrate the use of this
algebraic language with respect to some basic problems related to the
analysis of manifolds, their recognition, and transformation. There, we
demonstrate the impact of the presented algebraic frame for the theory
of multidimensional signals and neural computing.
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We will follow a grand tour from engineering to philosophy (Sec-
tion 10.2), from philosophy to natural science (Section 10.2), from natu-
ral science to mathematics (Section 10.3), and finally from mathematics
to engineering (Section 10.4) with emphasis on Section 10.3.

10.2 Design of behavior-based systems

10.2.1 From knowledge-based to behavior-based systems

The old dream of human beings, that of designing so-called intelligent
machines, seemed possible as a result of the famous 1956 Dartmouth
conference, during which such disciplines as “artificial intelligence” and
“cognitive science” emerged. Following the zeitgeist, both disciplines
were rooted in the computational theory of mind , and for a long time
they were dominated by the symbol processing paradigm of Newell and
Simon [3]. In that paradigm, intelligence is the exclusive achievement of
human beings and is coupled with the ability of reasoning on categories.

Because of the assumed metaphorical power of computers to be
able to interpret human brain functions, it is not surprising that this
view has been inverted, that is, to be put to work to design intelligent
machines. The strong relations of the metaphor to symbolic repre-
sentations of knowledge with respect to the domain of interest not
only enforced the development of knowledge-based or expert systems
(KBS) but also considerably determined the directions of development
of robotics [4] and computer vision [5]. The corresponding engineering
paradigm of the metaphor is called knowledge-based system design.

Although the knowledge-based approach to vision and robotics
achieved remarkable success in man-made environments, the final re-
sult has been less than satisfactory. There is no scaling of the gained so-
lutions to natural environments. As well, within the considered frame,
system performance is limited not only from an engineering point of
view. This results from the natural limitations of explicit modeling of
both the domain and the task. Therefore, the systems lack robustness
and adaptability. Yet these properties are the most important features
of those technical systems for which engineers strive. The third draw-
back of the most contemporary available systems is their lack of sta-
bility.

All three properties are strongly related to the philosophy of system
design. The problems result from the metaphor of intelligent machines.
From a cybernetic point of view, all biological systems, whether plants,
animals or human beings, are robust, adaptable and stable systems,
capable of perceiving and acting in the real world. The observation of
the interaction of biological systems with their environment and among
themselves enables us to formulate another metaphor. This approach
to intelligence is a socioecological theory of competence, which we will
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call metaphor of biological competence. Its engineering paradigm is
called behavior-based system design.

10.2.2 Metaphor of biological competence

Biological competence is the capability of biological systems to do those
things right that are of importance for the survival of the species and/or
the individual. We use the term competence instead of intelligence
because the last one is restricted to the ability to reason, which only
human beings and some other primates possess. In contrast to intel-
ligence, competence is common to all biological systems. It summa-
rizes rather different capabilities of living organisms on several levels
of consideration as those of perception, action, endocrine and thermal
regulation or, of the capability of engaging in social relations.

For an observer of the system, its competence becomes visible as an
adequate activity. The mentioned activity is called behavior , a term bor-
rowed from ethology. Of course, behavior can also happen internally
as recognition or reasoning. It can be reactive, retarded or planned.
In any case, it is the answer of the considered system to a given sit-
uation of the environment with respect to the goal or purpose, and is
both caused by the needs and constrained by the limits of its physical
resources. The attribute adequate means that the activated behavior
contributes something to reach the goal while considering all circum-
stances in the right way. This is an expression of competence.

Behavior obviously subsumes conceptually at least three constit-
uents: an afferent (sensoric) and an efferent (actoric) interaction of the
system with its environment , and any kind of relating the one with the
other (e. g. by mapping, processing, etc.). Because of the mutual sup-
port and mutual evaluation of both kinds of interaction a useful system
theoretical model is cyclic arrangement instead of the usual linear in-
put/output model. If the frame of system consideration is given by the
whole biological system (a fly, a tree or a man), we call this arrangement
the perception-action cycle (PAC). Of course, the mentioned conceptual
separation does not exist for real systems. Therefore, having artificial
systems follow the behavior-based system (BBS) design of the metaphor
of biological competence is a hard task. Koenderink [6] called percep-
tion and action two sides of the same entity.

An important difference between behavior and PAC thus becomes
obvious. While behavior is the observable manifestation of compe-
tence, the perception-action cycle is the frame of dynamics the system
has to organize on the basis of the gained competence. This distinction
will become important in Section 10.2.4 with respect to the designers’
task.

Competence is the ability of the system to organize the PAC in such
a way that the inner degrees of freedom are ordered as a result of the



10.2 Design of behavior-based systems 225

perceived order of the environment and the gained order of actions
with respect to the environment. A competent system has the capa-
bility to separate relevant from irrelevant percepts and can manage its
task in the total complexity of concrete environmental situations. This
is what is called situatedness of behavior . With the term corporeality
of behavior the dependence of the competence from the specific needs
and limitations of the physical resources should be named. This also
includes determining the influence of the environment on the adapta-
tion of the corporeality during phylogenesis. Both features of behavior
are in sharp contrast to the computational theory of mind. Gaining
competence is a double-track process. On the one hand, learning from
experience is very important. But learning from scratch the entirety of
competence will be too complex with respect to the individual lifespan.
Therefore, learning has to be biased by either acquired knowledge from
phylogenesis or from the learner.

In the language of nonlinear dynamic systems, behavior has the
properties of an attractor . This means that it is robust with respect
to small distortions and adaptable with respect to larger ones. Because
of its strong relation to purpose, behavior has the additional proper-
ties of usefulness, efficiency, effectiveness, and suitability. From this
it follows that an actual system needs a plethora of different behav-
iors and some kind of control to use the right one. This control may
be, for example, event-triggering or purposive decision-making using
either intuition or reasoning, respectively. Behaviors can be used to
conceptualize a system as a conglomerate of cooperating and compet-
ing perception-action cycles. The loss of one behavior does not result
in the breakdown of the whole system. This is the third important
property from the engineer’s point of view, and is called stability .

10.2.3 From natural to artificial behavior-based systems

A general consequence of the sketched metaphor of biological compe-
tence seems to be that each species and even each individual needs
its own architecture of behaviors. This is true to a great extent. This
consequence results from different physical resources and different sit-
uative embeddings of the systems. For instance, the vision task is quite
different for an ant, a frog, or a chimpanzee. There is no unique general
theory of biological competences as regards vision; this is in contrast to
the postulation by Marr [5]. This conclusion may result either in resig-
nation or in dedicated design of highly specialized systems. Because of
the limitations of knowledge-based approaches the last way is the one
that contemporary engineers are adopting for industrial applications.
However, there is no reason to follow it in the longer term.

Indeed, biological competence cannot be formulated as laws of na-
ture in the same way as has been the case for laws of gravity. We should
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bear in mind that competence takes these natural laws into account.
There must be several more or less general principles that biological
systems use towards learning or applying competence. What at a first
glance is recognized as a set of heuristics will be ordered with respect
to its common roots. While as a matter of basic research these princi-
ples have to be identified, over the long term it is hoped that we will
be able to follow the engineering approach. This need of identifica-
tion requires observation of natural systems using, for example, ethol-
ogy, psychophysics and neural sciences, and the redefining of already
known classes of problems.

From a system theoretical point of view, behavior-based systems are
autonomous systems. They are open systems with respect to their envi-
ronment, nonlinear systems with respect to the situation dependence of
their responses to sensory stimuli, and dynamic systems with respect
to their ability to activate different behaviors. In traditional engineer-
ing, the aggregation of a system with its environment would result in a
closed system. As the mutual influences between the environment and
the original system are finite ones with respect to a certain behavior,
this kind of conception seems to make sense. We call this approach the
top-down design principle. The observation of an interesting behavior
leads to modeling and finally to the construction and/or implementa-
tion of the desired function. However, this mechanistic view of behav-
ior has to be assigned to the computational theory of mind with all the
mentioned problems. Instead, we indeed have to consider the system
as an open one.

10.2.4 Bottom-up approach of design

In order to make sure that the behavior will gain attractor properties,
the designer has to be concerned that the system can find the attractor
basin by self-organization. The system has to sample stochastically the
space of its relations to the environment, thus to find out the regulari-
ties of perception and action and to respond to these by self-tuning of
its parameters. This is learning by experience and the design principle
is bottom-up directed.

The bottom-up design of behavior-based systems requires the de-
signer to invert the description perspective with respect to behavior to
the synthesizing perspective with respect to the perception-action cy-
cle. Instead of programming a behavior, learning of competence has
to be organized. The resulting behavior can act in the world instead
of merely a model of it. Yet correctness that can be proved will be
replaced by observable success.

A pure bottom-up strategy of design will make no sense. We know
that natural systems extensively use knowledge or biasing as genetic
information, instincts, or in some other construct. Both learning para-
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digms and the necessary quantity and quality of biasing are actual fields
of research in neural computation. For instance, reinforcement learn-
ing of sonar-based navigation of a mobile robot can be accelerated by
a factor of a thousand by partitioning the whole task into situation
dependent subtasks and training them separately. Another approach
with comparable effect will be gained by delegation of some basic be-
haviors to programmed instincts. The division between preattentive
visual tasks and attentive visual tasks or the preprocessing of visual
data using operations comparable to simple cells in the primary visual
cortex plays a comparable role in the learning of visual recognition.

Thus, to follow the behavior-based paradigm of system design re-
quires finding good learning strategies not only from ontogenesis of
biological systems but also from phylogenesis. The latter one can be
considered as responsible for guaranteeing good beginning conditions
for individual learning of competence. Without the need of explicit rep-
resentation such kind of knowledge should be used by the designer of
artificial behavior-based systems.

The bottom-up design principle is not only related to the learning of
regularities from seemingly unrelated phenomena of the environment.
It should also be interpreted with respect to the mutual dependence
of the tasks. Oculomotor behaviors like visual attention, foveation and
tracking are basic ones with respect to visual behaviors as estimation
of spatial depth and this again may be basic with respect to visual navi-
gation. Because of the forementioned reduction of learning complexity
by partitioning a certain task, a bootstrap strategy of design will be
the preferential one. Such stepwise extension of competences will not
result in quantitatively linear scaling of capabilities. But from the inter-
acting and competing competences qualitatively new competences can
emerge, which are more than the union of the basic ones. From this
nonlinear scaling of capabilities it follows that the design of behavior-
based systems cannot be a completely determined process.

10.2.5 Grounding of meaning of equivalence classes

In KBS design we know the problem of the missing grounding of mean-
ing of categories. In BBS design this problem becomes obsolete as
the so-called signal-symbol gap vanishes. Categories belong to the
metaphor of the computational theory of mind. They are only nec-
essary with respect to modeling, reasoning, and using language for
communication. Most biological systems organize their life on a pre-
categorical level using equivalence classes with respect to the environ-
ment and the self. Equivalence classes are those entities that stand
for the gained inner order as a result of learning. Their meaning is
therefore grounded in the experience made while trying to follow the
purpose. In contrast to classical definitions of equivalence classes they
have to be multiply supported. This is an immediate consequence of
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the intertwined structure of the perception-action cycle. If we distin-
guish between equivalence classes for perception and action, we mean
that they are useful with respect to these tasks [7]. This does not mean
that they are trained either by perception or action in separation. In-
stead, their development out of random events is always rooted in both
multiple sensory clues using actoric verification. Actoric verification
means using actions to get useful sensory data. This mutual support
of equivalence classes by perception and action has to be considered in
the design of special systems for computer vision or visual robotics [8].
A visual navigating system does not need to represent the equivalence
classes of all objects the system may meet on its way but useful rela-
tions to any objects as equivalence classes of sensorimotorics. We will
come back to this point in Sections 10.2.6 and 10.3.2. The grounding
of meaning in physical experience corresponds to the construction or
selection of the semantic aspect of information. The pragmatic aspect
of information is strongly related to the purpose of activity. The syn-
tactic aspect of the information is based on sensorics and perception.
Cutting of the perception-action cycle into perception and action as
separated activities thus will result in the loss of one or another aspect
of the forementioned trinity.

10.2.6 General principles of behavior-based system design

We have identified so far the two most important principles of BBS
design: the knowledge biased bottom-up approach and the multiple
support of equivalence classes. Here we will proceed to identify some
additional general principles of design from which we will draw some
conclusions for the adequate algebraic embedding of the PAC.

Minimal effort and purposive opportunism are two additionally im-
portant features of behavior. These result from the limited resources of
the system, the inherent real-time problem of the PAC, and the situative
embedding of purposively driven behavior. From these two features we
can formulate the following required properties of behavior :

1. fast: with respect to the time scale of the PAC in relation to that of
the events in the environment;

2. flexible: with respect to changes of the environment in relation to
the purpose;

3. complete: with respect to the minimal effort to be purposive;

4. unambiguous: with respect to the internalized purpose; and

5. selective: with respect to purposive activation of alternative behav-
iors.

These need result in challenging functional architectures of behav-
ior-based systems. The realization of useful strategies has to complete
more traditional schemes as pattern recognition or control of motion.
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Thus, the cyclic scheme of the PAC will project also to the internal
processes of purposive information control. This has been shown by
the author [9] with respect to the design of a visual architecture.

As a further consequence there is a need of equivalence classes of
graduated completeness. It may be necessary and sufficient to use only
rough versions of equivalence classes for motion or recognition. This
requires their definition as approximations and their use in a scheme of
progression. Ambiguity need not be resolved at all steps but has to van-
ish at the very end of processing. Besides, if there are other useful ways
or hints that result in unambiguous behaviors the importance of a sin-
gle one will be relative. Simultaneously the principle of consensus [10]
should be used. Such representations of equivalence classes have to
be sliced within the abstraction levels of equivalence classes while tra-
ditional schemes only support slicing between abstraction levels. The
basis functions of steerable filter design [11] in early vision represent
such a useful principle. Another example would be the eigenvalue de-
composition of patterns [12] and motion [13].

This quantitative scaling of completeness has to be supplemented
by a scheme of qualitative completeness of equivalence classes. The
most intuitive example for this is given by the task of visual navigation
[14]. In this respect only in certain situations will it be necessary to com-
pute a Euclidean reconstruction of 3-D objects. In standard situations
there is no need to recognize objects. Rather, holding some dynami-
cally stable relations to conjectured obstacles will be the dominant task.
For this task of minimal effort a so-called scaled relative nearness [15]
may be sufficient, which represents depth order as qualitative measure
for a gaze fixating and moving uncalibrated stereo camera [16].

Here the oculomotor behavior of gaze fixation is essential for get-
ting depth order. Looking at a point at infinity does not supply such a
clue. The general frame of switching between metric , affine or projec-
tive representations of space was proposed by Faugeras [17].

Generally speaking, in behavior-based systems recognition will dom-
inate reconstruction. But in highly trained behaviors even recognition
can be omitted. Instead, blind execution of actions will be supported
by the multiple-based equivalence classes. This means that, for exam-
ple, visually tuned motor actions will not need visual feedback in the
trained state. In that state the sequence of motor signals permits the
execution of motions in a well-known environment using the principle
of trust with respect to the stability of the conditions.

There are other diverse general principles that are used by natural
systems and should be used for BBS design but must be omitted here
due to limited space.
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10.3 Algebraic frames of higher-order entities

10.3.1 Perception, action and geometry

In this section we want to examine some essential features of percep-
tion and action to conclude hereof a mathematical framework for their
embedding in the next sections. In Section 10.2.5 we learned from the
tight coupling of both behavioral entities the need for common support
of equivalence classes. Here we want to emphasize the equivalence of
perception and action with respect to their aims from a geometrical
point of view. In this respect we implicitly mean visual perception.
Mastering geometry indeed is an essential part of both perception and
action, see [18] or the following citations:

Koenderink [19]: “The brain is a geometry engine.”
Pellionisz and Llinas [20]: “The brain is for (geometrical) representa-
tion of the external world.”
von der Malsburg [21]: “The capabilities of our visual system can only
be explained on the basis of its power of creating representations for
objects that somehow are isomorphic to their real structure (whatever
this is).”

The representation problem, as indicated by the citations, will be of
central importance in this section. A system, embedded in Euclidean
space and time, is seeking to perceive structures or patterns of high reg-
ularity, and is seeking to draw such patterns by egomotion. The equiv-
alence classes of a competent system correspond to smooth manifolds
of low local intrinsic dimension [12]. While some patterns of motion are
globally 1-D structures (as gestures), others (such as facial expressions)
are globally 2-D structures but often can be locally interpreted as 1-D
structures.

Both perceptual and motor generated patterns are of high symme-
try . In at least one dimension they represent a certain conception of
invariance as long as no event (in case of action) or no boundary (in
case of perception) causes the need to switch to another principle of
invariance. On the other hand, completely uncorrelated patterns have
an infinite or at least large intrinsic dimension. The smooth manifolds
of the trained state emerge from initially uncorrelated data as a result
of learning.

We introduced the equivalence classes as manifolds to correspond
with the bottom-up approach of statistical analysis of data from RN ,
as is the usual way of neural computation. Within such an approach
the equivalence classes can be interpreted as (curved) subspaces RM ,
M < N, which constitute point aggregations of RN . This approach is
useful from a computational point of view and indeed the paradigm
of artificial neural nets has been proven to learn such manifolds in a
topology preserving manner (see, e.g., Bruske and Sommer [22]).



10.3 Algebraic frames of higher-order entities 231

Yet such a distributed representation of equivalence classes is inef-
ficient with respect to operations, as comparison, decision finding, or
planning. Therefore, equivalence classes have to be represented addi-
tionally as compact geometric entities on a higher level of abstraction.
For instance, searching for a chair necessitates representing a chair it-
self. Although we do not know the best way of representation yet, in the
following sections we will develop an approach to represent so-called
higher order geometric entities as directed numbers of an algebra. In
the language of neural computation these may be understood as the
activation of a grandmother neuron. In Section 10.4.2 we will discuss
such representations in an algebraically extended multilayer percep-
tron.

10.3.2 Behavioral modulation of geometric percepts

Animals have to care for globally spatiotemporal phenomena in their
environment. They use as behavior-based systems both gaze control
and oculomotor behaviors to reduce the complexity of both vision and
action [7, 8]. In this context, vision and action are related in two com-
plementary senses:

1. vision for action : similar visual patterns cause similar motor ac-
tions; and

2. action for vision : similar motor actions cause similar visual pat-
terns.

This implicitly expresses the need to understand vision as a serial
process in the same manner as action. Global percepts result from a
quasi-continuous sequence of local percepts. These are the result of
attentive vision, which necessarily uses fixation as an oculomotor be-
havior. Fixation isolates a point in space whose meaning with respect
to its environment will be evaluated [23]. Although signal theory sup-
plies a rich toolbox, a complete local structure representation can only
be provided by the algebraic embedding of the task, which will be pre-
sented in Section 10.4.1.

Tracking as another gaze control behavior is useful to transform
temporal patterns of moving objects into a stationary state. Conversely
a dynamic perception of nonmoving objects results from egomotion of
the head. The control of the eyes’ gaze direction, especially with respect
to the intrinsic time scale of the PAC, is a demanding task if the head
and body are able to move. Kinematics using higher-order entities, see
Section 10.3.9, will also be important with respect to fast navigation in
the presence of obstacles. It will be necessary to plan egomotion on
the basis of visual percepts while considering the body as a constraint.
That problem of trajectory planning is well known as the “piano mover
problem.” This means that not only distances between points but also
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between any entities such as points, lines or planes are of importance. In
this respect, an alternative to the forementioned sequential process of
attentive vision will gain importance. Indeed, attentive vision is accom-
panied by a fast parallel recognition scheme called preattentive vision.
In preattentive vision the percepts of internalized concepts of certain
regular patterns (also higher-order entities) pop out and cause a shift
of attention. All visual percepts origin from retinal sensory stimuli,
which are projections from the 3-D environment and have to be inter-
preted accordingly. The proposed algebraic frame will turn out to be
intuitively useful with respect to projective reconstruction and recog-
nition. As outlined in Section 10.2.6, oculomotor behaviors are used
for fast switching between the projective, affine or similarity group of
the stratified Euclidean space. In section Section 10.3.9 we will show
how to support these group actions and those of rigid movements just
by switching the signature of the algebra.

10.3.3 Roots of geometric algebra

We have argued in Section 10.3.1 from the position of minimal effort
that to hold a PAC running one needs higher-order geometric enti-
ties. Besides, we indicated the problems of locally recognizing multi-
dimensional signals, and the problems of locally organizing chained
movements in space, respectively. All three problems have a common
root in the limited representation capability of linear vector spaces,
respectively, of linear vector algebra. Although there are available in
engineering and physics more powerful algebraic languages, such as
Ricci’s tensor algebra [24] or Grassmann’s exterior algebra [25], their
use is still limited in the disciplines contributing to the design of arti-
ficial PAC (see for instance [26, 27]) for the application of tensor cal-
culus for multi-dimensional image interpretation, or [28] with respect
to applications of exterior calculus to computer vision. We decided
on geometric algebra or GA [2, 29] because of its universal nature and
its intuitive geometric interpretation. The main bulk of this algebra
rests on Clifford algebra [1] (see [30] for a modern introduction). Yet
it covers also vector algebra, tensor algebra, spinor algebra, and Lie
algebra. In a natural way it includes the algebra of complex numbers
[31] and that of quaternionic numbers (or quaternions) [32]. The use-
ful aspect of its universality is its capability of supporting quantitative,
qualitative and operational aspects in a homogeneous frame. There-
fore, all disciplines contributing to PAC, for example, computer vision,
multidimensional signal theory , robotics, and neural computing can be
treated in one algebraic language. Of course, the existing isomorphism
between the algebras enables the decision for one or another. But often
such decisions are costly. Such costs include redundancy, coordinate
dependence, nonlinearity, or incompatible system architecture. The GA
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is most commonly used in physics, although some related conceptions
as screw theory of kinematics can also be found in robotics [33, 34].
The first attempts on the study of behavior control were published by
Tweed et al. [35] and Hestenes [36, 37].

10.3.4 From vector spaces to multivector spaces

A geometric algebra Gn is a linear space of dimension 2n, which results
from a vector space Vn of dimension n by endowing it with a new type
of product called geometric product. The entities A of Gn are called
multivectors

A =
n∑
k=0

Ak (10.1)

where Ak = 〈A〉k, k ≤ n are homogeneous multivectors of grade k or
simply k-vectors. The GA is a linear and associative algebra with re-
spect to addition and multiplication, endowed with additive and multi-
plicative identities, algebraically closed and commutative with respect
to addition but not with respect to multiplication [2]. Instead, for any
A,B ∈ Gn the product AB is rather complicated related to BA. The
product of any two homogeneous multivectors Ar , Bs , r + s ≤ n, re-
sults in an inhomogeneous multivector C ∈ Gn consisting of a set of
different grade homogeneous multivectors.

C = ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + · · · + 〈ArBs〉r+s (10.2)

This equation offers the desired property of the algebra that the prod-
uct of two entities results in a set of other entities of different grade.
This can be best understood if we consider the lowest grades k-vectors.
They correspond to the following nomenclature: k = 0 : scalars, k = 1 :
vectors, k = 2 : bivectors, ... .

We start with vectors a, b ∈ Vn. They will remain the same in Gn
because for any vector a we will have A1=〈A〉1=a. Therefore, we will
symbolize also in GA a 1-vector as a vector of Vn. Vectors follow the
geometric product

C = ab = a ·b+a∧b (10.3)

with the inner product

C0 = 〈ab〉0 = a ·b = 1
2
(ab+ba) (10.4)

and the outer product

C2 = 〈ab〉2 = a∧b = 1
2
(ab−ba) (10.5)
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so that C is a mixture of a scalar and a bivector. Therefore, in Eq. (10.2)
the term 〈ArBs〉|r−s| = Ar ·Bs stands for a pure inner product and the
term 〈ArBs〉r+s =Ar ∧ Bs stands for a pure outer product component.
If in Eq. (10.3) a∧b = 0, then

ab = a ·b = b ·a = ba (10.6)

and, otherwise if a ·b = 0, then

ab = a∧b = −b∧a = −ba (10.7)

Hence, from Eq. (10.6) and Eq. (10.7) follows that collinearity of vectors
results in commutativity and orthogonality of vectors results in anti-
commutativity of their geometric product. These properties are also
valid for all multivectors.

The expansion of a GA Gn for a given vector space Vn offers a rich
hierarchy of structures, which are related to the subspace conception
of the algebra. From the vector space Vn that is spanned by n linear
independent vectors ai = aiei, ei unit basis vector, results one unique
maximum grade multivector An=〈A〉n that factorizes according

An =
n∏
k=1

ak (10.8)

On each other grade k any k linear independent vectors ai1 , ...,aik will
factorize a special homogeneous k-vector, which is called k-blade Bk
thus

Bk =
k∏
j=1

aj (10.9)

There are l = (nk ) linear independent k-blades Bk1 , ...,Bkl that span the
linear subspace Gk of all k-vectors Ak ∈ Gn, so that all Ak, k = 1, ...,n,
with

Ak =
l∑
j=1

Bkj (10.10)

finally complete with any A0 the inhomogeneous multivector A of the
algebraGn(A), following Eq. (10.1). Hence, each k-blade Bk corresponds
to a vector subspace Vk= 〈Gn(Bk)〉1, consisting of all vectors a ∈ Vn
that meet the collinearity condition

a∧ Bk = 0 (10.11)
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From this it follows that, as with the vector a and the k-blades Bk,
respectively, the vector subspaces Vk = 〈Gn(Bk)〉1 have a unique di-
rection. Therefore, k-vectors are also called directed numbers. The
direction of Bk is a unit k-blade

Ik = ei1 ∧ ei2 ∧ · · · ∧ eik (10.12)

so that Bk=λkIk, λk ∈ R, respectively λk ∈ A0 and eij ∈ 〈Gn(Ik)〉1. Of
course, the same factorization as Eq. (10.9) is valid for k = n. The only
n-blade P ≡ Bn is called pseudoscalar . Its direction is given by the unit
pseudoscalar I that squares to

I2 = ±1 (10.13)

Finally, a remarkable property of any Gn should be considered. Each
subset of all even grade multivectors constitutes an even subalgebra
G+n of Gn so that the linear space spanned by Gn can be expressed as
the sum of two other linear spaces

Gn = G−n + G+n (10.14)

Because G−n is not closed with respect to multiplication, it does not
represent a subalgebra.

10.3.5 Properties of multivector spaces

In this subsection we want to present some basic properties of a GA as a
representation frame that demonstrate both its superiority in compar-
ison to vector algebra and its compatibility with some other algebraic
extensions.

A multivector A has not only a direction but also a magnitude |A|,
defined by

|A|2 = 〈ÃA〉0 ≥ 0 (10.15)

where |A| = 0 only in case of A = 0 and Ã is the reversed version of A,
which results from the reversed ordering of the vectorial factors of the
blades. Because these behave as

|Bk|2 = |a1 · · ·ak|2 = |a1|2 · · · |ak|2 ≥ 0 (10.16)

we get

|A|2 = |〈A〉0|2 + |〈A〉1|2 + · · · + |〈A〉n|2 (10.17)

The magnitude has the properties of a norm of Gn(A) yet has to be
specified, if necessary, by endowing the algebra with a signature, see
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for example, Section 10.3.8. A geometrical interpretation can be asso-
ciated with a k-blade. It corresponds with a directed k-dimensional hy-
pervolume ofGk(A), whose magnitude is given by Eq. (10.15) and whose
k-dimensional direction is given by Eq. (10.12). The inner product of
multivectors expresses a degree of similarity, while the outer product
expresses a degree of dissimilarity. The great power of the geomet-
ric product results from simultaneously holding both. In other words,
the closeness of the GA with respect to the geometric product results
from the properties of the pseudoscalar P that uniquely determines
the properties of the vector space Vn. Because the unit pseudoscalar I
factorizes with respect to a chosen unit k-blade Ik such that

IkIn−k = I (10.18)

any Gn relates two mutual orthogonal vector subspaces Vk=G1(Ik) and
Vn−k=G1(In−k). This results in the definition of a dual k-vector

A∗
n−k = AkI−1 = Ak · I−1 (10.19)

because II−1=1. Thus, the duality operation [38] changes the multivec-
tor basis and enables us to consider any entity from its dual aspect. For
given Ar and Bs the duality of their inner and outer products becomes
obvious

Ar · B∗s = (Ar ∧ Bs)∗ (10.20)

Because in case of r + s=n it follows

P = λI = Ar ∧ Bs (10.21)

also the scalar λ can be interpreted as the dual of the pseudoscalar P ,

λ = [P] = PI−1 = (Ar ∧ Bs)I−1 = Ar · B∗s (10.22)

In Grassmann algebra [25, 28] the extra operator bracket [.], is in-
troduced to define exteriors (or extensors) as the subspaces of the
algebra. While exteriors are in one-to-one relation to k-vectors, and
while Eq. (10.9) corresponds to Grassmann’s progressive product , the
bracket replaces the missing inner product in Grassmann algebra (see
Eq. (10.22)) but is not an operation of the algebra. Furthermore, because

[P] = [a1a2...an] = det(Vn) (10.23)

the scalar λ may be considered as a definition of the determinant of
the vector coordinates {ai, i= 1, ...,n} in Vn. In contrast to this coor-
dinate dependence of the determinant, λmay be computed completely
coordinate independent from multivectors as higher-order entities.

In Section 10.3.8 we will show that k-vectors correspond to tensors
of rank k. If the values of tensors are inhomogeneous multivectors,
conventional tensor analysis can be considerably enriched within GA
(see e.g., Hestenes and Sobczyk [2]).
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10.3.6 Functions, linear transformations and mappings

The aim of this subsection is to introduce some fundamental aspects
of GA that are of immediate importance in the frame of PAC design.
The first one is the exponential function of a multivector A ∈ Gn as a
mapping exp(A) : Gn -→ Gn, algebraically defined by

exp(A) ≡
∞∑
i=0

Ai

i!
(10.24)

The known relation

exp(A)exp(B) = exp(A+ B) = exp(C) (10.25)

is only valid in case of collinearity of A and B, else C ≠ A + B. The
invalidity of Eq. (10.25) in the algebraic embedding of the N-D Fourier
transform will be surmounted in Section 10.4.1. Equation (10.24) can
be expressed by the even and odd parts of the exponential series

exp(A) = cosh(A)+ sinh(A) (10.26)

Alternatively, if I is a unit pseudoscalar with I2 = −1 and, if A is another
multivector which is collinear to I, then

exp(IA) = cos(A)+ I sin(A) (10.27)

Because of Eq. (10.19) or, equivalently AkI = A∗
n−k, Eq. (10.27) can be

read with respect to a dual multivector exponential.

a) k = 3 : A3 = A0I, A0 ∈ 〈G3(A)〉0
exp(A3) = cos(A0)+ I sin(A0)

b) k = 2 : A2 = A1I, A1 = A0e,A0 = |A1|
exp(A2) = cos(A1)+ I sin(A1)
exp(A2) = cos(A0)+ Ie sin(A0)

c) k = 1 : A1 = A2I, A1 = A0e, A0 = |A1|
exp(A1) = cosh(A0)+ e sinh(A0)

d) k = 0 : A0 = A3I
exp(A0) = cosh(A0)+ sinh(A0)

The second point to be considered is the behavior of linear transfor-
mations L on a vector space Vn with respect to the algebraic embedding
into Gn. The extended version L of the linear transformation L is yet a
linear one in Gn and distributive with respect to the outer product.

L(A∧ B) = (LA)∧ (LB) (10.28)

Because of the preserving property with respect to the outer product,
this behavior of a linear transformation is called outermorphism [39].
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The inner product will not be generally preserved. For any k-blade Bk
we have

LBk = (La1)∧ (La2)∧ ...∧ (Lak) (10.29)

and for any multivector A it will be grade-preserving, thus

L(〈A〉k) = 〈LA〉k (10.30)

Now, the mapping of oriented multivector spaces of different maximum
grade will be outlined (which is called projective split by Hestenes [39]).
This is much more than the subspace philosophy of vector algebra.
Although it could be successfully applied with respect to projective ge-
ometry and kinematics (see Section 10.3.9), its great potential has not
been widely recognized yet. Given a vector space Vn and another Vn+1

and their respective geometric algebras Gn and Gn+1, then any vector
X ∈ 〈Gn+1〉1 can be related to a corresponding vector x ∈ Vn with
respect to a further unit vector e ∈ Vn+1,e2 = 1, by

Xe = X · e(1+x) (10.31)

or

x = X∧ e
X · e (10.32)

Thus, the introduction of the reference vector e resembles the rep-
resentation of x by homogeneous coordinates in Gn+1, and it includes
this important methodology. Yet it goes beyond and can be used to lin-
earize nonlinear transformations and to relate projective, affine, and
metric geometry in a consistent manner. Besides, Hestenes [39] intro-
duced the so-called conformal split to relate Gn and Gn+2 via a unit
2-blade.

10.3.7 Qualitative operations with multivectors

So far we have interpreted the inner and outer products as quantitative
operations. We also have seen that both the duality operation and the
projective split are qualitative operations. While the first one realizes
a mapping of multivector subspaces with respect to a complementary
basis, the second one relates multivector spaces which differ in dimen-
sion by one.

With the interesting properties of raising and lowering the grade
of multivectors, the outer and inner products also possess qualitative
aspects. This is the reason why in geometric algebra higher-order (geo-
metric or kinematic) entities can be simply constructed and their rela-
tions can be analyzed, in sharp contrast to vector algebra. Because we
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so far do not need any metrics of the algebra, the set algebraic aspects
of vector spaces should be related to those of the GA. The union (∪)
and intersection (∩) of blades, respectively, their vector subspaces (see
Eq. (10.11)), goes beyond their meaning in vector algebra. An equation
such as

〈Gn(A∧ B)〉1 = 〈Gn(A)〉1 ∪ 〈Gn(B)〉1 (10.33)

where A,B are blades, has to be interpreted as an oriented union of
oriented vector subspaces [2]. With respect to the basic operations of
the incidence algebra, that means the meet and the join operations, the
extended view of GA will be best demonstrated. The join of two blades
of grade r and s

C = A
∧

B (10.34)

is their common dividend of lowest grade. If A and B are linear inde-
pendent blades, the join and the outer product are operations of the
same effect, thus C is of grade r+s. Otherwise, if A∧B = 0, the join rep-
resents the spanned subspace. The meet , on the other hand, C = A

∨
B,

is indirectly defined with respect to the join of both blades by

C∗ = (A
∨

B)∗ = A∗∧B∗ (10.35)

It represents the common factor of A and B with greatest grade. In case
of r + s = n the meet is of grade |r − s| and will be expressed by

C = A∗ · B (10.36)

Because the Grassmann algebra is based on both the progressive prod-
uct and the regressive product of the incidence algebra, it does not
surprise that both GA and Grassmann algebra are useful for projec-
tive geometry , although the projective split and the duality principle
of GA enable a more intuitive geometric view and help enormously in
algebraic manipulations.

10.3.8 Geometric algebra of the Euclidean space

In this subsection we will consider the GAs of the Euclidean space E3

and of the Euclidean plane E2.
From now on we have to consider metric GAs because their vector

spaces are metrical ones. A vector space Vn should be endowed with
a signature (p,q, r) with p + q + r = n, so that Gp,q,r indicates the
number of basis vectors ei, i = 1, ...,n that square in the following way

e2
ij =




1 if j ∈ {1, ..., p}
−1 if j ∈ {p + 1, ..., p + q}

0 if j ∈ {p + q + 1, ..., p + q + r}
(10.37)
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We call an algebra with r 6= 0 a degenerated algebra because those basis
vectors with e2

ij = 0 do not contribute to a scalar product of the vector

space. This results in a constraint of viewing the vector space on a
submanifold. In case of r = 0 we omit this component and will write
Gp,q. Furthermore, if additionally q = 0, the vector space will have a
Euclidean metric .

For a given dimension n of a vector space Vn there are GAs that are
algebraically isomorphic (but not geometrically equivalent), for exam-
ple, G1,1 and G2,0, while others are not isomorphic (as G0,2 to the other
two). In any case, the partitioning Vn = Vp ∪ Vq ∪ Vr will result in the
more or less useful properties of the corresponding algebra Gp,q,r . We
will consider a constructive approach of GAs resulting from the projec-
tive split Eq. (10.31) and the separation of an algebraic space into an
even and an odd linear subspace following Eq. (10.14). While G−p,q con-
tains the original vector space by Vn = 〈Gp,q〉1, there exists an algebra
isomorphism with respect to G+p,q [39]

Gp′,q′ = G+p,q (10.38)

The projective split results for a given unit 1-blade e in p′ = q, q′ =p−1
in case of e2 ≥ 0, respectively, p′ = p, q′ = q − 1 for e2 ≤ 0. We will
discuss some basic results for E3 = R3 and will consider G3,0:

Example 10.1: Geometric Algebra of the Euclidean Space

dim (G3,0) = 8 (1 scalar, 3 vectors, 3 bivectors, 1 pseu-
doscalar)
basis (G3,0) : {1, e1, e2, e3, e23, e31, e12, e123 ≡ I}
e2

1 = e2
2 = e2

3 = 1, e2
23 = e2

31 = e2
12 = −1, e2

123 = I2 = −1
G+3,0 ' IH
dim (G+3,0) = 4
basis (G+3,0) : {1 , e23, e31, e12}

Here eij = eiej = ei ∧ ej and e123 = e1e2e3. Application of the
duality principle Eq. (10.18) results in e23 = Ie1 ≡ -i, e31 = Ie2 ≡ j, and
e12 = Ie3 ≡ k. This 4-D linear space is algebraically isomorphic to the
quaternion algebra, thus G+3,0 ≡ IH.

While quaternions are restricted to R3, the same principle applied
to R2 will result in an algebraic isomorphism to complex numbers C.

Example 10.2: Geometric Algebra of the Euclidean Plane

dim (G2,0) = 4 (1 scalar, 2 vectors, 1 pseudoscalar)
basis (G2,0) : {1,e1,e2,e12 ≡ I}
e2

1 = e2
2 = 1, e2

12 = I2 = −1
G+2,0 ' C
dim (G+2,0) = 2
basis (G+2,0) : {1,e12}
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Here the imaginary unit i is either a bivector e12 or a pseudoscalar
I. While in the first case it represents the unit of the directed area em-
bedded in R2, it indicates in the second case that the unit pseudoscalar
is orthogonal to the unit scalar. Thus, any x ∈ R2, x = x1e1 + x2e2,
may also be represented as complex number S ∈ C,S = x1 + x2i. If i is
interpreted as a bivector, the term S will also be called spinor .

Any bivector B ∈ G3,0 , B = a ∧ c, may either be represented with
respect to the bivector basis

B = B23e23 + B31e31 + B12e12 (10.39)

as the pure quaternion or vector quaternion

B = B23i+ B31j + B12k (10.40)

or as the dual vector

B = Ib = I(b1e1 + b2e2 + b3e3) (10.41)

with b1=B23, b2=B31 , b3=B12. The bivector coordinates

Bij = (a∧ c)ij = aicj −ajci (10.42)

represent an antisymmetric tensor of rank two. Because b = B∗ is
orthogonal to B, it corresponds to the vector cross product in G3,0

b = a× c = −I(a∧ c) (10.43)

which is defined in R3.

10.3.9 Projective and kinematic spaces in geometric algebra

Here we will consider non-Euclidean deformations of the space E3, which
are useful to transform nonlinear problems to linear ones. This can be
done by an algebraic embedding of E3 in an extended vector space R4.
In case of the projective geometry the result will be the linearization of
projective transformations, and in case of the kinematics the lineariza-
tion of the translation operation.

If we consider a 3-D projective space P3, it may be extended to a 4-D
space R4 using the projective split with respect to a unit 1-blade e4,
e2

4=1. Thus, G1,3 is the GA of the 3-D projective space. Its properties
are

Example 10.3: Geometric Algebra of the Projective Space

dim (G1,3) = 16 (1 scalar, 4 vectors, 6 bivectors, 4 trivectors,
1 pseudoscalar)
basis G1,3 : {1, ek, e23, e31, e12, e41, e42, e43, Iek, e1234 = I;
k = 1,2,3,4}
e2
j = −1, j = 1,2,3, e2

4 = 1, e2
1234 = I2 = −1
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This formulation leads to a Minkowski metric of the space R4 [40].
The projective split with respect to the homogeneous coordinate vector
e4 relates the entities of R4 to their representations in E3 such that any
x ∈ E3 can be represented by any X ∈ R4 by

x = X∧ e4

X4
(10.44)

The coordinate e4 corresponds to the direction of the projection [38].

Finally, we will consider the extension of the Euclidean space E3

to a 4-D kinematic space R4 using the projective split with even the
same unit 1-blade e4, but e2

4 = 0. Thus, G3,0,1 will have the following
properties:

Example 10.4: Geometric Algebra of the Kinematic Space

dim (G3,0,1) = 16 (1 scalar, 4 vectors, 6 bivectors, 4 trivec-
tors, 1 pseudoscalar)
basis (G3,0,1) : {1, ek, e23, e31, e12, e41, e42, e43, Iek, e1234 = I;
k = 1,2,3,4}
e2
j = 1, j=1,2,3 , e2

4 = 0, e2
1234 = I2 = 0

G+3,0,1 ' IH+ IIH
dim (G+3,0,1) = 8
basis (G+3,0,1) : {1,e23, e31, e12, e41, e42, e43, e1234 = I}

It can be recognized that the bivector basis of G+3,0,1 has to be di-
vided into two groups {e23,e31,e12} and {e41,e42,e43} with respect to a
duality operation. From this it results that the basis can be built by two
sets of quaternions, the one dual to the other. The synthesized algebra
is isomorphic to the algebra of dual quaternions ÎH [31, 41]

G+3,0,1 ' IH+ IIH ≡ ÎH (10.45)

with I2 = 0.
This algebra is of fundamental importance for handling rigid dis-

placements in 3-D space as linear transformations [32, 33, 34]. This
intuitively follows from the property of a unit quaternion coding gen-
eral 3-D rotation of a point, represented by a vector, around another
point as center of rotation. Instead, in G+3,0,1 there are two lines, related
by a rigid displacement in space. Thus, the basic assumption in the
presented extension of G+3,0 to G+3,0,1 is to use the representation of the
3-D space by lines instead of points [38, 42]. The resulting geometry is
therefore called line geometry , respectively, screw geometry . The last
term results from the fact that the axis of a screw displacement will
be an invariant of rigid displacements in G+3,0,1, just as the point that
represents the center of a general rotation will be the invariant of this
operation in G+3,0.
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10.3.10 Geometric entities in geometric algebra

We will express basicgeometric entities in the algebraic languages of the
Euclidean, projective and kinematic spaces, respectively. Geometric
entities are points, lines, and planes as the basic units or irreducible
invariants of yet higher-order agglomerates. The goal will not be to
construct a world of polyhedrons. But the mentioned entities are useful
for modeling local processes of perception and action, Section 10.3.1,
because of the low dimensionality of the local state space.

In the following we will denote points, lines, and planes by the sym-
bols X, L , and E, respectively, if we mean the entities, which we want
to express in any GA.

First, to open the door of an analytic geometry (see, e.g., Hestenes
[29, chapter 2-6.]), we will look at the entities of G3,0. In this algebra
the identity

X = x (10.46)

X ∈ 〈G3,0〉1,x ∈ E3 is valid. The point conception is the basic one and
all other entities are aggregates of points. Thus,

x ∧ I = 0 (10.47)

implicitly defines E3 by the unit pseudoscalar expressing its collinearity
with all x ∈ E3.

The same principle can be used to define a line l through the origin
by the nonparametric equation x∧ l = 0, therefore, l = λl̄ is the set {x}
of points belonging to the line, and

L = l (10.48)

tells us that all such lines are 1-blades L ∈ 〈G3,0〉1 of direction l̄ and
λ ∈ 〈G3,0〉0 now defines all points belonging to that subspace.

A more general definition of directed lines, not passing the origin,
is based on Hesse’s normal form. In this case the line is an inhomoge-
neous multivector, consisting of the vector l and the bivector M

L = l +M = (1+ d)l (10.49)

Because Eq. (10.49) is in GA, we have a geometric product on the right
side. While the vector l is specifying the direction of the line, the bivec-
tor M = dl = d ∧ l specifies its moment . From the definition of the
moment we see that d is a vector orthogonal to l, directed from ori-
gin to the line. It is the minimal directed distance of the line from the
origin. In the hyperplane spanned by M will also lie the normal vector
of the line l−1, so that d = Ml−1 = M · l−1. Besides, we recognize that
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both l and M or l and d are invariants of the subspace line. From this
it follows that all points x ∈ L will parametrically define the line by
x = (M+ λ)l−1.

With the same model of Hesse’s normal form we can express the
plane E by the 2-blade direction P and the moment M = dP = d∧P,
M ∈ 〈G3,0〉3,

E = P+M = (1+ d)P (10.50)

Here again d =MP−1 =M·P−1 is the directed distance of the plane to the
origin and all points belonging to the subspace plane are constrained
by x = (M+ λ)P−1.

Second, we will demonstrate the incidence algebra of points, lines
and planes in projective geometry G1,3.

In G3,0 equations such as x ∧ l = 0 or x ∧ (l + M) = 0 specify
the incidence of any point x and line l, respectively, line L. In G1,3 the
operations joint and meet will result in the corresponding incidences.
Let X1,X2,X3 ∈ 〈G1,3〉1 be noncollinear points. Any X ∈ 〈G1,3〉1 will be
related withx ∈ R3 by the projective split . Following the join Eq. (10.34),
we construct a line L ∈ 〈G1,3〉2 by

L12 = X1

∧
X2 (10.51)

and a plane E ∈ 〈G1,3〉3 by

E123 = X1 ∧X2 ∧X3 (10.52)

Each point X on a line L results in X∧L = 0, and each point X on a plane
E results in X∧E = 0, thus L and E specify subspaces. The intersections
of entities result from the meet operation Eq. (10.36). If Xs is a point of
intersection of a plane E and a noncollinear line L we get, for example,

Xs = L
∨

E = σ1Y1 +σ2Y2 +σ3Y3 (10.53)

with E=Y1
∧

Y2
∧

Y3, L=X1
∧

X2, and σ1, σ2, σ3 ∈ 〈G1,3〉0 are the brackets
of pseudoscalars of each four points:

σ1 = [X1X2Y2Y3], σ2 = [X1X2Y3Y1], and σ3 = [X1X2Y1Y2]

The intersection of two noncollinear planes E1 = X1
∧

X2
∧

X3 and E2 =
Y1
∧

Y2
∧

Y3 will result in the intersection line

Ls = E1

∨
E2 = σ1(Y2

∧
Y3)+σ2(Y3

∧
Y1)+σ3(Y1

∧
Y2) (10.54)

with σ1 = [X1X2X3Y1], σ2 = [X1X2X3Y2] and σ3 = [X1X2X3Y3]. The
derivations have been omitted, see, for example, [43]. On the base of
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this incidence algebra the constraints resulting from two or three cam-
eras on a geometrically intuitive way can be developed [43].

Finally, we will summarize the representation of points, lines, and
planes as entities of the algebra of kinematics G+3,0,1, with respect to
their constituents in R3. We learned that in this case the Euclidean
space was modeled by the set of all possible lines. From this results
the importance of the bivector base of G+3,0,1. Besides, we identified
the dualities e41 = Ie23,e42 = Ie31,e43 = Ie12, which resulted in a
dual quaternion algebra. Thus, also the desired entities should have
dual quaternion structure Ẑ = Z + IZ∗ with Z,Z∗ ∈ IH and Ẑ ∈ ÎH,
Z = (Z1, Z2, Z3, Z4), Z∗ = (Z∗1 , Z

∗
2 , Z

∗
3 , Z

∗
4 ), so that Ẑi = Zi + IZ∗i are

dual numbers, from which Ẑ may be represented as 4-tuple of dual
numbers Ẑ = (Ẑ1, Ẑ2, Ẑ3, Ẑ4). The components i = 1,2,3 are from R3

and, therefore, are representing the vector part of a quaternion, i = 4
should indicate the scalar component of a quaternion. From this it fol-
lows that any X̂ ∈ G+3,0,1 should be constraint to the hyperplane X4 = 1,
even as the other entities L̂ and Ê.

A line L̂= X̂1∧X̂2, X14=X24=1, may be expressed by

L̂ = L + IL∗ (10.55)

I2 = 0, where the scalar components of L and L∗ are Plücker coordinates
of the line L̂ that also define the coordinate bivector of a plane through
the origin of R4. This plane is spanned by the moment M = dL that
intersects E3, defined as a hyperplane in R4, in the line L̂. Now, we can
identify L as the line direction, represented as an element of IH by

L = L23e23 + L31e31 + L12e12 (10.56)

and its dual part by the moment

L∗ =M = L41e23 + L42e31 + L43e12 (10.57)

thus

L̂ = L + IM (10.58)

For the representation of a point X in line geometry we choose two
points X̂1 = (0,0,0,1) and X̂2 = (X1, X2, X3,1). This results in

X̂ = 1+ IX (10.59)

where X is identified as the point X̂2 on the hyperplane X4 = 1.

Finally, let us consider a plane Ê as a tangential plane at a point X̂
that is collinear with the line and orthogonal to its moment . We get

Ê = P+ IM (10.60)



246 10 The Global Algebraic Frame of the Perception-Action Cycle

where P is the 2-blade direction of Eq. (10.50) and IM = D determines
the 2-blade directed distance to the origin.
At this point we summarize that the considered entities assume dif-
ferent representations in dependence of the interesting aspects. By
switching the signature of the embedding algebra, the one or another
aspect comes into play. But if we consider the objects of interest in
computer vision as moving rigid bodies, projective and kinematics in-
terpretations have to be fused in a common algebraic approach. This
will be a matter of future research.

10.3.11 Operational entities in geometric algebra

Operational entities are geometric transformations that code the net
movements of any geometric entity. The simplest ones are reflection,
rotation, translation and scaling of points. A general principle to get the
complete set of primitive geometric operations in E3 is given by the Lie
group operations. This space of geometric transformations is of dimen-
sion 6. In the given context, first of all we are only interested in a subset
related to rotation and translation. If rigid point agglomerations are of
interest, or if the degrees of freedom increase because of increasing di-
mension of the space Rn, also these primitive operations will become
complicated, time consuming, or they will assume nonlinear behavior.
Because these operations mostly are of interest in combinations, the
question is if there are algebraic embeddings in which these combine
to new ones with own right to be considered as basic operations. An
example is rigid displacement . There has been considerable work in
robotics to reach low symbolic complexity for coding the movement of
complex configurations and simultaneously to reach low numeric com-
plexity [33, 44, 45, 46]. In the frame of PAC, in addition the fusion of
geometric models for geometric signal deformations and robot actions
becomes an important problem, for example, with respect to camera
calibration [47], pose estimation, or gesture tracking [48]. We call the
geometric transformations entities because they themselves are repre-
sented by multivectors in GA. Of course, their special form and their
properties depend strongly on the special algebraic embedding of the
problem.

First, we will consider G3,0, see Example 10.1, and G2,0, see Exam-
ple 10.2. Because of Eqs. (10.3) and (10.27), any two vectors a,b ∈ G2,0
result in an inhomogeneous multivector

C = ab = cosθ + I sinθ = exp(Iθ) (10.61)

where θ is the radian measure of the enclosed angle and the bivector
Θ = Iθ describes an angular relation between vectors a and b in the
plane. Indeed, Θ is a directed area, circularly enclosed between a and
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b, whose direction indicates a rotation from a to b. A rotation from b
to a would result in the reversed multivector

C̃ = ba = cosθ − I sinθ = exp(−Iθ) (10.62)

Any rotated vectors a and a′ are related by either a′ =a exp(Iθ) in case
of an orthogonal rotation or by a′ = exp( Iθ2 )a exp(− Iθ2 ) in case of a
general rotation. We write instead (see Hestenes [29])

a′ = RaR̃ (10.63)

and call

R = exp
(
Iθ
2

)
(10.64)

a rotor with RR̃ = 1.
In comparison to other operational codes of rotation the rotor has

several advantages. Its structure as a bivector is the same as that of
the objects. It is a linear operator and as such it is the same, whatever
the grade of the geometric object and whatever the dimension of the
space is. In contrast to matrix algebra a rotor is completely coordinate
independent. The linearity results in R3 = R2R1, thus

a′′ = R3aR̃3 = R2a′R̃2 = R2R1aR̃1R̃2 (10.65)

Because a rotor is a bivector, it will be isomorphic to a unit quaternion
in G+3,0. If we couple rotation with scaling, then

S = s +R, (10.66)

s ∈ 〈Gn〉0, will be a spinor . Equation (10.66) can be expressed in multi-
plicative form because of Eq. (10.64). Then the action of a spinor corre-
sponds to the action of another rotor R′ that is not of unit magnitude.
The algebra G+3,0 is also called spinor algebra.

A translation in Rn corresponds to an n-dimensional vector, say t.
With respect to a single point x ∈ Rn the translation will be a linear
operation because x′ = x + t. But this is not valid if two points x and
y, related by a distance d = y−x, will simultaneously be translated by
the same vector because

d + t 6= (y + t)− (x + t) (10.67)

A rigid transformation preserves the distance between points of any
aggregation of such. It results in a rigid displacement of the aggrega-
tion. Rigid transformations are rotation and translation, both coupled
together. With the result of Eq. (10.67) no linear method exists in Eu-
clidean space to perform general rigid displacements by linear trans-
formations.
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The introduction of homogeneous coordinates results in several dif-
ferent linearizations of rigid transformations. But the best algebraic
embedding of the problem is given by the GA of the kinematic space,
Example 10.4, or motor algebra G+3,0,1. In this algebra the rigid trans-
formations are expressed by linear relation of two lines. One oriented
line is representing a rotation R using a bivector, another oriented line
is representing a translation T, also using a bivector.. This is the model
of a motor Ĉ as introduced by [49] and developed by Bayro-Corrochano
et al. [50].

Ĉ = X̂1X̂2 + X̂3X̂4 = R + IR′ (10.68)

where R is the rotor as introduced in Eq. (10.64), and R′ is another rotor,
modified by a translator ,

T = exp
(
tI
2

)
= 1+ I t

2
(10.69)

t = t1e23+t2e31+t3e12, see Bayro-Corrochano et al. [50]. The translator
can be seen in these terms as a plane of rotation, translated by t from
the origin in direction of the rotation axis. The motor degenerates in
case of coplanarity of both axes to a rotor, representing pure rotation,
else it represents a screw motion by

Ĉ = R + I t
2

R =
(

1+ I t
2

)
R = TR (10.70)

Notice that Eq. (10.70) represents a motor as an element of the motor
algebra and that Eq. (10.68) represents a motor as an element of the dual
quaternion algebra, Ĉ ∈ ÎH. Although both are isomorphic algebras, the
motor algebra offers more explicitly the relation between translation
and rotation and, therefore, will be more usefully applied in modeling
chained movements. If we apply this code of a rigid transformation to
a line L̂ = L + IM, see Eq. (10.58), then the transformed line will be

L̂′ = L′ + IM′ = ĈL̂ˆ̃C (10.71)

or in full [50]

L̂′ = RLR̃ + I(RLR̃′ +R′LR̃ +RMR̃) (10.72)

The motor algebra and the isomorphic dual quaternion algebra not
only have importance for dense coding of robotic tasks, for example,
chained links, but they will also have high impact on the analysis of
manifolds such as images and image sequences. In the motor algebra
not only linearization of certain transformations will be gained. It also
enables us to use a high degree of invariance with respect to the related
geometric entities.
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10.4 Applications of the algebraic framework

We have motivated the need of a powerful framework of algebraic na-
ture from the viewpoint of designing behavior-based systems and from
well-known intrinsic problems, such as limitations of the involved dis-
ciplines. Furthermore, we could present a useful framework that was
formulated more than one hundred years ago but little noticed to date
in engineering applications. This framework is geometric algebra or
Clifford algebra.

We are developing the application of the algebra with respect to
robotics, computer vision, multidimensional signal theory, pattern rec-
ognition, and neural computing. In the last years we were able to pub-
lish several preliminary results. The actual list of publications and re-
ports can be found on www: http://www.ks.informatik.uni-kiel.
de. But in fact, both the shaping of the framework and the application
of tools are in their infancy. We will not go into details of applications
in computer vision and robotics. Instead, we will introduce two aspects
that are related to the use of GA with respect to multidimensional struc-
ture analysis and recognition. Both topics stress that the GA will have
a great impact on describing manifolds. This is also the field where the
global frame of events, entities, or patterns meets the local frame. This
local frame is strongly related to Lie algebra and Lie groups. Because
every matrix Lie group can be realized as a spin group, and because
spin groups consist of even products of unit vectors—generators of a
spin group are bivectors, it does not surprise that GA will give the right
frame for a Lie group based design of the local frame, see, for example,
[2, chapter 8] and [51, 52].

10.4.1 Image analysis and Clifford Fourier transform

The recognition of patterns in images means capturing the patterns as
a whole and comparing these entities with equivalence classes at hand.
In image processing as in engineering in general, linear methods as lin-
ear transformations or linear filters are preferable to non linear ones
because they are easier to design and handle. Unfortunately, linear
methods most often are not useful to describe multidimensional struc-
tures or to design filters that specifically make explicit such structures.
In case of global patterns that consist of multiple entities—but which
do not have to be distinguished, this does not matter. The Fourier
transform, for example, is a global, linear and complete transforma-
tion whose power spectrum in such cases can be used to distinguish
between several global patterns. In case of linear filters the foremen-
tioned problems, quite the reverse, do limit the set of patterns that
can be modeled to be cross-correlated. Filters are not universal tools
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but highly specified ones. They have not to be complete in general, yet
complete with respect to the modeled structures.

There are several algebraic approaches to overcome these limita-
tions, for example, the tensor filter approach [26, 27] or the Volterra
filter approach [53, 54, 55]. Both approaches resemble to a certain ex-
tent the way we want to sketch. This does not surprise because GA and
the other methods are based on related algebraic roots. Yet there are
specific differences that should not be discussed here.

In the Volterra series approach of nonlinearity there is an interest-
ing equivalence of the order of nonlinearity and the dimension of the
operator, so that the product of both remains constant. That means, if
the order of nonlinearity of image processing in dimension N is given
by just this dimension and the dimension of an operator should be
the same, then the constant would be N2. To design instead an equiv-
alent filter of first order would necessitate a filter of dimension N2.
The basic origin of the nonlinearity problem in the case of multidimen-
sional LSI operators is that their eigenvectors should correspond with
the dimension of the signals. Because the eigenvectors of LSI operators
correspond to the basis functions of the Fourier transform, the key for
solving the problem is strongly related to the algebraic embedding of
the Fourier transform.

These difficulties are also mentioned in textbooks on signal theory—
there is no unique definition of a multidimensional phase in Fourier
transform. Precisely the phase is the feature that represents the cor-
relations, respectively symmetries of multidimensional structure. It is
not a matter of fate to have no multidimensional phase, but a mat-
ter of algebraic adequate embedding of the problem. Zetzsche and
Barth [56] argued that for 2-D signals the 1-D basis functions of the
Fourier transform should be coupled by a logical AND-operator. Later
they presented a linear approach of 2-D filtering using the Volterra se-
ries method [57]. To prevent 4-D filters, they developed an interesting
scheme to operate on a parametric surface in the 4-D space.

Our proposition is that the linear transformation of an N-D signal
has to be embedded in a geometric algebraGN,0, which means in a linear
space of dimension 2N (see [58]).

We call the N-D Fourier transform FN(u) in GA the Clifford Fourier
transform (CFT ); it reads [58]

FN(u) = Fc{f } =
∫
· · ·

∫
f(x)CNu (x)dNx (10.73)

x, u ∈ RN, with the CFT kernel

CNu (x) =
N∏
k=1

exp(−2πikukxk) (10.74)
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The inverse CFT is given by

f(x) = F−1
c {FN}(x) =

∫
· · ·

∫
FN(u)C̃Nx (u)dNu (10.75)

where the kernel of the inverse CFT

C̃Nx (u) =
N−1∏
k=0

exp(2πiN−kuN−kxN−k) (10.76)

is similar to the reverse of a 2N -vector in the language of GA and cor-
responds to the conjugate. The CFT kernel spans the 2N -D space of
the GA in case of Fourier transform of an N-D signal. Each 1-D kernel
component

C1
uk(xk) = exp(−2πiukxk) (10.77)

is a bivector (compare Section 10.3.6), C1
uk(xk) ∈ G+2,0, see Example 10.2.

In the 2-D case we have a quaternionic Clifford kernel C2
u(x) ∈ G+3,0

(see Example 10.1),

C2
u(x) = C1

u1
(x1)∧C1

u2
(x2) (10.78)

In that algebra exist three different unit 2-blades, which results in enough
degrees of freedom for complete representation of all symmetries of
the signal.

The 2-D CFT will be called quaternionic Fourier transform (QFT).
We can generalize the scheme to the preceding proposition about the
adequate embedding of N-D Fourier transforms. With this the Hart-
ley transform assumes an interesting place in the order scheme [58].
While the Hartley transform covers all symmetries of a signal, the 1-D
complex Fourier transform is adequate to represent even and odd sym-
metry in one direction, and the CFT allows for separate representation
of even and odd symmetry in orthogonal directions without fusion as
in the case of 2-D complex Fourier transform.

This important property becomes visible in Fig. 10.1. There are two
nested plots of basis functions of the 2-D Fourier transform in spatial
domain with each five frequency samples in orthogonal directions. The
basis functions of the complex Fourier transform (top) only represent
1-D structures. Even and odd symmetry occur only in one direction.
The basis functions of the quaternionic Fourier transform (bottom) in
contrast represent 2-D structures. Even and odd symmetries occur in
each 2-D basis function in orthogonal directions, besides in the degen-
erated cases x = 0 or y = 0.

Because F2(u) ∈ G+3,0, there are one real and three imaginary com-
ponents

F2 = R(F2)+ iI(F2)+ jJ(F2)+ kK(F2) (10.79)
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Figure 10.1: Basis functions of a the 2-D complex Fourier transform; and b the
2-D quaternionic Fourier transform.
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Figure 10.2: Quaternionic Gabor filter: real and three imaginary components
(top); magnitude and three phase angles (bottom).

which we give a triple of phase angles [59]

(Φ,Θ,Ψ) ∈ [−π,π[ × [−π
2
, π

2
[ × [−π

4
, π

4
] (10.80)

This global scheme of algebraic embedding gains its importance from
the ability to transfer it to a local scheme, thus to extract the local
phase of any 2-D structures by means of linear filters. This necessitates
formulating the algebraic extension of the analytic signal [60]. The
quaternionic analytic signal of a real 2-D signal in frequency domain
reads

F2
A(u) = (1+ sign(u1))(1+ sign(u2))F2(u) (10.81)

and in spatial domain

f 2
A(x) = f(x)+n · fH i(x) (10.82)

with the Hilbert transform fH i(x) = (fH1 , fH2 , fH )T ,

fH = f ∗∗ 1
π2xy

, fH1 = f ∗∗
δ(y)
πx

, fH2 = f ∗∗
δ(x)
πy

(10.83)

and n = (i, j, k)T . This scheme of Hilbert transform to compute the 2-D
analytic signal resembles the results of Hahn [61, 62], but has better
algebraic properties, see [60].

Finally, the computation of the local spectral features can be done
with an algebraically extended Gabor filter [63]. Figure 10.2 shows on
the top row from left to right the real, the i-imaginary, the j-imaginary,
and the k-imaginary components of the quaternionic Gabor filter . On
the bottom row from left to right there is shown the magnitude and
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Figure 10.3: Four texture patterns. Left and right: pure 1-D signals, embedded
into 2-D; middle: weighted superpositions to true 2-D signals.
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Figure 10.4: Phase angle Ψ of QFT discriminates the textures of Fig. 10.3.

the phases Φ,Θ, and Ψ . We will demonstrate the advantage of using
the presented scheme of the 2-D phase. In Fig. 10.3 four textures can
be seen that result from superposition of two unbent cosine structures
f 1 and f 2 with different spreading directions in 2-D following the rule
f (λ) = (1− λ)f 1 + λf 2. From left to right we have λ = 0,0.25,0.5 and
1. Both complex and quaternionic Gabor filters result in the same hor-
izontal frequency of 0.035 pixel−1 and in the same vertical frequency
of 0.049 pixel−1 for all images. Therefore, no linearly local 1-D analysis
could discriminate these patterns. But from the quaternionic phase we
get also the parameter Ψ . In Fig. 10.4 we see that the quaternionic phase
Ψ well discriminates the textures of Fig. 10.3. It should be noticed that
in case of complex Gabor filters four convolutions have been applied
in total (two in horizontal and two in vertical direction), while quatern-
ionic Gabor filters need the same number of convolutions. Thus, we
conclude that an adequate algebraic embedded design of LSI-operators
will result in complete representations of local N-D structures. The de-
velopment of a linear multidimensional system theory is on the way. A
quaternionic FFT algorithmus has already been developed.
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10.4.2 Pattern recognition and Clifford MLP

Neural networks play a crucial role in designing behavior-based sys-
tems. Learning of competence guarantees the designer robustness and
invariance of the systems to a certain degree. Within the class of feed-
forward nets there are two important classes—perceptron derivatives
and radial basis function (RBF, see Volume 2, Section 23.4) derivatives
(for a review of neural networks see Volume 2, Chapter 23). Multilayer
perceptrons (MLPs, see Volume 2, Section 23.2) have been proven to
be the best universal approximators. They operate with a global activa-
tion function. Nets of RBF use a local sampling scheme of the manifold.
Especially the MLP can be embedded into the geometric algebra [64, 65].

The basic motivation of this research is to design neural nets not
only as best universal approximators but as specialists for certain clas-
ses of geometric or operational entities. The aim is to find new ap-
proaches for the design of PAC systems. The key for reaching this
consists of a kind of algebraic blowing up the linear associator because
it operates only in the vector space scheme. This means it can handle
points only as geometric entities but does not use the whole spectrum
of entities with which the linear space of the GA is endowed. The as-
sumption that an MLP can successfully use the additional degrees of
freedom of the algebraic coding has been confirmed. Additional de-
grees of freedom do not only result in better generalization, but accel-
erate learning. Our limited experience permits interpreting the results
as positive ones. We learned that the algebraically extended nets use
multivectors both as geometric and operational entities. We call the al-
gebraically embedded MLP a Clifford MLP or CMLP . Of course, we know
from Section 10.3 that there are multiple algebras. Our design scheme
enables us to activate the one or the other, thus we are able to look at
the data from several different viewpoints [65].

There is also some research from other groups with respect to de-
sign complex and quaternionic neurons, see, for example, [66, 67, 68,
69]. However they developed either special nets for complex or quater-
nionic numbers or could not handle geometric algebras with zero di-
visors [69]. Our design scheme is bottom up, starting from first prin-
ciples of geometric algebra and resulting in general CMLPs that use a
component wise activation function that results in an automorphism
that prevents zero divisor problems during backpropagation.

The mapping function of a traditional McCulloch-Pitts neuron for
input x, output o, threshold θ and activation function f is given by

o = f(
N∑
i=1

wixi + θ) (10.84)
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Figure 10.5: Three-dimensional training patterns for MLP- and CMLP-based
classification of rigid point agglomerates.

The Clifford McCulloch-Pitts neuron [70] on the other hand has the struc-
ture

o = f (wx +θ) = f (w ∧x +w ·x +θ) (10.85)

It contains the scalar product as a vector algebra operation from
Eq. (10.84)

f (w ·x + θ) = f(α0) ≡ f(
N∑
i=1

wixi + θ) (10.86)

and the nonscalar components of any grade of the GA

f (w ∧x +θ− θ) = f(α1)e1 + f(α2)e2 + · · · + f(α2N−1)e1...N (10.87)

To demonstrate the gained performance in comparison to a usual
MLP we show in Figure 10.5 four different 3-D figures that are coded
with respect to their 3-D point coordinates. The chords connecting
two points should demonstrate the shape as 3-D rigid agglomerates of
points. The task is simply to learn these patterns with three real hid-
den neurons of an MLP, respectively, one quaternionic hidden neuron
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Figure 10.6: Rate of false classifications by MLP (solid line) and CMLP (broken
line) for the patterns of Fig. 10.5.

of a CMLP, and to gain zero false classifications. In Fig. 10.6 we see
the error of learning versus the number of cycles. Besides, the curves
(MLP (solid line), CMLP (broken line)) are labeled with the numbers of
false classified patterns. Only if the learning error measure drops to
approximately 0.02 will both nets gain zero false classifications. Yet
the single quaternionic hidden neuron of the CMLP does learn the task
with 1/4 the cycles the three real hidden neurons of the MLP need. The
performance gain of the CMLP results from its intrinsic capability to
represent G+3,0. If we would interpret the need of one or three hidden
neurons by the two kinds of nets only with respect to representing the
components of the 3-D point coordinate vectors, accelerated learning
by the CMLP would not result. Instead, the CMLP uses bivectors for rep-
resentation of the chords between points. These higher-order entities
result in an increase of convergence to gain competence as in Fig. 10.6.

Because GA represents not only geometric but also operational enti-
ties, it is not surprising that a CMLP is able to learn geometric transfor-
mations. We will demonstrate this for a quaternionic CMLP , again with
one hidden neuron. In Fig. 10.7 we see a patch of connected planes
in 3-D space. To the left is the starting pose, to the right the end-
ing pose. The learned transformation is an affine one. The top row
is showing the training data with the following parameters of trans-
formation: rotation 45° with respect to axis [0,0,1], scaling factor 0.8,
translation vector [0.4,−0.2,0.2]. On the bottom row we see the test
data, which are changed with respect to the training data by: rotation
-60° with respect to axis [0.5,

√
0.5,0.5]. In Fig. 10.8 we see the com-

parison of the demanded pose (crosses) with the computed one (solid
lines). The quaternionic CMLP uses one hidden neuron to learn exactly
any agglomerates of lines with respect to a similarity transformation.
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Figure 10.7: Learning of an affine transformation by a quaternionic CMLP.
Top row: training data; bottom row: test data; left column: input data; right
column: output data.

A generalization such as the one shown in Fig. 10.7 cannot be ob-
tained using an MLP with an arbitrary number of neurons. In [68] we
can find a complex MLP with an algebraic structure that fits our CMLP
on the level of complex numbers. There are also some presentations of
learned geometric transformations and the functional analytic interpre-
tation. Our presented frame of algebraic interpretation of the results
is more general. It works for all algebraic embeddings. Any Clifford
neuron can learn all the group actions that are intrinsic to the corre-
sponding algebra and that are not limited to linear transformations as
in the case of a real perceptron.

The presented results demonstrate that algebraic embedded neu-
ral nets are worth considering and that we can design on that base a
new class of neural nets that constitute an agglomeration of experts
for higher-order entities and geometric transformations, respectively.
Because both MLPs and CMLPs operate with linear separation functions
for each hidden neuron, the algebraic embedding supports this scheme
of coding.
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Figure 10.8: Actual results (solid lines) and demanded results (crosses) of learn-
ing an affine transformation by a quaternionic CMLP, see Fig. 10.7.

10.5 Summary and conclusions

We presented an algebraic language for embedding the design of behav-
ior-based systems. This is geometric algebra, also called Clifford alge-
bra (Clifford originally gave it the name geometric algebra). Our moti-
vation in introducing this language for different disciplines (e.g., com-
puter vision, signal theory, robotics, and neural computing) is to over-
come some of the intrinsic problems of the disciplines and to support
their fusion in the frame of the perception-action cycle.

We demonstrated the basic ideas of the framework to make obvi-
ous both their potential and the demanding task of developing this
language to a tool package that is comparable to vector algebra.

Although both the research work and the applications are in their
infancy, we presented some examples that can provide us with an im-
pression of the gained attractive performance. We could demonstrate
that the embedding of a task into geometric algebra opens the door to
linear operations with higher order entities of geometric and kinematic
schemes. On that basis, traditional problems may be reformulated with
the effects of linearization, higher efficiency, coordinate independency
and greater compactness on a symbolic level of coding. As a result
of research in this field, one day we can motivate the VLSI design of
Clifford processors to gain real profit from the compactness of the lan-
guage if used for the design of PAC systems.

A dream could become reality: That in the future we have autono-
mous robots, acting in the complex real world with (visual) percepts
and brains that are computers that are capable of representing and
manipulating multivectors.
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