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The aim of image analysis is the interpretation of certaibssts of a given multi-dimensional signal by
meaningful concepts within the framework of the task at haftis means e.g. finding a certain object, object
classification, texture classification or motion analy3isere is a natural abstraction hierarchy of structure con-
cepts which corresponds to a certain hierarchy of scaleaé scale the decomposition of an image into the set
of available concepts may be different. Image analysis & naain portion local analysis. Here the term local
means applying a scaled point operator concept. This Iggabach of image analysis differs considerably from
global analysis which is more well-known to the mathemat@msmunity because of its relation to the Fourier
transform. In local image analysis the multi-dimensiorelgralizations of the Hilbert transform take on the key
role of getting access to meaningful spectral and geonfetittire extraction.

We will report on the design of quadrature filters as linead ahift invariant operators which deliver local
signal descriptions as: intrinsic dimension (that is tHéedéntial geometric type of structure), local spectrg-re
resentations as local amplitude and local phase, and thetation as a geometric feature. While local amplitude
indicates the amount of local signal dynamics, local phase measure of parity symmetry. By applying the
Riesz transform as generalized Hilbert transform, alléHeatures result from the monogenic extension of a real
valued n-dimensional signgl), (x) € R™ to a vector valued signd}, ;1 (x) € R,,41. In addition, the convolution
of the signal with a Poisson kernel of scalén the upper half space directedtq; delivers a signal repre-
sentation in a Poisson scale-space. Combined with the Reszform, the Poisson kernel finally establishes a
monogenic scale-space in which all local features exisbésindependent and mutually dependent scale-space
concepts. Hence, the (intrinsic) scale becomes an additieature of structure description.

The application of the Riesz transform to scalar valuedirdithensional signals was the matter of our studies
in the past. A survey on that topic was given in [2]. Howevhis approach has the drawback of establishing
only partially an extension of the Hilbert transform from 1®nD for the purpose of image analysis. This fact
is not well recognized in Clifford analysis because theidision between the intrinsic dimension and the global
embedding dimension of a signal (or a function) has not bessidered yet. The intrinsic dimension (idD)
corresponds to the codimension of a subset of an n-dimeaisi@nction. The Riesz transform only represents
the i1D case, while in 2D signals also i2D structures are gidrtance. We developed a possible extension of a
monogenic signal representation which delivers for aliimsic dimensions of a 2D signal meaningful features
of local signal analysis. Interestingly, in that appro&2B, signals are transformed by a second order spherical
harmonic as a new generalization of the Hilbert transfoe, [8]. This was possible by starting with a tensor
valued real 2D signal and by embedding that signal tensoivh{2, Rs).

We will enlighten more in detail the derivation of our tensafued monogenic signal representation and its
interpretation from the viewpoint of image analysis. Fiyjale will present a new scale-space concept, derived
from the used tensor representation. Our approach is adfifial geometric one. In the moment we are interested
in evaluating a monogenic representation of the curvatumrsdr instead of a single scalar valued signal.

Let bef(x): R? — R a scalar valued 2D signal. We will consider instead a vecitwed signal represen-
tation, embedded i3, f(x) : R? — Res with f(x) = f(re; + yez) = f(z,y)es. By convolution with a
monogenic Hessian operatior; € M (2, R3),
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hr being the Riesz transform and, h, being the even and odd parts of the monogenic Hessian opetso
signal will be transformed to a local monogenic matrix reyergation’(x) : R2 — M (2,R3). We callT'(x)

the monogenic curvature tensor because the Hessian ilytiglatted to the curvature tensor. It is well known that
the trace of the curvature tensor delivers the mean cuvaid the determinant of the curvature tensor delivers
the Gaussian curvature. From both curvature measuresyhe of surfaces (plane: i0OD, parabolic: i1D, elliptic
and hyperbolic: i2D) can be classified. By doing that in thexngenic framework, we will get the monogenic
mean curvature,

fi1p (x) = te(x) + to(x),
and the monogenic Gaussian curvature,
fiop(x) = de(x) + do(x),
respectively. Interestingly;; p is identical with the monogenic signal,
fi1p(x) = far(x) = £(x) + (hr * ) (x),
and f;>p, called the monogenic curvature signal,c,
fiep(x) = fare(x) = de(x) + ((e1hoes) * de(x)

establishes the second order spherical harmanicas a new generalized Hilbert transform, which transforms
the even representation of the i2D signal to the odd one. thaté.z = h; with h; being the first order spherical
harmonic. We will show this by representing the monogenisditn operator in terms of spherical harmonics,
and by evaluating the symmetriesiof andh,,.

In fact, contemporary we are analyzing only the quadrathasp relation between the even and odd parts
of the monogenic curvature tens@t,= 7, + T,. This corresponds to a certain signal model, where two i1D
structures of even or odd symmetry are crossing one anotitleranflexible opening angle. Compared with
a former model of i2D signals, called the structure multtee¢l1], this approach has the advantage of being
completely rotation invariant and being not restrictedegggndicularly crossing i1D structures.

The evaluation of;¢ will be performed analogously to that of the monogenic sigha. We will demon-
strate some examples of the phase analysis and some firlé$ dsout the monogenic curvature scale-space. The
last one is in fact a scale-space associated to the mono@engsian curvature.
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