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The aim of image analysis is the interpretation of certain subsets of a given multi-dimensional signal by
meaningful concepts within the framework of the task at hand. This means e.g. finding a certain object, object
classification, texture classification or motion analysis.There is a natural abstraction hierarchy of structure con-
cepts which corresponds to a certain hierarchy of scale. At each scale the decomposition of an image into the set
of available concepts may be different. Image analysis is toa main portion local analysis. Here the term local
means applying a scaled point operator concept. This local approach of image analysis differs considerably from
global analysis which is more well-known to the mathematicscommunity because of its relation to the Fourier
transform. In local image analysis the multi-dimensional generalizations of the Hilbert transform take on the key
role of getting access to meaningful spectral and geometricfeature extraction.

We will report on the design of quadrature filters as linear and shift invariant operators which deliver local
signal descriptions as: intrinsic dimension (that is the differential geometric type of structure), local spectral rep-
resentations as local amplitude and local phase, and the orientation as a geometric feature. While local amplitude
indicates the amount of local signal dynamics, local phase is a measure of parity symmetry. By applying the
Riesz transform as generalized Hilbert transform, all these features result from the monogenic extension of a real
valued n-dimensional signalfn(x) ∈ R

n to a vector valued signalfn+1(x) ∈ Rn+1. In addition, the convolution
of the signal with a Poisson kernel of scales in the upper half space directed toxn+1 delivers a signal repre-
sentation in a Poisson scale-space. Combined with the Riesztransform, the Poisson kernel finally establishes a
monogenic scale-space in which all local features exist as both independent and mutually dependent scale-space
concepts. Hence, the (intrinsic) scale becomes an additional feature of structure description.

The application of the Riesz transform to scalar valued multi-dimensional signals was the matter of our studies
in the past. A survey on that topic was given in [2]. However, this approach has the drawback of establishing
only partially an extension of the Hilbert transform from 1Dto nD for the purpose of image analysis. This fact
is not well recognized in Clifford analysis because the distinction between the intrinsic dimension and the global
embedding dimension of a signal (or a function) has not been considered yet. The intrinsic dimension (idD)
corresponds to the codimension of a subset of an n-dimensional function. The Riesz transform only represents
the i1D case, while in 2D signals also i2D structures are of importance. We developed a possible extension of a
monogenic signal representation which delivers for all intrinsic dimensions of a 2D signal meaningful features
of local signal analysis. Interestingly, in that approach,i2D signals are transformed by a second order spherical
harmonic as a new generalization of the Hilbert transform, see [3]. This was possible by starting with a tensor
valued real 2D signal and by embedding that signal tensor into M (2, R3).

We will enlighten more in detail the derivation of our tensorvalued monogenic signal representation and its
interpretation from the viewpoint of image analysis. Finally, we will present a new scale-space concept, derived
from the used tensor representation. Our approach is a differential geometric one. In the moment we are interested
in evaluating a monogenic representation of the curvature tensor instead of a single scalar valued signal.

Let bef(x) : R
2
−→ R a scalar valued 2D signal. We will consider instead a vector valued signal represen-

tation, embedded inR3, f(x) : R
2
−→ Re3 with f(x) = f(xe1 + ye2) = f(x, y)e3. By convolution with a

monogenic Hessian operatorhM ∈ M (2, R3),

hM = he + ho = he + hR ∗ he,
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with
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,

hR being the Riesz transform andhe, ho being the even and odd parts of the monogenic Hessian operator, the
signal will be transformed to a local monogenic matrix representation,T (x) : R

2
−→ M (2, R3). We callT (x)

the monogenic curvature tensor because the Hessian is tightly related to the curvature tensor. It is well known that
the trace of the curvature tensor delivers the mean curvature and the determinant of the curvature tensor delivers
the Gaussian curvature. From both curvature measures the types of surfaces (plane: i0D, parabolic: i1D, elliptic
and hyperbolic: i2D) can be classified. By doing that in the monogenic framework, we will get the monogenic
mean curvature,

fi1D(x) = te(x) + to(x),

and the monogenic Gaussian curvature,

fi2D(x) = de(x) + do(x),

respectively. Interestingly,fi1D is identical with the monogenic signal,

fi1D(x) ≡ fM (x) = f(x) + (hR ∗ f) (x),

andfi2D, called the monogenic curvature signal,fMC ,

fi2D(x) ≡ fMC(x) = de(x) + ((e1h2e3) ∗ de(x)

establishes the second order spherical harmonic,h2, as a new generalized Hilbert transform, which transforms
the even representation of the i2D signal to the odd one. NotethathR ≡ h1 with h1 being the first order spherical
harmonic. We will show this by representing the monogenic Hessian operator in terms of spherical harmonics,
and by evaluating the symmetries ofhe andho.

In fact, contemporary we are analyzing only the quadrature phase relation between the even and odd parts
of the monogenic curvature tensor,T = Te + To. This corresponds to a certain signal model, where two i1D
structures of even or odd symmetry are crossing one another with a flexible opening angle. Compared with
a former model of i2D signals, called the structure multivector [1], this approach has the advantage of being
completely rotation invariant and being not restricted to perpendicularly crossing i1D structures.

The evaluation offMC will be performed analogously to that of the monogenic signal, fM . We will demon-
strate some examples of the phase analysis and some first results about the monogenic curvature scale-space. The
last one is in fact a scale-space associated to the monogenicGaussian curvature.
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