to be published in Proc. of the |EEE Int.

Synposiumon Ciruits and Systens, | SCAS 98

THE SVD APPROACH FOR STEERABLE FILTER DESIGN*

Gerald Sommer!, Markus Michaelis?, and Rainer Herpers'?

! Cognitive Systems Group, Computer Science Institute,

University Kiel, D-24105 Kiel, Germany

Email: [gs, rhe]@informatik.uni-kiel.de

2 Plettac Electronics, D-90766 Fiirth, Germany
3 GSF - Institute of Medical Informatics and Health Services Research, MEDIS
D-85764 Neuherberg, Germany

ABSTRACT

The first processing step in computational early vision
usually consists of convolutions with a number of kernels.
These kernels often are derived from a mother kernel that
is rotated, scaled, or deformed with respect to other de-
grees of freedom. This paper presents an efficient compu-
tational approach to calculate the responses of arbitrary
mother kernels with arbitrary deformations. Analytical so-
lutions to this problem in most cases are difficult or not
possible. Therefore, we present in this paper a numerical
approach that emphasizes an algebraical point of view.

1. INTRODUCTION

It seems to be a natural demand on the early vision part
of a general vision system to provide explicit information of
images about orientation, scale, and other degrees of free-
dom. Since a few years there has been a growing interest
in generating continuous responses of filters with respect to
these degrees of freedom. Instead of resulting in a tremen-
dous computational burden the application of the steerable
filter approach scales only linearly with the number N of
used basis functions.

The idea of steerable filtering [2, 11, 13] is the following.
Let F(Z) denote the mother kernel with £ € R” or & € Z"
and F,, (%) the deformed kernels with o denoting one or sev-
eral deformations of the mother kernel. These deformations
correspond to the chosen degrees of freedom. ’Steerability’
then refers to a reconstruction formula for the kernels:

Fal@) = ) bu(@)Au(@) (1)
k=1

The kernels Ay (&) are called basis functions, the by ()
are called interpolation functions. By (1) the response of an
image I to a set of kernels {F,, a} in a (quasi) continuum of
the parameter « is calculated by N projections: (I|Fy) =
3 br(@)(T|Ag).

There are different aspects of steerability which are of

interest and which have been addressed in the literature.
One may ask for kernels F' that are exactly steerable with
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a small number of basis functions. Another problem is the
approximated reconstruction for a given kernel. The basis
functions may be predefined or one asks for optimal basis
functions for a given kernel and/or deformation.

A general approach for exact steerability is the Lie group
approach introduced by Michaelis & Sommer in [8, 9]. There,
the basis functions are defined by the invariant subspaces
of the deformation Lie groups. A Lie group approach to
steerability has also been suggested by Hel-Or & Teo [3].

In practice, the Lie group approach turns out to have
several drawbacks [10]. The main drawback is that in the
Lie group approach basis functions are predefined by the
deformation. They are independent of the kernel. In prac-
tice, however, often the kernels are given and one is looking
for an appropriate steering equation.

Perona [12] proposed an approach to steerability based
on the singular value decomposition (SVD) which does not
have the drawbacks of the Lie group approach. The basis
functions and interpolation functions for a given kernel and
deformation are obtained as the left and right singular vec-
tors of the SVD of a linear operator £. This operator is
defined by mapping images I to the continuous responses
of the deformed kernels: L£I(a) := (F,|I). For kernels and
deformations where the Lie group approach needs an infi-
nite number of basis functions this approach has an infinite
number of singular components (i.e. basis functions) as
well, if exact steerability is required. If a certain L?-error
is tolerated, however, it guarantees the minimal number of
basis functions.

Although the concept of steerability could improve many
early vision methods, it is far from being a standard tool in
computer vision. From our point of view the best approach
for most applications is the one of Perona [12]. However,
this approach is hardly used by others. One reason might
be that Perona addresses the case of infinite dimensional
function spaces. In practice, however, finite dimensional
approximations are needed that allow for a numerical so-
lution. Moreover, in practice the images and kernels are
discrete and hence they are restricted to finite dimensional
vector spaces anyway. The main distinguishing feature of
our paper (see also [10]) in contrast to the original Perona’s
formulation is that we explicitly discuss the numerical im-
plementation of the method in finite dimensional function
spaces.

On that base the steering of no more than two simul-



taneous deformations of 2D kernels turns out to be simple
using a standard procedure that we will present in section
2. We will discuss the general calculation of optimal basis
functions to approximate steerability in section 3 and also
the handling of higher dimensional kernels together with
more deformations in section 4. In addition, we will dis-
cuss the benefit of using orthogonal basis functions instead
of deformed copies of the mother kernels. Finally, we will
present in section 5 some consequences of steerable filters
for the design of computational early vision strategies. For
a more complete and by formal proofs enhanced version of
this contribution we refer the reader to [10].

2. A STANDARD PROCEDURE

The intention of this section is to demonstrate that the
application of the theory of steerability by SVD actually
reduces to a few formulas that are straight forward and
simple to implement. This example, however, will suffice in
most cases to steer arbitrary 2D-kernels with no more than
two deformations.

Let F; denote the deformed filters, where ’I’ samples
all deformations together (e.g. orientation and scale). The
continuous (multi-) parameter is denoted by . The matrix
({Fx|F1)) is called the Gramsian matrix. It is real and sym-
metric and therefore, it has a complete set of eigenvectors.
The eigen decomposition of the Gramsian matrix is denoted
by

(Fy|F) = Zuk,zrakUk,z (2)
k

where uy denotes the k’th eigenvector with eigenvalue oy.
The optimal (and orthogonal) basis functions Ax(x,y) are
given by

Ay = Zuk,lFl 3)
.

’Optimality’ here means that a minimal number of basis
functions is necessary for a given L? error. The interpola-
tion functions for arbitrary deformations («) are given by

(Fa|Ak)
by, (@) = 2k (4)
|| Ax]?
The sampling of o in (4) is independent of the sampling
F, = F,, for the Gramsian matrix in (2). The reconstruc-
tion equation now reads:

Farm ) bi()4s (5)
k

It should be emphasized that the calculation of the by
and Ay by (2), (3), and (4) is done once off-line and thus,
it is not time critical for real time applications.

For most practical cases when no more than two defor-
mations are steered this will be the easiest approach. In
other cases, however, the Gramsian matrix can become too
large or too singular. In the following we will discuss the
theory in more detail. This will not only give a deeper
understanding of the method but provides also some more
ideas to calculate the optimal basis functions in more com-
plex situations.

3. OPTIMAL STEERING EQUATIONS IN FINITE
DIMENSIONAL SPACE

3.1. Calculation of the interpolation functions

Given a set of basis functions, the interpolation functions
are calculated by (4) or its generalization for nonorthogonal
basis functions.

b1 () (FulA1)

= G (6)

b (@) (FalAn)

Here, G denotes the Gramsian matrix for the basis func-

tions G = (Ag|Aj). The calculation of the interpolation

functions is done off-line and only once for a given set of
basis functions.

3.2. Calculation of optimal basis functions

The number M of basis functions for the exact reconstruc-
tion of all kernels F, is clearly the dimension of the vector
space spanned by all Fg:

M = dim(span{F,,a}) (7)

Unfortunately this number will be infinite in general and
approximated solutions are needed in practice. Therefore,
we investigate the special problem where we admit approx-
imated reconstructions of the deformed kernels F,, using a
small number NV of basis functions (N < M).

Fo(@) = ) br(a)Aw(d) (8)
k=1

The task is then to find optimal basis functions, so that
for a given approximation error a minimal number of basis
functions is needed or vice versa that for a given number of
basis functions a minimal error is guaranteed.

We investigate numerical solutions what means embed-
ding the problem in a finite dimensional space. Let {Z,,} be
an orthonormal basis that spans such a finite dimensional
space. All functions then are given in Z-representation, i.e.
by the real numbers (Fy|Zy) and (Ax|Z,,). For {Z,,} one
can choose e.g. the Dirac base, the canonical basis func-
tions of the Lie group approach [9], or the Fourier base.
There is no standard optimal choise because it depends on
the filters and deformations. But any basis that approxi-
mately spans all deformed kernels works and usually it is
not difficult to find a worthwhile one. In addition to the
finite basis {Z, } we discretize the deformation (multi-) pa-
rameter, a — a; = I.

As our optimality criterium for a set of basis functions
{Ar} we introduce the following distance that sums up the
least square reconstruction errors of all deformed kernels
embedded in the finite dimensional space spanned by {Z, }.

AUEY. A S FilZn) -3 (Rl (A4dZ0)) (9)
k

l,m

The r.h.s. of (9) is a dyadic approximation of the Z-
expansion matrix A := (Fj|Z,). Least square optimal



dyadic matrix approximations are obtained by the SVD.
This motivates the following central statement that is de-
rived in more detail in [10].

Let {F}} be any set of kernels and (F|Z,,) = Zk Uk, 1Tk Vk,m
the SVD of its Z-expansion matrix. Then, the optimal
orthonormal basis functions are the right singular functions
Ak = Zm Uk,mzm.

Here, ug,vr,and o denote the left singular vectors, right
singular vectors, and singular values for the matrix A. The
corresponding interpolation functions are calculated by (6).

3.3. Reconstruction errors

Qualitatively two types of errors are possible. First, the re-
constructed kernel differs from the original mother kernel.
However, this error could be independent of the deforma-
tion, i.e. the approximated kernel itself could be steered ex-
actly. The second type of error depends on the deformation
so that the reconstructed deformed kernels have varying
shapes. If these variations are too strong they result in dis-
turbing structures in the filter response that are caused by
the steering scheme and not by the local image structure.
The total discretized distance measure (9) sums up the
error of all deformations and is a measure for the first type
error:

d{F},{Ak=1...N}) = > ai  (10)

k=N+1

The deformation-dependent error reads:

L L
d(F{Ak=1...N)~ Y otui =) bi(a) (11)
k=N+1 k=N+1
Depending on the sigular vector uj the maximum dis-
tance with respect to o can differ significantly from the
average distance. The SVD basis functions are not optimal
to minimize this maximum distance or to guarantee that it
will be below a certain threshold.

4. ALTERNATIVE MATRIX REPRESENTATIONS

The Z-expansion matrices A = ((Fi|Zm)) have as many
rows as there are samples for the deformations and as many
columns as auxiliary basis functions Z,, are needed to span
all kernels. In the case of 3D kernels or if several deforma-
tions are steered simultaneously the SVD can become com-
putationally too expensive. Therefore, we discuss different
matrix representations which are advantageous to handle
these cases.

4.1. The Gramsian matrix (AAT)

A matrix that avoids the auxiliary basis {Z,,} is the Gram-
sian matrix ((Fy|F;)) of the deformed kernels. We have
(Fr|F)) = (O, (FulZm){Zm|F)) = AA™. If the SVD is
denoted A = USV”, we obtain AA" = USVTVEUT =
UR?UT, ie. any set of kernels {F;} the Gramsian ma-
trix has the SVD (Fy|F) = ), ugroiurs. The opti-
mal basis functions are then A = El ug, F;. In contrast
to the Z-representation the basis functions here have ab-
sorbed the weights (singular values), Ay = ) ur Fi =

ok Zm Vk,m Lm.-

4.2. The matrix ATA

When steering more than two deformations simultaneously,
we encounter the same problem as for steering nD filters.
The concatenated sampling of all parameters results in very
large columns of the matrix A. In this case the matrix
ATA = (3" i{Z |F1)(Fi|Zpm)) can be used to calculate the
basis functions.

Let {Fi} be any set of kernels and (F}|Z,) = ), uk,10%Vk,m
the SVD of its Z-expansion matrix A. Then the SVD of
ATA is given by (ATA)pm m: = Y, UkmOiVkm . The op-
timal (normalized) basis functions are Ay = ) vk,mZm
which is the same as in Z-representation. Like for the
Gramsian matrix, ATA has squared singular values com-
pared to A and therefore, it is more singular which may
cause numerical problems.

4.3. Auxiliary functions

In case of steering several deformations it can be advanta-
geous to give up the Dirac sampling of the (multi-) parame-
ter @ and to use an orthonormal and complete base {¢;(@)}
of the parameter space instead (or {¢;} in the discrete
case). We define auxiliary functions B; by

B, = Z e Fir (12)
ll

For an appropriate choice of {¢;}, there may be less B;
significantly different from zero than there are Fi. If {¢;()}
is an orthonormal basis, e.g. the Fourier basis, the two ma-
trices (Fi|Zm) and (Bi|Zm,) have the same right singular
vectors and singular values and therefore, both sets of ker-
nels have the same optimal basis functions. Both sets span
the same vector space with the same L*-weights of its com-
ponents. In this case we will call them ’steering equivalent’.

4.4. Splitting large matrices

If the matrices A, AAT, or ATA are still too large to be
handled numerically we can split the matrix according to
the following scheme.

A special case of steering equivalent sets is the original
set of kernels and the optimal basis functions. Hence, the
SVD for a large matrix with M rows can be performed by
splitting it in /N smaller matrices, each containing approx-
imately M/N rows. Then put the weighted right singular
vectors o vx from all submatrices in a new large matrix and
perform the SVD for this matrix. The following statement
expresses that the resulting matrix will provide the correct
basis functions.

Let {B},l'}, {F",1},n = 1,...,N be N sets of func-
tions, where for each n, {Bj,l'} and {F*,1} are steering
equivalent. Then, the two sets {Bj:,l',n} and {F,l,n},
where each is the union of all the N ’small’ sets, are steer-
ing equivalent too.

So far nothing is gained because the new large matrix
has the same size as the original one. To obtain a smaller
matrix we sort all singular values of all partial matrices by
magnitude (one queue for all) and drop all singular com-
ponents below a threshold. This procedure will introduce
some unknown errors. However, usually the error is small
and it has the order of magnitude of the threshold.



5. STEERABLE FILTERS FOR EARLY VISION

Usually steerable filters are only used as a black box tool for
the efficient calculation of signatures with respect to certain
deformations. However, the following ideas suggest a deeper
impact on computational early vision methods. Especially
the design of visual architectures following behaviour based
approaches requires to support attentive, purposive, and
progressive recognition [14]. All three aspects are intrinsic
features of steerable filters if they are interpreted as projec-
tion or matching operators.

5.1. Progressive filtering scheme

Corresponding to the principle of economy of time a pro-
gressive scheme of recognition allows to abandon the process
if the measure of the confidence or evidence is sufficiently
high. The template in this frame is the equivalence class
which is a purposively constrained approximation of the
ideal one. That necessitates a gradual decomposable tem-
plate to allow for a gradual increase of matching results.

The principle of progression is inherent to the steering
filter approach of recognition, especially to the SVD ap-
proach. This results from the orthogonality and ordinality
of basis functions. Indeed, any number of basis functions
reconstruct all deformed filters. Only the quality of the re-
construction changes (fig. 1, middle box). Therefore, the
whole parameter range of the deformations is covered with
any number of basis functions. This allows for an adapta-
tion of the reconstruction of the deformed mother kernel to
the required quality of the equivalence class with respect to
the purpose. The purpose of the task allows for a modula-
tion of the reconstruction within a feedback loop [14].

5.2. Hierarchical filtering scheme

Inherent to the proposed architecture of early vision is a
generic scheme of grouping, realized as a layered architec-
ture with feedback. At the bottom of this architecture a set
of basis functions may constitute a set of irreducible, invari-
ant mother kernels. At higher levels aggregations of these
primitive kernels synthesize more complex kernels with any
useful invariance properties [1]. May be that there is the one
for the grandmothers face. Figure 1 (bottom box) shows
a simple example of constructing several filters from the
one in figure 1 (middle box). This approach of synthesiz-
ing successfully complex steerable templates from primitive
ones (fig. 1, middle to bottom box) has been used for face
processing applications [4].

5.3. Sequential filtering scheme

A set of several steerable filters embedded in a purposive
controlled feedback loop allows for a local selection (with
respect the structural features) and adaptation (with re-
spect to the degrees of freedom) of the mother kernels to
respond optimally to the local signal structure. With other
words, non stationary filtering with all the above mentioned
features of progression and hierarchy may be organized as a
very efficient tool. Edge tracking (e.g. fig. 1, bottom right)
with translation, rotation, and scale as degrees of freedom
has been successfully implemented for the detailed analysis

basis functions Ag

primitive kernels reconstructed with different numbers of Ay

g

complex kernels and active operations in different qualities

Figure 1: Fundamental idea of the steerable filtering
scheme. First step (top box): examples of basis functions.
Second step (middle box): primitive kernels are recon-
structed with different numbers of basis functions. Third
step (bottom box): circular kernel with 4 primitive kernels
and 10 basis functions for each (top left). Circular kernel
with 28 primitive kernels and 30 basis functions for each
(top right). The gap in the circular kernel is motivated by
its use as an iris-detector. An one-sided kernel that is ro-
tated around a shifted center (bottom left). An active edge
tracking operation that searches for the next edge element
(bottom right).

of facial regions [7]. Figure 2 illustrates several examples
of recognizing facial structures and anatomical landmark
positions.



Figure 2: Results of the sequential filtering scheme applied
to several facial regions to detect anatomical landmark posi-
tions. An initial detection of prominent edge or line features
is performed applying model knowledge, followed by a se-
quential edge and line tracking. During all these processing
steps the filters used are adapted optimally to the underly-
ing image structure to ensure optimal filter responses.

6. CONCLUSIONS

In this paper we discussed the numerical approach of steer-
able filter design based on SVD. The benefits of the SVD
method in comparison to the algebraic (Lie group) approach
[9] are:

o It steers any set of filters, not only continuous defor-
mations of a mother filter.

e A minimal number of basis functions is required (with
respect to the overall L?-error). This number is sig-
nificantly smaller than for the Lie group approach.

e For rotations and periodic translations it is identical
to the Lie group approach. Hence, (partial) analyti-
cal solutions are possible and the steering is exact in
these cases.

e The numerical calculation of the basis functions (ver-
sus analytical in the case of the Lie group approach)
allows to apply simple black box tools to any new
kernel and deformations without difficult analytical
calculations.

We want to mention that steerable filters have no in-
trinsic drawbacks and they are not intrinsically expensive.
The off-line and on-line extra costs and the complexity are
’scalable’. On that base we presented some adaptive pro-
cessing schemes which apply the embedding of steerable
filters in purposive early vision. Our experience with such
implementations allows us to recommend steerable filters
also in time-critical applications as we have shown in a face
processing example [4, 5, 6].
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