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Abstract. We address in this paper the design of behavior based sys-
tems from a bottom-up viewpoint. Although behavior is an observ-
able property of a system, and therefore immediately causes a top—
down model, the approach has to be inverted to support the learning
of equivalence classes of the perception—action cycle. After introducing
the paradigm in the frame of a socio—ecological theory of biological sys-
tems, we discuss the natural science problems to be solved for successful
design of behavior based systems by a bootstrap of perception—action cy-
cles. The necessary fusion of robotics with computer vision, neural com-
putation, and signal theory needs a common theoretical framework. This
framework consists of a global algebraic frame for embedding the per-
ceptual and motor categories, a local algebraic framework for bottom—up
construction of the necessary information, and a framework for learning
and self—control, based on the equivalence of perception and action. Ge-
ometric algebra will be identified as the adequate global algebraic frame,
and the Lie theory will be introduced as the local algebraic frame. We will
demonstrate several applications of the frames in early visual processing.
Finally, we will finish our discussion with the fusion of local approaches
and the global algebraic frame with respect to both the formulation of
an adequate multidimensional signal theory and the design of algebraic
embedded neural processing. In both cases we will discuss the relation
to the non—linear Volterra series approach, which, in our framework, will
be reduced to a linear one.

1 Introduction

In this paper, we want to promote the consideration of algebraic aspects in the
process of fusion of disciplines such as computer vision, robotics, neural com-
putation, and signal theory, which have been developed separately until now.
We conclude the necessity of following this line from two contradicting roots.
In principle, the paradigmatic frame and the technical resources are available to
develop vision based robots or autonomous self-navigating systems. However,
the conceptions of handling phenomena of spatio-temporal geometry are very
limited in the contributing disciplines and there exist, at least partly, deep gaps
between the mathematical languages used. This judgement may surprise but
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will be substantiated later on. Another point of shortcoming is the following.
The mathematical framework should support a constructive way of capturing
spatio—temporal geometric phenomena of the world, while we often use a de-
scriptive approach. Because each non—pathological algebraic structure can be
approached either from top—down or from bottom—up we have the possibility
at changing our viewpoint. That means that the problems to be solved have
to be formulated from the systems point of view which has to gain structural
concepts from seemingly non—coherent phenomena in the learning stage and has
to match phenomena of the world to isomorphic representations of them in the
matured stage. In other words, we have to support learning by experience by
means of separation of variant from invariant phenomena and have to reduce
the explicit formulation of categories by programming. In that way algebra will
meet stochastics insofar as e.g. geometric entities as points, lines or planes are
conceptions of the top—down approach which can only be approximated from
bottom—up by recognizing the corresponding algebraic properties (symmetries)
in the manifold of sensory data. From this follows that the bottom—up approach
does not result in the so—called signal-symbol gap.

In the last decade great progress has been made in the conceptualization of
computer vision (paradigmatic extension to active and purposive vision, use of
projective geometry), signal theory (wavelet theory, local spectral features), and
in the availability of dedicated and powerful computer systems. But we made
only minor progress in adequate representation of multidimensional signals from
a local approach, in the unification of spatio-temporal phenomena (patterns
and motion), in recognition of projective geometric relations on signal level, in
integration of neural computation and computer vision, in neural learning theory,
in designing robust and adaptive systems, and e.g. in architectural design of
visual systems. All these problems in a certain sense are related to the algebraic
frames used to formulate the solutions.

The fusion of perception and action in the frame of the so—called percep-
tion action cycles (PAC) is the paradigmatic starting point for the design of
behavior based technical systems. Behavior is the observable expression of the
competence gained in realizing PAC. But while behavior corresponds the top—
down approach, the design of PAC is our view of bottom—up approach. The
hypothesis of this direction of research consists in a possible bootstrap of robust
and adaptive systems by equipping systems with the ability to organize such
cycles and the cooperation/competition between by themselves. In contrast to
programmed solutions, the result of such self-organization may not be provably
correct from a designers point of view, but the degree of success is observable
and may be analyzed by statistical means.

Biological systems, if they are plants, ants or human beings, are successful
behavior based systems, although most of them do not know about algebra.
The question is, do we as system designers know enough on that topic or do
the mathematicians have the right algebras in their desks. Nobody knows the
answer. But we know the sluggishness of the human society and the preference
of the technicians for simple, linear, and in consequence suboptimal solutions.



Therefore, linear algebra of vector spaces is the frame commonly used to embed
almost all our problems. It is our opinion that we have indeed powerful math-
ematical languages for embedding PAC. But they are either not known to the
community or are ignored because of the burden of both to make them useful
or to pick them up.

D. Hestenes [34] for a period of thirty years has been promoting the use of a
geometric interpreted version of Clifford algebra in physics. He calls it geometric
algebra. We will follow him in using this algebra as a global frame of embedding
PAC and even calling it geometric algebra. On the other hand the bottom—up
approach of PAC necessitates a local algebraic embedding of perception and
action to recognize and generate patterns of certain symmetry. This local frame
is Lie theory [61].

It seems to us that the problems of putting real phenomena in space-time
into a rich mathematical frame is rooted in the same manner in algebra as
those of physics. May be, a special slot of scale (macroscopic phenomena) has
to be considered and we have not to regard electrodynamics, quantum effects or
relativity, although their metaphoric potentials are enormous. But our central
questions are

— In which manner the perceptible and experienced world can be struc-
tured most successfully?
— What has to be the functional architecture of such systems?

To answer these questions, there is a need of more complex mathematics to
formulate things more simply and to make them work with limited resources,
taking into account both the complexity and the constraints of real world.

Indeed, geometric algebra and Lie theory are more complex than linear al-
gebra of vector spaces. But our research group started two years ago successful
work in overcoming shortcomings in disciplines contributing to the design of PAC
systems by using extended possibilities of representing geometric relations in this
frame. Nevertheless our work 1s in infancy. This may not wonder in comparison
to the long lasting role of vector algebra in engineering and science.

The outline of the paper is as follows. In section two we will give a sketch of
the behavior based systems paradigm. In section three we will outline our vision
of the theoretical framework of embedding the design of such systems. Section
four is dedicated to a short discussion of exemplary use of the framework of
geometric algebra in early vision and learning of geometry. The paper will be
accompanied by three special contributions of our group, dedicated to special
problems and presented at the same workshop.

Our view will be biased by the aspects of visual sensory recognizing the world.
This is based on the fact that we are predominantly interested in behavior based
design of visual systems, and we have to make clear with this respect the role of
action in building perceptual categories and their use in PAC. Another view may
be perceptually supported autonomous systems, especially visual based robotics.
Both viewpoints have to be understood as the two sides of one medal and are
fused in the paradigm of behavior based systems.



2 Behavior Based Systems as Paradigm

In this section, we want to summarize the evolution and the essential features
of the paradigm of behavior based systems. With these respects we will focus
on the problems of computer vision and their overcoming by extension of the
scope. On that base we will draw a sketch of natural science problems which in
our opinion have to be coped with to develop technical systems based on that
paradigm. The engineering science problems will not be dealt with.

2.1 Two Metaphors of Intelligence

The term behavior is borrowed from ethology and stands for the basic capa-
bilities of biological systems which guarantee survival of the species and/or the
individual. Famous ethologists as K. Lorenz [40] and N. Tinbergen [66] con-
siderably contributed to the change of the metaphoric view of intelligence, re-
spectively brain theory [57, 24]. Besides, results of molecular and evolutionary
genetics on a completely other level of living systems brought into consideration
that information processing is an inherent capability of all biological systems,
on which level ever [25]. Not only from biology, ethology, and psychology [27]
but also from the growing knowledge of physics on complex, non-linear, and dy-
namic self-organizing systems [32], the behavior based paradigm of “intelligent”
systems is superseding the paradigm of knowledge based systems.

Both paradigms of system design are outcomes of quite different metaphors
on understanding intelligent achievements or intelligence by themselves (see table
1). Common to both metaphors is only that there are biological systems (man),
which are interpreting what they observe and are trying to use the gained models
for construction of technical systems with comparable performance to that of
living systems. All other aspects are fundamentally different.

The computational theory of mind is rooted in the results of logics, linguis-
tics, and the brilliant von Neumann architecture of computers. Their advocates
viewpoint is a top—down one and expresses the dominance of description of ob-
served phenomena.

To oppose that metaphor to the socio—ecological theory of biological systems,
the following summary of the implicit assumptions of the computational theory
of mind will be given:

1. The world can be formally modeled using terms of our language or categories
as representations (symbols) of equivalence classes.

2. Information is an intrinsic entity of the world as energy or matter. Informa-
tion processing is a process as conversion of energy in physical processes. It
can be done on an abstract level of symbols and independently of the material
base of the system.

3. Intelligence is that of human beings and those may use it for top—down design
of tasks. The problem solutions should be provably correct and themselves they
can be interpreted as achiecvement of intelligence of the computing system.



4. On that base, any partial aspect of the world can be considered in isolation

to construct a complete solution from a set of partial ones of any problem
the designer may formulate.

Metaphor

Computational Theory
of Mind

Socio Ecological Theory
of Biological Systems

basic roots

logics, linguistics
von Neumann computer
architecture

cybernetics
molecular and evolut. genetics
ethology
evolutionary theory of knowledge
synergetics

basic paradigms

information processing
(symbol processing,
connectionism)

information selection and
construction

empiric aim

understanding intelligence
of human beings

understanding competence
of biological systems

disciplines computer science artificial life
artificial intelligence neural Darwinism
cognitive science vision based robotics
(computational neuroscience) synthetic psychology
engineering computer engineering mechatronics
roots computer vision computer vision
robotics (active, animate, qualitative, purposive)|
reactive robotics
engineering knowledge based system behavior based system
paradigms design design

normative aim

construction of intelligent
machines

construction of autonomous

systems

Table 1. The change of metaphors

Although the power of facts created by universal computer machines is im-

pressive, on that base the hopes of computer vision and robotics regarding the

development of engines which are robust and adaptive in their performance could

not be realized.

The socio—ecological theory of biological systems stands in very contrast to
these conceptions. Although their advocates also start with the observation of
phenomena of living systems (behavior), they have to invert their viewpoint

into a bottom—up approach by asking what principles are running so that living
systems can show stabile behavior.



The implicit assumptions of the socio—ecological theory of biological systems
are:

1. The formalized models of the world are idealized conceptions of the reality
and nsofar they are not useful, neither to understand living systems nor to
realize comparable performance.

2. Instead, any behavior is based on a sufficient approximation of categories by
equivalence classes with respect to the resources of the system and its purpose
in dependence of the situation.

3. Information is a prerequisite for behavior. It is a result of an active process
of interaction of the system with its environment, and it is the result of
purposive construction, gathering and selection. If we call this process also
information processing, it happens on real (sensoric mapped) data from the
total complezity of the world.

4. Equivalence classes stand for the gained order of the system’s internal degrees
of freedom and without having a language there is no need to conceptualize
categories.

5. Competence should be understood of having equivalence classes as a prerequi-
site of behavior. Insofar, competence is a kind of real intelligence and much
more general than this because each living system on each level of organi-
zation, reaching from phages to vertebrates and from macromolecules to the
body, will need it.

6. Competence cannot be programmed but has to develop by purposively con-
strained self-organization of the internalized representations of phenomena
of the environment.

7. Competence s only provable by the success of behavior. It may be based
on knowledge which has been acquired by the species during phylogenesis,
has to be transmitted to the individual by genes, or/and may be learned by
individuals during ontogenesis.

8. As emergent property of a behavior based system, competence is robust and
adaptive if there are no dramatical changes of individual resources or envi-
ronment.

9. Behavior based systems are open systems with respect to their environment,
non-linear ones with respect to the situation dependence of their responses to
sensory stimuli, and dynamic ones as they change their behavior as answer
on the same signals in different situations.

If we want to follow that metaphor [52] to design behavior based systems, the
result would be in any case a kind of autonomous system. It seems to become
visible that we not only have to make systems running but have to work out fun-
damental new principles of design. It is far from being sufficient to change from
the symbolic to the subsymbolic level of information processing. This change
of the computational paradigm remains in the computational theory of mind
metaphor if not the essence of behavior based systems will be considered. This
essence is to close the loop between system and environment, the perception—
action cycle, by using the afferent and efferent channels [35].



2.2 Evolution of the Paradigms of Visual Information Processing

Remarkable stimuli for the yet ongoing process of redefinition of the paradigmatic
base of artificial intelligence came from deep conflicts recognized in computer
vision one decade ago. The proceedings of computer vision conferences of the
last years make obvious important contributions to shape the conception of
behavior based visual architectures. Progress has also been reached in robotics.

D. Marr [43] formulated the computational theory of vision on the base of the
information processing paradigm of cognitive science using the symbol processing
paradigm of Newell and Simon [48]. Assuming that vision is an inherent task in
the world and resting on a general theory, he postulated the famous three—step
procedure for the top—down design of a visual system:

1. computational theory: formulation of the general task and the way to find
the solution by considering necessary constraints and boundary conditions,

2. representation and algorithm: specification of a formal procedure,

3. implementation: assumption of independence of the procedure with re-
spect to the hardware at hand.

This approach resulted in insights into important relations between the spatio—
temporal macroscopic structures of the world and hypothetical vision tasks. Ex-
amples are the role of projection operator and shape—from—X tasks. A dramatical
consequence of Marr’s theory has been the thesis that vision mainly could be
understood as reconstruction of the world from sensory data. The sensory part
of the visual system together with geometry and illumination would constitute a
general operator of sensory imaging. Perception would be defined by application
of the inverse operator. Visual perception as ill-posed inverse problem should be
regularized to become well-posed [65] by adding to the sensory data constraints
regarding geometry and physics of imaging, and knowledge with respect to the
imaged scene. This conception fitted very well to the knowledge based approach
of artificial intelligence. Nevertheless, it failed with respect to realize recognition
and to construct general useful and robust systems.

To give a summary of characterizations of knowledge based vision the follow-
ing drawbacks will be noticeable:

1. The mysterious gap between signals and symbols cannot be closed in the frame
of the paradigm.

2. The dominant role of symbolic processing versus signal processing totally
underestimates the role of early visual processes.

3. The top—down control of bottom—up directed data flow allows no return from
symbols to signals in case of erronecous interpretations.

4. Recognition has to be done by matching prototypes as world models because
equivalence classes cannot be adequate modeled.

5. The explicit formal representation of models is limited to a simple world and
therefore restricts application fields. Other restrictions follow from a time-
consuming search—based matching process.

6. The use of a maximum of knowledge to solve a visual task contradicts the
needs of economy of resources.



The contemporary spectrum of alternative paradigms was initiated by R. Bajcsy
[5], Y. Aloimonos [1], and D. Ballard [6] who remembered that a visual system
is a sensory, perceptual, and a motor one.

1. Active Vision: [2, 39] The active control of the outer degrees of freedom
of the oculomotor system enables the vision system to break down the com-
plexity of the task. If vision tasks are coupled to an oculomotor behavior,
the coupling of algorithmic solutions to behavioral strategies will result.

2. Animate Vision: [6] Similar to Active Vision also animate vision supports
the division of the vision process into two phases: the preattentive and the
attentive stages. While preattentive vision is interpreted as fast and data
driven bottom—up processing, attentive vision is top—down controlled and
related to the next term.

3. Purposive Vision: [3] The active system is controlled by the purpose of
vision and that is action. Purpose is understood as the driving power of the
system to interact with the environment. This indeed is in almost agreement
with the behavior based approach.

4. Qualitative Vision: [4] The opportunism of purposive vision calls for us-
ing minimal efforts in realizing any visual task. That means gathering of
sufficient hints in minimum time with respect to the task. That also means
the use of minimal models of the world in very contrast to knowledge based
vision.

Interesting questions of research are of such kind:

Which knowledge of the structure of the world is necessary to perform
purposive viston in a limited range of time using oculomotor strategies.

But two fundamental differences to the behavior based paradigm, projected
to visual systems, remain. These are the unsolved recognition problem and the
problem of the origin of categories of behavior. Although the coupling of visual
tasks with oculomotor behavior and purpose introduced an important strategic
component, the recognition problem only gained some redefinition but no general
solution. Now, indeed, recognition is decomposed into partial tasks connected
with the oculomotor behavior and defined by the mismatch between the task
and the fusion of partial solutions. Learning and acquisition of competence until
now only in exceptional cases is integrated with active vision [67].

Another aspect, not yet well understood, is the mutual support of visual and
motor categories. A reasonable hypothesis, drawn from cognitive psychology and
ethology, leads to the conjecture that vision as isolated process is a too hard task.
Visual used categories cannot be learned and are not defined by vision alone,
but can be interpreted as projections of multiple defined (and learned) categories
onto the visual system.

2.3 Natural Science Problems

We have to our disposal now stereo—camera heads, miniaturized robots, radio
Ethernet, and powerful computers. This allows to think of designing new sys-
tems, we never had before. We may be encouraged simply to do it and we should.



But there are a lot of serious and fundamental problems to be solved in advance
if we want to classify such systems as behavioral ones.

Replying a debate on the paradigmatic changes in computer vision, Aloi-
monos concludes [2] that the task to be solved may be summarized by:

Find a general solution for special problems.

Indeed, the great challenge will be to understand the general principles under-
laining the success of living systems in performing their perception/action tasks.
Only if we find some sufficient approximation to the answers, we will be able to
equip technical systems with the resources to develop the wanted competences.

As nature brought forth rather different levels of behavior, each with different
amount of directness and indirectness of behavior, we should start with the sim-
plest categories of systems. That means, although we want to have systems with
human like competence, this should not be our goal in the moment. Cognitive
processes as indirect behavior can be our concern if we sufficiently understand
the functionality of more direct behaviors as e.g. signal-motor mappings.

If also nature is constrained by the principles of evolution, which leads some
people to state that nature is a tinker, nature within these constraints most
effectively uses those general principles.

The most important features of behavior based systems are:

1. situatedness: The system is managing its tasks in the total complexity of
concrete situations of the environment.

2. corporeality: The system can only gain experiences with respect to the
environment by means of the specific resources of its body, including mind.

3. competence: The system’s order of inner degrees of freedom is an expression
of the captured order of the environment and causes order of the system’s
outer parameters and actions.

4. emergence: The system’s competence emerges from disorder if the purpo-
sive rooted and physical constrained actions are fitting well the general and
invariant aspects of the situations in the environment.

With respect to the purpose of the system, any behavior has the properties of
usefulness, efficiacy, effectiveness, and suitability. It corresponds the equilibrium
with respect to the purpose between the system and its environment. Its robust-
ness with respect to minor distortions of this equilibrium has to be completed
by adaptivity with respect to more heavy distortions. A general natural science
theory of the principles underlaining behavior based systems will be related to
the theory of non-linear dynamic systems. This is a theory of the dynamics of
large (physical) systems and far from being the theory of vision, which Marr
asked for. Although all the features of behavior based systems are well fitted by
the growing up theory of non—linear dynamics, their metaphorical use in practice
is limited yet [49].

As the most important conclusion from situatedness with respect to the lim-
ited resources of a system, not the knowledge of detailed models of the world but
of useful relations between the system and its environment has to be considered.
The set of situative important relations and the amount of knowledge has to be
minimal because actions should be suitable and effective.



Information cannot be simply gathered and used as Gibsonian invariants
[28]. A perceptual system is no pure reactive system (not only controlled by
data and instincts as proposed by Brooks [11]), just as it is no pure cognitive
system (not only controlled by expectations or knowledge). Instead, perception
is bottom—up driven within the limits of corporeality and top—down controlled
[19] by the purpose, projected to the situations. This implies that the pragmatic
aspect of information is mainly determined by the purpose, the semantic aspect
is constructed, respectively selected, by physical experience, and the syntactic
aspect is mainly matter of perception.

Recognition in this frame is a purposive constraint matching to equivalence
classes whose meaning i1s based on using corporeality. Consequently, there is in
the stage of competence no problem of heaving too less invariants but select-
ing the right ones. This principle has to be supported by an architecture with
sufficient purposive constraint dynamics.

In the stage of incompetence, learning will be the process, which will result in
the mentioned equilibrium. Actual learning paradigms hardly can be understood
in the frame of emergent systems. The used least mean square minimization as
linear approach lacks the attractor properties of non-linear dynamic systems.
The most promising approach is reinforcement learning because it supports eval-
uation of interpretation of sensory data by action most naturally [12]. Using this
approach, the important contribution of the knowledge bias for fast learning will
become obvious [31]. The resulting question is, how to partition the necessary
knowledge base to learned and acquired or programmed contributions.

Our contemporary understanding of multiple supported categories is in agree-
ment with implicit representations as a result of optimization of the perception—
action cycle by self-supervised learning. Insofar, the mapping of the non—linear
spatio—temporal relations between sensory and motor signals, respectively vice
versa, by means of the paradigm of artificial neural nets, 1s a promising way of
semantically based coupling of perception and action. But semantics is based
on pragmatics and pragmatics is strongly related to purpose. In the frame of
reinforcement strategy of learning, the pragmatics is submitted to the system as
cost function or confidence measure. Appearance based vision by self-supervised
learning [53] is starting to become useful for the design of bottom—up constructed
perception—action cycles.

Such PAC not necessarily must be an elementary one. A more complex be-
havior is not a linear sum of a set of primitive ones. Therefore, the top—down
partitioning of behaviors is of limited value. Moreover, any complex behavior
should emerge from a set of primitive ones as a result of adaption to new situa-
tions. Although some experiments could be interpreted as such emergence [18],
the construction of relations between primitive cycles is not well understood
yet [10]. This is also the case for the design of hierarchically structured behav-
ior based systems. Inverse relations of dependence between primitive behaviors
(necessary for survival) and higher—order behaviors (necessary for the task) cause
different total behaviors [11, 44].



3 The Theoretical Framework

The realization of behavior based systems by bootstrap of perception—action cy-
cles necessitates the fusion of robotics, computer vision, neural computation, and
signal theory in a unified, respectively compatible framework. That framework
should allow to embed all the tasks constituting the PAC system with sufficient
flexibility, dynamics, and completeness.

The behavior based system has to experience any perception—action cycle and
not to report or to reason on it. Insofar, the explicit symbolic level is restricted
to the programming of the dynamic frame of PAC and to the interface between
system and user. Within PAC implicit representation of knowledge is dominating
a certain amount of explicitly formulated basic rules as instincts.

The level of signal processing with respect to afferents and efferents, including
representation of equivalence classes, has to be able to realize all aspects of PAC.
Within such frame no signal-symbol gap will exist. Symbols are not necessary
as representation of equivalence classes for PAC systems.

The central problem of the existence of a behavior based system will be
to cope with all spatio-temporal phenomena of the environment which are of
relevance with respect to the objective of the system. Concerning visual infor-
mation processing, these phenomena are spatio-temporal structures, including
those which are caused by the actions of the system.

Within such scenario, situations are embedded in the Euclidean space—time.
Spatio—temporal phenomena are fused but may be projected to spatial or tem-
poral ones. This will be supported by the use of oculomotor behavior. With
respect to the coupling of perception and action, the most important task will
be to recognize and to generate patterns of spatio-temporal geometry with a
certain degree of symmetry. These patterns represent equivalence classes of that
property and, as expression of the competence of the system, support a state-
ment of mathematical equivalence of perception and action:

— similar visual patterns cause stmilar motor actions
— similar motor actions cause similar visual patterns.

This unity of perceptual and motor equivalence classes enables the system
to self-control and to learn from actions by using oculomotor behaviors.

The theoretical embedding of the perception—action cycle will be constituted
by an algebraic framework and by the frame of learning and using the knowledge
on implicit (neural) representations. The algebraic framework will be a dual one
because it has to support both the forming and representation of experience
from global phenomena of the environment and the process of local generation
or verification of global pattern concepts. In this section, we will refrain from
presentation of the frame of learning and neural information processing. With
this respect, we developed a type of neural net, called Dynamic Cell Structure
— DCS [14], which in the context of behavior based system design could be suc-
cessfully proved [15]. Its main idea is the optimally topology preserving adaption
to the manifold by self-supervised vector quantization.



3.1 The Global Algebraic Frame

The global frame has to represent the perceptual relevant phenomena of the
Euclidean space—time E4. These are resting or moving objects of any dimension
less than or equal three and their relations between. The classical mathematical
framework enables modeling of either resting objects by means of either analyti-
cal geometry using entities of dimension zero (points), one (lines), two (planes),
respectively three (cubes), or differential geometry using entities as curves (1D)
and surfaces (2D), or modeling of objects in motion within the frame of kinemat-
ics as rigid body movement in F3 using these entities. Normally, the movement
of rigid bodies is described by rigid displacement of a set of points. The entities
of motion concepts are geometric transformations as translation, rotation, and
scaling. From these entities complex patterns of motion are constructed. This
decoupling of space—time can be done by a competent system using the oculomo-
tor behaviors (e.g. fixation and tracking). But fixation to infinity while moving
is also useful and will result in patterns from Ejy.

Both object and motion concepts are determined by the correlations in the
data of their patterns. These correlations have certain aggregated global sym-
metry properties which are important to define and which represent the equiv-
alence classes. But the construction of global symmetry from local correlations
is a bottom—up process and therefore, it is matter of the local algebraic frame.
Nevertheless, the global symmetries have to be represented to form isomorphic
representations to the observed phenomena. If Pellionisz wrote [56] “the brain is
for geometrical representation of the external world” or if Koenderink [36] and
von der Malsburg [42] stated that the brain is a geometry engine, the impor-
tance of representation of the environment is underlined. But this representation
is implicitly constructed and has not to be complete in a mathematical sense but
complete with respect to purpose, situatedness, and corporeality of the system.
The algebraic frame should allow to support this flexibility.

The global symmetries and the metric properties of objects in Euclidean
space F3 are distorted in a systematic way by global projective transforma-
tions between objects and the observer’s visual sensory system. Nevertheless,
the stratification of the space [26] in connection with the transformation group
of each shell (projective, affine, Euclidean) [41] allows recognition of the cor-
responding invariants. The necessary amount of effort to use the invariants of
different shells can be strongly modified by oculomotor behavior. In this way,
oculomotor constraint recognition from stratified space 1s in accordance with the
situation dependent use of minimal resources [21].

The global algebraic frame should support all these aspects of geometric
mappings and should also support the effective control of actions. This will
be possible by realizing geometric transformations in the same framework. But
even as invariance is important for recognition, this is valid also for actions. One
aspect of invariance with this respect is the independence of transformations
from a fixed coordinate system. This aspect is often neglected in the design of
behaviors.

The linear vector space of real and complex numbers is not satisfactory to



represent all the mentioned phenomena in the requested quality. This is known
for a long time and therefore, tensor algebra has been intensively studied in
neural science [56], robotics [20], and computer vision [30]. Pellionicz [56] argues
that neural coupling of sensory receptions with motor actions has to consider
the special transformation properties of these signals (contravariance of motor
signals and covariance of sensory signals) to gain a metric internalization of the
world. The arguments of using tensor algebra in the frame of signal processing
[30] mainly refer to the poorness of the representation power of vectors and
scalars with respect to multidimensional signals. While the first argument seems
not so obvious, the second one corresponds also our experience and is of greatest
importance for the bottom—up design of the PAC.

Indeed, the Hilbert vector space is representing only sets of points (using
vectors) with the result that all correlations which specify symmetries of higher
dimensional entities with great effort have to be reconstructed by the analysis
of the occupation of the vector space and by construction of subspaces. In the
linear frame, besides addition and multiplication of vectors, there is only the
poor operation of the scalar product, which even shrinks vectors to a scalar, and
which in addition is defined only as bilinear operation. What we want to have
are more rich structures in the vector space, which represent in any way higher
order entities as planes or volumes as expression of their correlation. In tensor
algebra and in vector algebra, there are constructs of such type as outer product
tensor or cross product of vectors to extend the algebraic limitations.

Vector Space Structuring by Geometric Algebra In our opinion, the most
systematic way to endow a vector space with such entities is based on Clifford
algebra [58] and can be most intuitive related to geometric conceptions in the
version promoted by Hestenes [33]. This is the geometric algebra. Only to give
an impression of the richness of defining structure in vector spaces by definition
of partial product spaces from the contributing vectors, we will give a short
summary of the subspace conception of the algebra [64].
The geometric algebra G(A) = G, is the algebra of multivectors A,

A=A, + A +.. +A,

with Ag, k& < n, as homogeneous k—vectors, i.e. multivectors of grade k. The
geometric algebra G, results from a vector space V,, by means of endowing it
with a so—called geometric product. This geometric product causes a mapping of
V., onto G,,, which themselves is a linear multivector space of dimension 2”. Any
n linear independent vectors ay,...,a, € V,, are therefore transformed to the
multivector A. The basis of this multivector space is constituted by n + 1 sets
of (Z) linear independent k—blades My, which themselves constitute the basis of
linear subspaces G (A) of dimension (Z) of all k—vectors in G,,.
The geometric product of 1-vectors (i.e. normal vectors) a,b € V,,

ab=a-b + aAb



has the important property that it maps vectors a,b into both a scalar as a
result of the symmetric inner product ag = a-b as well as a bivector as a result
of the antisymmetric outer product As =aAb, ag,Ay € G,.

Any two homogeneous multivectors A,,B; € G, are mapped by the geo-
metric product into a spectrum of multivectors of different grade, ranging from
grade |r — s| as a result of the pure inner product A, - B, = C|,_, until grade
r+s as a result of the pure outer product A, AB; = C, ;. This corresponds the
partitioning of G, into the subspaces G (A). Thus, any k-blade My € Gi(A)
can be geometrically interpreted as the uniquely oriented k—dimensional vector
space Vi = G1(Ay) of all vectors a, satisfying aA Ay = 0, respectively of all & lin-
ear independent vectors aq, ..., ag, spanning Vi and constituting a factorization
of the k—blade My = ajas...ai. Therefore, any Ay is understood as projection of
A onto Gy and, on the other hand, can be formulated as a linear superposition
of all k—blades, constituting the basis of Gj.

Because A, = Al with 7 as unit pseudoscalar or direction of V,,, there
follows an intrinsic duality principle of geometric algebra. This duality is based
on IyI,_p = I for any k-blade, respectively (n — k)-blade. From the dual A* =
AT~ of any multivector A follows that there is a simple change of the base of
any multivector with respect to the dual blade.

The property of orientation of Gy obviously transmits to the multivectors
Ay € Gg. Therefore, the multivectors of the Euclidean spaces Ey or E3 result
in directed numbers with the algebraic properties of complex numbers, respec-
tively quaternions. Additionally, certain algebraic restrictions or extensions will
result in other number conceptions as dual or double numbers [60]. They alto-
gether possess nice algebraic properties which can be either interpreted in the
frame of geometry or kinematics. Besides, each multivector has a quantitative
or an operational interpretation. The reason for that duality of interpretation of
multivectors lies in the fact that the Clifford algebra unifies Grassmann algebra
with quaternion algebra of Hamilton. This makes the geometric algebra so at-
tractive for our fusion of disciplines because the same number may be operand
or operator.

Moreover, geometric algebra does not only subsume the mathematics of met-
ric vector spaces but also that of projective geometry. For instance the quali-
tative incidence operations meet and join of entities, homogeneous coordinates,
and the operation called projective split which relates vector spaces of different
dimension in a simple way can be used.

3.2 The Local Algebraic Frame

With the local algebraic frame we will understand several aspects of supporting
the bottom—up approach of PAC. That means with respect to the conception
that the system uses (visual) behavior to reduce the amount of data, to reduce
the complexity of the task, and to control the gathering of hints in a purposive
manner. All these strategic aspects can be subsumed by attention to a local
patch of signals to get a partial contribution to resolve conflicts or to solve the
actual task. Global interpretations result from local contributions by fusion.



Even the same problem the system will have with the control of actions. Of
course, these constructive processes are covered in biological systems by high
parallel processing and are accelerated by special equipment as the sensory ge-
ometry in the human retina. Besides, in the highly trained stage, there is a
process of shortcutting to global interpretations. These special effects will be
disregarded here.

In the following, we will discuss some problems which are related to the lo-
cal algebraic frame, with respect to irregular sampling using extended sampling
functions and to the choice of basis functions for signals and operators. We will
propose an attentive, purposive, and progressive visual architecture, and the use
of the canonical local basis generated by Lie group invariants.
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Fig. 1. Several conceptions of structure, dependend on purpose and/or aperture of the
sampling operator.

Sampling with Finite Aperture The first problem concerns the term “local”.
In mathematics exists the conception of the entity point as interpretation of



an ideal location, defined by its coordinates. With respect to our problem of
designing a real technical system by understanding something of living systems,
we have to define a locus as a finite extended patch and the extension depends
on both situation and task. Thus, a local patch of (visual) attention has to be
scalable. The scaling function of wavelet theory or blob hierarchy [37] plays the
role of a regularization operator by integration on a finite set of signals. But
we have to consider two aspects. Each structure has at least one intrinsic scale.
Because of the hierarchy of concepts of structure, there are normally some. The
observer should be able to adapt the scale of his local patch of interest with
the chance of getting one or several unambiguous interpretations. In figure 1,
there are several levels of interpretation. In dependence of the purpose of the
observer and of the aperture function used, rather different interpretations can
be found. The canonical coordinate frame of pointwise regular sampling in linear
signal theory (sampling theorem) does no longer fit such strategy of sampling
with extended operators. Now, estimation theory has to be considered to get
high significance using bloblike sampling without loosing resolution as metric
property or failing in estimation of dimension as topologic property.

Local Intrinsic Dimensionality of Data In the example of figure 1, also the
local dimension of the structure dramatically changes if both different apertures
or different conceptions are used. A visual sensory system will interpret the
data of local patches with respect to their local dimension because it strongly
correlates with local symmetry. A set of measured signals (1), e.g. as a result
of corner detection, may be interpreted as examples, taken from entities as in
(2). By assuming that these entities are disturbed by noise, a more reasonable
interpretation may be given by (3). jFrom step (2) to (3), a change of the
dimensionality conception happened. While in (2) a sequential process of small
aperture induces an one-dimensional contour, in (3) a two-dimensional patch is
assumed. In (3) all locations, within the patches may have the same meaning.
Therefore, as a result of vector quantization, the points of (4) may suffice to
represent the manifold. In (5), on a global level these representations again may
be fused by an one-dimensional conception. As an implicit assumption of this
discussion, we used the definition of the local intrinsic dimension of an entity as
the number of degrees of freedom which suffice the chosen criterion. While in (2)
the sequential process induces an one-dimensional contour, its embedding in the
plane as a polygon necessitates the assumption of maximal intrinsic dimension
two (see also chapter 4). In (2), the contour is constituted by fusion of multiple
one—dimensional components. Therefore, any patch covering a corner can only
represent the detected local geometry in a two—dimensional base, as the outer
product of two one—dimensional bases. The interpretation of (noised) data with
respect to their intrinsic local dimension has to separate between the intrinsic
dimension of the manifold and the dimensional aspect, induced by noise. Both
are dependent of the used aperture. By vector quantization, the dimensionality
orthogonal to that of the manifold may be surpressed. In [13] an interesting
approach of the estimation of the local intrinsic dimensionality is presented which



is based on the KLT of vector quantized optimally topology representing sets
of sampling points. Interestingly, this approach relates pattern recognition with
signal theory.

Global Partial Reconstruction using Wavelet Nets The third problem is
related to the global reconstruction from local hints. The linear signal theory
can from algebraic reasons only support regular sampling in a compact way.
Wavelet theory elegantly relates the distance of regular sampling with the scal-
ing factor of the wavelet functions. In the wavelet transform at each sampling
position, the signal will be mapped to a complete set of functions. From these
projection coefficients, the original signal may be reconstructed. But with re-
spect to the economy of resources, this strategy is very dumb. In contrast to
that, irregular sampling makes possible the adaption of sampling positions to
interesting structures. The choice of positions of interest may be based on the
signal structure and/or on the interest of the observer. In our group, a drastic
modification of wavelet transform in direction of a wavelet net has been devel-
oped [55]. The wavelet basis functions are coupled to irregular sampling points
of the wavelet net. Scale and orientation are continuous adaptively controlled.
In very contrast to the wavelet transform, there is a need for a minimum of
irregular sampling positions and a minimum of basis functions at the sampling
points. Indeed, only one wavelet per sampling point is used. This one has to be
globally optimized with respect to the wavelets at the other points. As result of
global optimization, from a purposive controlled set of sampling points an image
of partial reconstruction raises up from an extremely sparse code. The purpose
of the task not only influences the locations of the sampling points, but also the
scheme of regularization in the optimization process.

In figure 2, we demonstrate the result of putting about 30 sampling points
on the right eye (top left) or 90 sampling points on both eyes and on the mouth
(top right) as most prominent regions of a face. The results of reconstruction
with the same sets of wavelets, coupled to these points, is shown in the bottom
part of the figure. The left code needs 98 bytes and the right one needs 196 bytes
for representation on a level of 256 x 256 pixels.

This example of global fusion from irregular distributed local hints demon-
strates a philosophy of purposive minimal decomposition of the visual signal
by a limited set of basis functions. Obviously, the goal is not complete global
reconstruction but in the sense of qualitative vision the reconstruction of the
necessary structures to suffice the task.

Optimal Filter Control by Steerability In the fourth problem we consider
the filtering process in the attentive stage, i.e. if the operator is fixated at a
keypoint of interest. In traditional signal processing, if the translation DOF is
frozen, there 1s no other possibility than projecting the signal energy to the
operator. But remembering the remaining degrees of freedom, that means rota-
tion and scale, there should be the possibility of a dense sampling with respect
to these DOF. Because coarse sampling may seriously mismatch the structure,



Fig. 2. Partial global reconstruction from local hints as purposive and progressive
vision task.

dense sampling would be wanted. As a way to prevent the infinite amount of ef-
fort with respect to such processing, the steering filter scheme can be used. This
consists in (now in contrast to the last problem) decomposition of the wanted
filter into a small set of basis functions. These basis functions have the property
of exact or approximate reconstruction of the wanted filter. Instead of filtering
with an infinite set of (e.g. oriented) filters, only the projection of the local signal
to the small set of basis functions (e.g. 10) will be done.

From that very limited set of projection coefficients, the response of the
optimal adapted filter will be reconstructed by interpolation. Figure 3 shows a
set of ten basis functions of an edge detection filter. Both the basis functions
and the interpolation functions can be computed either from Lie group theory
[46] or using SVD [47]. In the Lie group approach, the eigenfunctions of the



Fig. 3. Ten basis functions of an edge detection filter with orientation as DOF.

generating operator of the considered Lie group are the basis functions and the
eigenvalues are the interpolation functions of the steering filter problem. In the
SVD approach, the basis functions will be given by the right singular values,
whereas the interpolation functions will be given by the left singular values.

Steering filters is a very powerful principle for local analysis of multidimen-
sional signals. Coupled with the quadrature filter concept, the steering of filters
results in signatures of the local energy and of the local phase as functions of
the considered DOF.

Attentive, Purposive and Progressive Visual Architecture In problem
number five, we want to propose a visual architecture for attentive, purposive,
and progressive recognition.

This architecture has to follow the general needs of visual perception in a
PAC system:

. fast with respect to the time scale of the special PAC,

. flexible with respect to the change of intention or purpose,

. complete with respect to the task,

. unambiguous with respect to the internalized conceptions or categories,
. selective with respect to the importance of data,

S O B W N =

. constructive with respect to learning and recognition of equivalence classes.

From an algebraic point of view the Lie group approach is the canonical way
for exactly local signal analysis (in multiple parameters of deformation). Because
the generating operator of the considered Lie group generates local symmetry,
this will be an invariance criterion for a bottom—up approach of grouping ag-
gregated patterns from irreducible invariants. A scheme of an attentive visual
system architecture will be shown in figure 4.
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Fig.4. The cycles of an attentive processing scheme.

Noticeable is the organization of several cycles of processing. While the outer
cycle indicates to the gaze control aspect, the inner cycle allows the considera-
tion of several invariance principles for grouping of aggregated invariants from
irreducible ones in dependence of the evaluation process with respect to the
known aggregation results (coherent patterns of e.g. faces) and with respect
to the purpose. This bottom—up process is top—down modulated or controlled.
This is purposiveness. The recognition should also be progressive in the sense
that the process should be stopped if a measure of confidence or evidence is
sufficient high. This principle of economy of time requires support by the match-
ing process. The template in this frame is the equivalence class which is only
a purposively constrained approximation of the ideal one. With other words,
the template should be decomposable to allow a gradual increase of matching
results. The principle of progressive recognition is inherent both to the wavelet
net approach of reconstruction and to the steering filter approach of recognition.
In the first case, the sampling points are weighted by a factor of importance.
Therefore, the reconstruction can be stopped if wanted. In the case of steering
filters, a large set of basis functions may be computed offline. This ordered set



will be sequentially used. In figure 5, the proposed and partially realized visual
architecture of purposive progressive recognition will be shown.
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Fig.5. Layered architecture for purpose, progressive visual recognition.

On the left side, we see the communication with the control unit of purpose and
task. To the right, we see a hierarchy of structure levels which will be passed by
bottom—up driven recognition. The procedure starts with a mapping of the signal
to irreducible invariants which correspond to Lie group eigenvectors as symmetry
primitives and which are the basis functions of filters. These filters may be any
complex templates as aggregates of the irreducible invariants, and indeed they
are steerable filters [47]. Their output can be evaluated or/and associated in a
cascade of DCS nets [14] for recognizing more and more complex patterns. This
process of aggregation is modulated from top—down.

This bottom—up scheme, embedded in the cyclic scheme of fig. 4, seems to be
too slowly with respect to the summarized needs. But first, the projection to the
basis functions and several other steps of processing can be done in a parallel
procedure. Second, in the non—competent phase, respectively in the attentive
phase, this sequential scheme may be adequate. In the competent phase, respec-
tively in the preattentive phase, the pathway of recognizing the grandmother
should be engraved to shortcut quickly the grandmother cells with her visual
pattern.

Lie Group Approach The Lie group approach is the general method to de-
sign the perception—action cycle as bottom—up process. It may constitute the



local algebraic frame for both recognition and forming patterns in space—time
from a differential viewpoint. Because local patterns have local symmetry of low
dimension, the task of recognizing or forming of smooth patterns by a sequential
process will be locally supported. Within that frame, the equivalence between
recognition and action can be seen most obviously. To follow a chosen conception
means selection of the corresponding Lie group and the change of conception in
case of any events means change of the Lie group, or at least their parameters.
As an example, in fig. 1, case 2, the polygons result from a sequence of the
translation group and the rotation group.

Although Lie algebra and Lie group theory for a long time is known in the
community, its breakthrough is missed. There is a lot of relevant papers in com-
puter vision [29, 63]. But in robotics [17, 51] and neural computation [54] the
attention is very limited yet.

Both the local and the global algebraic frames can be fused with success [23]
because every Lie algebra corresponds a bivector algebra and every Lie group
can be represented as a spin group.

4 PAC and Geometric Algebra

The special problems of PAC with respect to the geometric algebra are

— multi-dimensionality of visual signals from space—time,

— need of fast multilink actions in an invariant manner,

— nonlinearity of perception—action mapping,

— nonlinearity of recognition of higher—order correlations,

— need of a switch between strategies, conceptions, qualitative and quantitative
aspects.

After working for two years on that field of geometric algebra, we can sum-
marize the momentary expected benefits from geometric algebra:

— flexible change of interpretation frames of different dimension for multi-
dimensional local signals [16],

— flexible change of interpretation frames between entities of different dimen-
sion of the Euclidean space [7],

— flexible change between projective, Euclidian, and motor space (of kinemat-
ies) [9]

— transformation of nonlinear to linear problems [22],

— enrichment of representation and learning capabilities of neural nets [§],

— effective recognition of higher—order correlations.

We often observe a reduced complexity of symbolic coding of a problem. Of
course, the numeric complexity often expands on computers which do not know
the type of quaternions or so. Nevertheless, the answer depends on the problem,
e.g. in conversion of nonlinear iterative solutions to linear straightforward ones.

In the following, we want to introduce into a special problem, which is of
central importance for the design of PAC systems. This problem concerns the



complete recovery of local geometry and the capturing of geometric relations in
neural nets. We will show, how nonlinear processing of signals may be reduced
to a linear one, without loss of information.

The designer of PAC systems has to guarantee that in principle all structures
could be recognized, if necessary. This was not possible till now, without loosing
the nice properties of the linear signal theory. The reason is based on the fact
that until now we had no adequate signal theory for multidimensional signals.
Textbooks refer to that problem with the statement that a two—dimensional
local phase is not defined. Indeed, the deep reason is that, within the frame
of complex numbers (the Fourier domain), there is no possibility to express
all the symmetries of a two—dimensional signal. While one-dimensional signals
with respect to a fixed position can be decomposed into an even and an odd
component, two—dimensional signals can have any combination of both in each
dimension.

Using a linear integral transformation as the Fourier transform, in the domain
of complex numbers only even and odd symmetries can be represented. Thus,
the Fourier transform in complex domain is only adequate to one—dimensional
signals, although, as we know, the two—dimensional Fourier transform in complex
domain is well defined.

In the case of using energy and phase as local spectral features, this limitation
becomes obvious. To give an example, the recognition of an L—junction with
steering filters [45] results in two peaks of the signature of energy. These have to
be identified in a second step of non—linear processing, that means by application
of a threshold to the energy. In contrast to that, complete linear processing would
result in only one peak if the steering filter could represent all the symmetries
of two—dimensional signals.

The geometric algebra offers the right frame for embedding the considered
problem of representation of the Fourier transform of multidimensional signals
in a higher—order domain of numbers without loosing the property of linearity.
Indeed, a line as one—dimensional ideal structure (case 4 in fig. 1) may be repre-
sented as a vector, while any two—dimensional structure as e.g. the L—junction
and any constant 2D—path (cases 2, respectively 3 in fig. 1) are represented by
bivectors as the result of the outer product of vectors. The even subalgebra
GT of Gs equals the algebra of quaternions. Therefore, quaternions constitute
the domain of embedding a two—dimensional Fourier transform without loss of
information.

We show in [16] that even the analytic signal, the Hilbert transform, and
the Gabor filter can systematically be embedded in this domain. Of course, the
two—dimensional phase is now constituted by three components, each resulting
from the combination of the real part with one of three separate imaginary parts.
In figure 6, middle row, we show the four components of the quaternionic Gabor
filter with (from left to right) real, i-imaginary, j-imaginary, and k-imaginary
parts. These quaternionic Gabor filter components are estimators of symmetry
conceptions, adequate to differential geometric curvatures, from raw data. In-
sofar, they are adequate to the bottom—up approach, embedded into the global



algebraic frame. By combination of these components, the well known complex
Gabor filter results and, in addition, several components, which are able to re-
spond to the other symmetries, which are missed else.
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Fig.6. The quaternionic Gabor function (middle row) and their compositions

to the symmetrie concepts of the plane.

The problem of recognition of structure in spatial domain is based on the recog-
nition of the correlations with the corresponding symmetry. The Volterra series
approach of filter design [62] recently was used to formulate non-linear filters
for responding to higher—order correlations. In [38] the higher—order statistics of
two—dimensional signals was estimated using a second—order Volterra filter in fre-
quency domain to estimate the local intrinsic dimensionality of two—dimensional
signals. In their approach, the authors had to extend the Fourier transform to
4D to respond the second—order Volterra approach.

Of course, the quaternionic quadrature filters are linear ones in contrast to
the Volterra filters.

To summarize, the embedding of the analysis of multidimensional signals
remains the linearity of operators, respectively remains the use of Fourier trans-
form, but needs higher—order numbers. Any switch to lower dimensions is pos-
sible by combination of higher order numbers to lower order ones, just as we
requested for a flexible vision system, embedded into the global algebraic frame.

We will finish our journey on linear signal processing by considering the
functionality of neural nets. Of central importance in neural nets is the so—
called linear associator, that means the functionality of a neuron, which linearly
associates its input with the weights. This simple scalar product is based on
the conception of linear vector algebra just as other linear methods of signal
processing or recognition. The idea is to substitute the linear associator by a



so—called geometric associator. That means to design a geometric algebra based
neuron [8§].

There have been several trials in the past, to algebraically extend neurons
to complex numbers or quaternions. In [8], the general frame of geometric alge-
bra with its multivector entities has been used with respect to MLP and RBF
nets. In MLP nets, the central problem is to define an activation function which
remains the locality of the backpropagated error function. This problem could
be solved. Another aspect is the adequate representation of the input data to
the used algebra. With this respect, we chose an outer product polynomial ex-
tension in accordance with the multiplication rules of the geometric algebra.
Not completely to our surprise, both the convergence of learning as well as the
generalization capability of the nets gained profit from that extension. Indeed,
the used polynomial preprocessing is with some respect comparable to the well
known design of higher—order nets (HONN, [50]), respectively to the Volterra
connectionist model (VCM, [59]). But in these approaches, both the processing
within the neurons and the polynomial extension were not algebraically correctly
embedded, although they handle the polynomial extension also for multiple lin-
ear processing. The proposed so—called geometric neuron operates as multi-linear
neuron on multivector entities. We hope to demonstrate in nearest future not
only its capability of capturing correlations, but its useful application in real
geometric problems.

5 Summary and Conclusions

In this paper, we discussed the socio—ecological metaphor as a base of the de-
sign of behavior based systems. But in contrast to the well known methodology
of top—down designing a system from the model which we develop in our mind,
this direct mapping between the functional behavior of the system and its model
does not work in the context of behavior based systems. Instead, the model of
functionality which we gained by observation of the appearance of the behav-
ior has to be inverted into a bottom—up approach for the design of the PAC.
This bottom—up approach implies both the importance of signal processing and
learning of the competence.

Therefore, we concluded that both a global frame and a local one for alge-
braic embedding are requested to fulfill all the needs of the fusion of computer
vision, neural computation, signal theory, and robotics. These global frames have
been motivated and identified as geometric algebra and Lie theory. Finally, we
discussed several aspects of the application of both frames. We demonstrated
the usefulness with respect to recovery of geometry from signals by filtering and
neural net processing.

As aresult of this discussion of the task of designing behavior based systems,
both the chances for general scientific progress as well as the amount of work,
which has to be done, will become obvious. Only by concentration of the power
and the experience of different disciplines, and only by considering the theoretical
roots of the task, and growing support of basic research, we will successfully



proceed in next future. This is in contrast to the actual interests of politics and
industry, which want to support short—term development instead of long—term
research.
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