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Abstract. The paper concerns 2D-3D pose estimation in the algebraic
language of kinematics. The pose estimation problem is modeled on the
base of several geometric constraint equations. In that way the projective
geometric aspect of the topic is implicitly represented and thus, pose
estimation is a pure kinematic problem. The authors propose the use
of motor algebra to model screw displacements of lines or the use of
rotor algebra to model the motion of points. Instead of using matrix
based LMS optimization, the development of special extended Kalman
filters is proposed. In this paper extended Kalman filters for estimating
rotation and translation of several constraints in terms of rotors and
motors will be presented. The experiments aim to compare the use of
different constraints and different methods of optimal estimating the
pose parameters.

1 Introduction

The paper describes the estimation of pose parameters of known rigid objects
in the framework of kinematics. The aim is to experimentally verify advantages
of extended Kalman filter approaches versus linear least squares optimizations.
Pose estimation in the framework of kinematics will be treated as nonlinear opti-
mization with respect to geometric constraint equations expressing the relations
between 2D image features and 3D model data.

Pose estimation is a basic visual task. In spite of its importance it has been
identified for a long time (see e.g. Grimson [5]), and although there is published
an overwhelming number of papers with respect to that topic [8], up to now
there is no unique and general solution of the problem. In a general sense, pose
estimation can be classified into three categories: 2D-2D, 3D-3D, and 2D-3D. In
the first and second category, both the measurement data and the model data
are 2D or 3D, respectively. In the third category fall those experiments where
measurement data are 2D and model data are 3D. This is the situation we will
assume.

An often made assumption is that of rigidity of objects. The wellknown kine-
matic model of rigid body transformation is a natural one. It consists of rotation
and translation. On the other hand, the visual data result from perspective pro-
jection, which normally can be modeled using a pinhole camera model.
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In this paper we attend to a pose estimation related to estimations of mo-
tion as a problem of kinematics. The problem can be linearly represented in
motor algebra [7] or dual quaternion algebra [6]. We are using implicit formula-
tions of geometry as geometric constraints. We will demonstrate that geometric
constraints are well conditioned and, thus behave more robust in case of noisy
data.

Pose estimation is an optimization problem, formulated in either linear or
nonlinear manner, or as either constraint or unconstraint technique. In case of
noisy data, which is the standard case in practice, nonlinear optimization tech-
niques are preferred [8]. We will use extended Kalman filters because of their
incremental, real-time potential for estimation. In that respect it will be of in-
terest that the estimation error of the fulfillment of the considered geometric
constraints keeps a natural distance measure of the considered entities to the ac-
tual object frame. Thus, EKF based estimation of geometric constraints permits
a progressive scheme of pose estimation.

The paper is organized as follows. In section two we will introduce the mo-
tor algebra as representation frame for either geometric entities, geometric con-
straints, or Euclidean transformations. In section three we introduce the geo-
metric constraints and their changes in an observation scenario. Section four
is dedicated to the geometric analysis of these constraints. In section five we
will present the EKF approaches for estimating the constraints. In section six
we compare the performance of different algorithms for constraint based pose
estimation.

2 The Algebraic Frame of Kinematics

In our comparative study we will consider the problem of pose estimation as a
kinematic one. In this section we want to sketch the modeling of rigid body mo-
tions in the framework of motor algebra, a special degenerate geometric algebra
with remarkable advantages.

2.1 The Motor Algebra as Degenerate Geometric Algebra

We introduce the motor algebra as the adequate frame to represent screw trans-
formations in line geometry [7]. This algebra belongs to the family of geometric
algebras, a variant of Clifford algebras in which the geometric interpretation of
operations is dominantly considered [11].

A geometric algebra G, 4 is a linear space of dimension 2", n =p+q + 7,
with a rich subspace structure, called blades, to represent so-called multivectors
as higher order algebraic entities in comparison to vectors of a vector space
as first order entities. A geometric algebra G, , » results in a constructive way
from a vector space R™, endowed with the signature (p,q,7), n = p+q +r by
application of a geometric product. The geometric product consists of an outer
(A) and an inner (-) product, whose role is to increase or to decrease the order
of the algebraic entities, respectively.
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To make it concretely, a motor algebra is the 8D even subalgebra of G3.0.1,
derived from R*,i.e. n =4, p = 3,¢ = 0, r = 1, with basis vectors v, i = 1emyds
and the property 77 = 2 = 72 = +1 and ~v32 = 0. Because v2 =0, G301 is -
called a degenerate algebra. The motor algebra g;:m is of dimension eight and
spanned by qualitative different subspaces with the following basis multivectors:

one scalar |
six bivectors D273, Y3V, Y172, Va1, V42, V473
one pseudoscalar : I = y17Y27374-

Because 77 = 0, also the unit pseudoscalar squares to zero, i.e. I 2 = 0. Re-
membering that the hypercomplex algebra of quaternions IH represents a 4D
linear space with one scalar and three vector components, it can simply be ver-
ified that G3 ; is isomorphic to the algebra of dual quaternions H, [11]. Each

dual quaternion q € H is related with quaternions g, qq € H by ¢ = ¢» + Iqa.
It is obvious from that isomorphism that also quaternions have a representation
in geometric algebra, just as complex and real numbers have. Quaternions cor-
respond to the 4D even subalgebra of G300, derived from IR®. They have the
basis {1, v273, ¥371, 7172} The advantage of using geometric algebra instead of
diverse hypercomplex algebras is the generality of its construction and, derived
from that, the existence of algebraic entities with unique interpretation whatever
the dimension of the original vector space.

More important is to remark that the bivector basis of motor algebra con-
stitutes the basis for line geometry using Pliicker coordinates. Therefore, motor
algebra is extraordinary useful to represent line based approaches of kinematics,
also in computer vision.

The motor algebra is spanned by bivectors and scalars. Therefore, we will
restrict our scope to that case. Let be A, B, C &€ (g;{o,l)g bivectors and «,
€ (g.ato_l)o scalars. Then the geometric product of bivectors A, B € (G30.1)25
AB, splits into AB=A-B+AxB+AAB, where A - B is the inner product,
which results in a scalar A-B = «, AA B is the outer product, which in this case
results in a pseudoscalar A A B = I3, and A X B is the commutator prodact,
which results in a bivector C, A x B = % (AB — BA) = C. Changing the sign
of the scalar and bivector in the real and the dual parts of the motor leads to
the following variants of a motor

M = (ag + a) + I(bo + b) M = (ag — a) + I(bo — b)

—

M = (ap +a) — I(bo + b) M = (ap — a) — I(bg — b).

These versions will be used to model the motion of points, lines and planes.

2.2 Rotors, Translators, and Motors

In a general sense, motors are called all the entities existing in motor algebra.
Thus, any geometric entity as points, lines, and planes have a motor represen-
tation. We will use the term motor in a more restricted sense to call with it a
screw transformation, that is an Euclidean transformation embedded in motor
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algebra. Its constituents are rotation and translation. In line geometry we rep-
resent rotation by a rotation line axis and a rotation angle. The corresponding
entity is called a unit rotor, R, and reads as follows

7 . e %
R =ro+ 117273 + 727371 + 737172 =cos | = ) +sin o) = D | 5T

2

Here 6 is the rotation angle and m is the unit orientation vector of the rotation
axis in bivector representation, spanned by the bivector basis. A unit rotor is in
geometric algebra a general entity with a spinor structure, representing rotation
in terms of a specified plane. It exists in any dimension and it works for all types
of geometric objects, just in contrast to rotation matrices, complex numbers or
quaternions. Its very nature is that it is composed by bivectors B and that there
is an exponential form R = 4 exp (%B)

If on the other hand, t = t17v2y3 + toyay: + t3y1772 is a translation vector in
bivector representation, it will be represented in motor algebra as the dual part
of a motor, called translator T" with

t t
T=1+1-=exp|=I].
g = &P (2
Thus, a translator is also a special kind of rotor.
Because rotation and translation concatenate multiplicatively in motor alge-
bra, a motor M reads

M=TR:R+I%R=R+IR’.

A motor represents a line transformation as a screw transformation. The line L
will be transformed to the line L’ by means of a rotation R, around line L, by
angle 6, followed by a translation t, parallel to Ls. The screw motion equation
as motor transformation reads [7], [9]

L' =T,R,LR. T, = MLM.

2.3 DMotion of Points, Lines, and Planes in Motor Algebra

First, we will introduce the description of the important geometric entities [7].

A point € R?, represented in the bivector basis of gg‘,o'l, ie. X € G344,
reads X =1+ 217471 + Tavay2 + Z3vays = 1 + Ix.

A line L € gg“,ozl is represented by L = mn + Im with the line direction
n = n17Y273+N2¥3Y1+n371y2 and the moment m = myysy3+may3y) +mav17Y2.

A plane P € GJ,, will be defined by its normal p as bivector and by its
Hesse distance to the origin, expressed as the scalar d = (z - p), in the following
way, P =p+ Id.

Note that the fact of using line geometry does not prevent to define points
and planes, just as in point geometry the other entities also are well defined. In
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case of screw motions M = T, R, not only line transformations can be modeled,
but also point and plane transformations. These are expressed as follows.

X' =14 Iz’ = MXDM = M1+ Iz)M =1+ I(RaR, +t,)
I'en'+Im' = MLM = R,nR, + I(R,nR, + R,nR, + R;,mR,)
P =p+Id =MPM = M(p+IdM = R,pR, + I(R.,pR.) - t, + d).

We will use in this study only point and line transformations because points and
lines are the entities of our object models.

3 Geometric Constraints and Pose Estimation

First, we make the following assumptions. The model of an object is given by
points and lines in the 3D space. Furthermore we extract line subspaces or points
in an image of a calibrated camera and match them with the model of the object.
The aim is to find the pose of the object from observations of points and lines
in the images at different poses. Figure 1 shows the scenario with respect to
observed line subspaces.

We want to estimate the rotation and the translation parameters which lead
to the best fit of the model with the extracted line subspaces or points. To
estimate the transformations, it is necessary to relate the observed lines in the
image to the unknown pose of the object using geometric constraints.

The key idea is that the observed 2D entities together with their correspond-
ing 3D entities are constraint to lie on other, higher order entities which result
from the perspective projection. In our considered scenario there are three con-
straints which are attributed to two classes of constraints:

1. Collinearity: A 3D point has to lie on a line (i.e. a projection ray) in the
space

2. Coplanarity: A 3D point or a 3D line has to lie on a plane (i.e. a projection
plane).

With the terms projection ray or projection plane, respectively, we mean the
image-forming ray which relates a 3D point with the projection center or the in-
finite set of image-forming rays which relates all 3D points belonging to a 3D line
with the projection center, respectively. Thus, by introducing these two entities,
we implicitly represent a perspective projection without necessarily formulating
it explicitly. Instead, the pose problem is in that framework a purely kinematic
problem. A similar approach of avoiding perspective projection equations by
using constraint observations of lines has been proposed in [2,3].

In the scenario of figure 1 we describe the following situation: We assume
3D points Y;, and lines S; of an object or reference model. Further we extract
points and lines in an image of a calibrated camera and match them with the
model.
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reference model

observed model

Fig. 1. The scenario. The solid lines at the left hand describe the assumptions: the
camera model, the model of the object and the initially extracted lines on the image
plane. The dashed lines at the right hand describe the actual pose of the model.

Table 1. The geometric constraints in motor algebra and dual quaternion algebra.

constraint entities dual quaternion algebra| motor algebra
poiph K = 1448 7 XxTeg |(ZL-Tx=p
line L=n+ Im
anitisie B N TP
plane P = p + Id

line L=n+Im
plane P = p + Id

point-line

point-plane

line-plane LP - PL = LP+PL=0

Table 1 gives an overview on the formulations of these constraints in motor
algebra, taken from Blaschke [4], who used expressions in dual quaternion al-
gebra. Here we adopt the terms from section 2. The meaning of the constraint
equations is immediately clear. They represent the ideal situation, e.g. achieved
as the result of the pose estimation procedure with respect to the observation
frame. With respect to the previous reference frame these constraints read

(MYM)L — L(MYDM) =0
P(MYM) - (MYM)P =0
(MSM)P + P(MSM) = 0.

These compact equations subsume the pose estimation problem at hand: find
the best motor M which satisfies the constraint. With respect to the observer
frame those entities are variables of the measurement model of the extended
Kalman filter on which the motors act.
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4 Analysis of Constraints

In this section we will analyze the geometry of the constraints introduced in
the last section in motor algebra. We want to show that the relations between
different entities are controlled by their orthogonal distance, the Hesse distance.
This intuitive result is not only of importance for formulating a mean square
minimization method for finding the best motor satisfying the constraints. But
in case of noisy data the error of that task can be immediately interpreted as
that Hesse distance.

4.1 Point-Line Constraint

Evaluating the constraint of a point X = 1+ Iz collinear to a line L=n+1Im
leads to

0=XL-LX =I(m-—mnXxc).

Since I # 0, although I? = 0, the aim is to analyze the bivector m — n X x.
Suppose X ¢ L. Then, nonetheless, there exists a decomposition * = x1 + T2
with X1 = (1+Iz;) € L and X2 = (1+Ix2) L L. Figure 2 shows the scenario.
Then we can calculate

Im —nxz| = [lm—nx (@ +x2)|| = || - n x z2|| = [|z2].

Thus, satisfying the point-line constraint means to equate the bivectors m and
n x x, respectively making the Hesse distance ||zz2]| of the point X to the line
L to zero.

n

Fig. 2. The line L consists of the direction n and the moment m = nxv. Further, there
exists a decomposition ¢ = x1+x2 with X3 = (14 Iz1) € Land Xz = (14+Ix2) L L,
sothat m=mn X v=mn X 1.

4.2 Point-Plane Constraint

Evaluating the constraint of a point X = 1+ Iz coplanar to a plane P = p+ Id
leads to

0=PX -—XP=I2d+px+xp)=I(d+p-x).
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Since I # 0, although I = 0, the aim is to analyze the scalar d +p- . Suppose
X ¢ P. The value d can be interpreted as a sum so that d = dp; + do2 and do1p
is the orthogonal projection of x onto p. Figure 3 shows the scenario. Then we

Fig. 3. The value d can be interpreted as a sum d = do1 + do2 so that do1p corresponds
to the orthogonal projection of @ onto p. That is do1 = —p - .

can calculate
d+p-x=doy +doo+p-xT=dor + P T+ doz = dps.

The value of the expression d + p - « corresponds to the Hesse distance of the
point X to the plane P.

4.3 Line-Plane Constraint

Evaluating the constraint of a line L = m + I''n coplanar to a plane P = p+ Id
leads to

0=LP+PL=np+pn+I2dn—pm+mp)=n-p+ I(dn—pxm)

Thus, the constraint can be partitioned in one constraint on the real part of the
motor and one constraint on the dual part of the motor. The aim is to analyze
the scalar n - p and the bivector dn — (p x m) independently. Suppose L ¢ P.
If n Y p the real part leads to

n-p = —|[nf|||p|| cos(a) = —cos(a),

where o is the angle between L and P, see figure 4. If n | p, we have n-p = 0.

Since the direction of the line is independent of the translation of the rigid
body motion, the constraint on the real part can be used to generate equations
with the parameters of the rotation as the only unknowns. The constraint on
the dual part can then be used to determine the unknown translation. In other
words, since the motor to be estimated, M = R+IRT = R+IR’, is determined
in its real part only by rotation, the real part of the constraint allows to estimate
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the rotor R, while the dual part of the constraint allows to estimate the rotor
R'. So it is possible to sequentially separate equations on the unknown rotation
from equations on the unknown translation without the limitations, known from
the embedding of the problem in Euclidean space [6]. This is very useful, since
the two smaller equation systems are easier to solve than one larger equation
system.

To analyze the dual part of the constraint, we interpret the moment m of
the line representation L = n + I'm as m = n X s and choose a vector s with
S = (1+Is) € L and s L n. By expressing the inner product as the anti-
commutator product, it can be shown ([1]) that —(p x m) = (s-p)n — (n - p)s.
Now we can evaluate

dn — (pxm)=dn — (n-p)s+ (s-p)n.

Figure 4 shows the scenario. Further, we can find a vector s; with s || s1, so

Fig.4. The plane P consists of its normal p and the Hesse distance d. Furthermore
we choose § = (1 + Is) € L with s L n.

that
0=d— (||s]| + [[s1l]) cos(B).

The vector s; might also be antiparallel to s. This leads to a change of the sign,
but does not affect the constraint itself. Now we can evaluate

dn — (n-p)s+ (s -p)n =dn — ||s| cos(B)n + cos(a)s = ||s1|| cos(B)n + cos(a)s.

The error of the dual part consists of the vector s scaled by the angle a and the
direction n scaled by the norm of 8; and the angle 3.
If n L p, we will find

ldn — (p x m)|| = |[dn+ (s - p)n — (n-p)s|| = |(d + s - p)]

This means, in agreement to the point-plane constraint, that (d+ s-p) describes
the Hesse distance of the line to the plane.
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This analysis shows that the considered constraints are not only qualitative
constraints, but also quantitative ones. This is very important, since we want to
measure the extend of fulfillment of these constraints in the case of noisy data.

5 The Extended Kalman Filter for Pose Estimation

In this section we want to present the design of EKFs for estimating the pose
based on three constraints. Because an EKF is defined in the frame of linear
vector algebra, it will be necessary to map the estimation task from any chosen
algebraic embedding to linear vector algebra (see e.g. [9]).

5.1 EKVF Pose Estimation Based on Point-Line Constraint

In case of point based measurements of the object at different poses, an algebraic
embedding of the problem in the 4D linear space of the algebra of rotors Q’;O_D,
which is isomorphic to that one of quaternions IH, will be sufficient [7,9]. Thus,
rotation will be represented by a unit rotor R and translation will be a bivector
t. A point y; transformed to @y reads z; = Ry; R + t. We denote the four
components of the rotor as

R =179+ rios03 + To030) + T30109.

To convert a rotor R into a rotation matrix R, simple conversion rules are at
hand:

rg -+ -rf - r% — ?‘g 2(r1re 4+ 7073) 2(r1r3 — To7T2)
= 2(7‘1?‘2 == ?‘07‘3) ?"g — T% -+ 7‘% — Tg 2(?"27‘3 -+ ?‘07‘1)

2(rirs +7ror2)  2(rors —rory) T8 —ri — 12 412

In vector algebra, the above point transformation model can be described as
X1 = Ry;_ + t.

The projection ray Ly, in the point-line equation is represented by Pliicker co-
ordinates (nj;,m;), where n; is its unit direction and mj its moment. The
point-line constraint equation in vector algebra of R reads

fi=m; —ny xx;3 =m; —n; x (Ry; +t)=0.

Let the state vector s for the EKF be a 7D vector, composed in terms of the
rotor coefficients for rotation and translation,

5= (RT" tT)T = ('rUf T1,T2,73, t]_, t21 t3)T
The rotation coefficients must satisfy the unit condition

f = RTR — =r§+r%+r§+r§—1=0.
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The noise free measurement vector a; is given by the actual line parameters n;
and m;, and the actual 3D point measurements i,

T i TNT T
ai:(ni D 8 SR ) ‘_:(nilaniQsniSamilan?‘i?:miS-:yz'layiQayiS) :

For a sequence of measurements a; and states s;, the constraint equations

: o (fu) _ (mi o nix (Rayi+ ) _
fl(ala Sl) = (f2i) - (RiTRi —1 =0

relate measurements and states in a nonlinear manner. The system model in this
static case should be s;4+1 = s; + ¢;, where ¢; is a vector random sequence with
known statistics, E[{;] = 0, E[¢T¢,] = Qibik, where dii is the Kronecker delta
and the matrix Q; is assumed to be nonnegative definite. We assume that the
measurement system is disturbed by additive white noise, i.e., the real observed
measurement a} is expressed as a; = aj + 7);.

The vector 7; is an additive, random sequence with known statistics, E[n;] =
0, E[nfny] = Widik, where the matrix W; is assumed to be nonnegative defi-
nite.

Since the observation equation is nonlinear (that means, the relationship
between the measurement a/ and state s; is nonlinear), we expand fj(a;j,s;j) into
a Taylor series about the (a, §; /i—1), Where al is the real measurement and §;/;_1
is the predicted state at situation i. By ignoring the second order terms, we get
the linearized measurement equation

z; = Hisi + &,

where

ofi(af, 8i/i—1) .

ziy = fikay; Sis—1) — e By
1
m! = 1! % (R — 1¥, + /i
= la (Ryji~1¥i+ biji-a) + Hi8iji—a-
R;;_1Riyji-1—1

The measurement matrix #; of the linearized measurement z; reads

A _ Ofi(a8yi-1) _ (CaDpy Cry |
aSi DR 01>(3

where

ol A
- O(Ryss—1Riji-a — 1)

di do d3 da
=| d¢ —ds d2 —dy |,
—ds —dg di do
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dy = 2(Piji—1j0Yi1 + T(i/i—1)3Yia — T(i/i-1)2Ys3),
d2 = 2(P(iji—1)1¥i1 + T(i/i—1)2Yi2 + T(i/i-1)3Yis),
d3 = 2(—P(iji—1)2¥i1 + Fi/i—1)1Yi2 — Fri/i—1)0Yi3),
dy = 2(—Pi/i—1)3¥i1 + Fi/i—1)0¥iz + Fi/i—1)1Yi3)-

The 3 x 3 matrix Cpy is the skew-symmetric matrix of n;. For any vector y, we
have C, y = n{ X y with

I !
0 —nizg ngy
" ! !
Cn; = N3 0 —nj
! !
—Nz gy 0

The measurement noise is given by

ofi(af, 8i/i—1) ~ _ Ofi(aj,8i/5-1)
_ (Cii,iﬁl Isxa —CiRi/i- 1) -
O1x3 Oixs 01x3 i

where I3, 3 is a unit matrix and Cx,,,_, is the skew-symmetric matrix of Xiti-1
with

Riji-1 = ﬁ'i/i —1Yi+ Ei/i—1-

The expectation and the covariance of the new measurement noise £; are easily
derived from that of af as

3fi(a§, §i/i—1) )W_(afi(a;, éi/i—l) )T

N B oA o N =
E[§;] = 0 and E[§; &] = Vi = ( da; Oa;

The EKF motion estimation algorithms based on point-plane and line-plane
constraints can be derived in a similar way.

5.2 EKF Pose Estimation Based on Point-Plane Constraint

The projection plane P12 in the point-plane constraint equation is represented
by (dy,p1), where d; is its Hesse distance and p; its unit direction. The point-
plane constraint equation in vector algebra of R? reads

d] == plT('Rxl + t) =0
: T
With the measurement vector a; = (d;, piT,YiT) and the same state vector s
as above, the measurement z; of linearized measurement equation reads

{T - -~
— (diT_ Pi” (Risi—1Yyi + tijiz1)

~ < + Hi8ii—1-
Ri/i — 1Ri/i—1 —1 )
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The measurement matrix ; of the linearized measurement z; now reads

; L7
H; = (plT’D-ﬁyr Pi ) _
DR 01 %3

The measurement noise is given by
~ - T -~
& = (1 —(Riji —1yi + tiic1)T —(P1 Riji- 1)) .
' 0 01x3 01x3 T

5.3 EKF Pose Estimation Based on Line-Plane Constraint

Using the line-plane constraint, the reference model entity in g;;o_‘l [9,7] is the
Pliicker line S; = nq + Imy. This line transformed by a motor M = R + IR’

reads

L= MS;M = Rn R+ I(Rni R + R'niR+ RmiR) = uy + Ivy.
We denote the 8 components of the motor as
M = 7o + r17v27s + r2vam1 + ravive + I(rg + riv2ys + rhyav + rime).
The line motion equation can be equivalently expressed by vector form,
u; = Rn; and v; = An; + Rm;,,
with

a1l aiz2 a3
A= | az az a3 |,

azy; a3z asg
a1y = 2(riro +rir1 — ror2 —7T37T3), Q12 =2 r47T0 + ThT1 + TiT2 + TOT3),
ays = 2(—rhro + rir1 — r4r2 + Ti7T3), @21 = 2(—Tiro + ToT1 + T1T2 — TOT3),
Gy = 2(rhro — Tiry + rhre —ThT3), ags = 2(riro + o1 + 1572 + To7T3),
as1 = 2(rhyro + rhr1 + rora +7ir3), asz = 2(—riro — r4r1 + 372 + T573),
azz = 2(?"6?"0 = T‘;T‘l = Té’f‘g -+ Té’f"g).

The line-plane constraint equation in vector algebra of IR? reads

fi) _ p1Tuy _ p17(Rny) —0
f:z d1u1 -4 Vi X P1 dIT\’,nl -+ (.Anl b le) X P1 ’

We use the 8 components of the motor as the state vector for the EKF,
S = (TD'; T1,72,73, ri{Ja TJl: T;: ré)T
and these 8 components must satisfy both the unit and orthogonal conditions:

f3=r§+r§+r%+?‘§—l=0,

’ ol t r
fq = rory +riry +rory +rary =0.
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The 10D noise free measurement vector a; is given by the true plane parameters
d; and p;, and the true 6D line parameters (n;, m;),

T T T\T , a7
ai=(di,pi s I, Iy ) :(digpsl,}?w,}?isanﬂ,nimnm,mn,mizami3) .

The new measurement in linearized equation reads

T 45 ’
P; (Risi—1nj)

/ / A / >, / ’
dig?'i/i —1nj + (Aji—1ni + Ry 1mj) X pj

Rij(i_lRi/i—l 1 +’Hisi/i_1.

~ ~

Riji—aBij

The measurement matrix H; of the linearized measurement z; reads

Hi — _diD’F:’,n' T CP; (’D«‘in’ * ?ﬁm'} CP; D’ﬁ’.n' .
Dr 01x4 '
(T s 50 (R, _ ,m)) 8(A; ; _ n}
- - - T ~
a(R;/i — 1R'-'/-_1) 1 a(R;/; — 1R'-'X—_1)
R = BRi A and EDR - GR: A %

The 3 x 3 matrix Cp; is the skew-symmetric matrix of p{. The measurement
noise is given by

0 n/ R4 i Pl R/ i O1x3
& = | Risi—1n} Cqo, diRisi—-1—CpiAisi—1 —CouRiji—1 | ™
O2x3 O2x3 O2x3 023

where Cy, is skew-symmetric matrix of ¥4, and ¥; is defined as
~ __ A ! ». ’
Vi = ./4:1/5 — 11 +'Ri/i — 3.

Having linearized the measurement models, the EKF implementation is straight-
forward and standard. Further implementation details will not be repeated here
[10,9,12]. In next section, we will denote the EKF as RtEKF, if the state explic-
itly uses the rotor components of rotation R and of translation t, or MEKF, if
the components of motor M are used.

6 Experiments

In this section we present some experiments with real images. The aim of the
experiments is to study the performance of the algorithms for pose estimation
based on geometric constraints. We expect that both the special constraints and
the algorithmic approach of using them may influence the results.
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Fig. 5. The scenario of the experiment: The calibration of an object model is performed
and the 3D object model is projected on the image. Then the camera moved and
corresponding line segments are extracted.

Table 2. The experiment 1 results in different qualities of derived motion parameters,
depending on the used constraints and algorithms to evaluate their validity.

no. _~ — t Constraint Experiment 1 Error
0.987 0.089 —0.138 —58.21

1 |RtEKF — RtEKF XL-XL R = —0.117 0.969 —0.218 t= —217.26 5.2
0.115 0.231 0,966 160.60
0.976 0.107 —0.191 —60.12

2 SVD — MAT XL-XL R = —0.156 0.952 —0.264 t = —212.16 G.T
0.154 0.287 0.945 106.60
0.987 0.092 —0.133 —52.67

3 |RtEKF — RtEKF XP-XP T = —0.118 0.973 —0.200 ti= —217.00 5.5
0.111 0.213 0.970 139.00
0.986 0.115 —0.118 —T71.44

4 RtEKF — MAT XP-XP R = —0.141 0.958 —0.247 t = —219.34 3.7
0.085 0.260 0.962 124.71
0.979 0.101 —0.177 —65.55

5 SVD — MAT XP-XP R = —0.144 0.957 —0.251 t = —221.18 5.3
0.143 0.271 0,952 105.87
0.976 0.109 —0.187 —66.57

6 SVD — MAT LP-XP = —0.158 0.950 —0,266 t = —216.18 b :
0.149 0.289 0.945 100.53
0.985 0.106 —0.134 —50.10

7T | MEKF — MEKF LP-LP R = —0.133 0.9269 —0.208 t = —212.60 2.9
0.107 0.229 0.969 142.20
0.985 0.1068 —0.134 —67.78

8 MEKF — MAT LP-LP T = —0.133 0.968 —0.213 to= —227.73 2.7
0.108 0.228 0.968 123:90
0.976 0.109 —0.187 —B80.58

9 SVD — MAT LP-LP R = —0.158 0.950 —0.266 t = —225.59 6.9
0.149 0.289 0.945 93.93

In our experimental scenario we positioned a camera two meters in front of
a calibration cube. We focused the camera on the calibration cube and took an
image. Then we moved the camera, focused the camera again on the cube and
took another image. The edge size of the calibration cube is 46 cm and the image
size is 384 x 288 pixel. Furthermore, we defined on the calibration cube a 3D
object model. Figure 5 shows the scenario. In the left images the calibration is
performed and the 3D object model is projected on the image. Then the camera
is moved and corresponding line segments are extracted. In these experiments
we actually selected certain points by hand and from these the depicted line
segments are derived and, by knowing the camera calibration by the cube of
the first image, the actual projection ray and projection plane parameters are
computed.

For the first experiment we show in table 2 the results of different algorithms
for pose estimation. In the second column of table 2 EKF denotes the use of the
EKFs derived in section 5, MAT denotes matrix algebra, SVD denotes the sin-
gular value decomposition of a matrix. In the third column the used constraints,
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point-line (XL), point-plane (XP) and line-plane (LP) are indicated. The fourth
column shows the results of the estimated rotation matrix R and the transla-
tion vector t, respectively. The translation vectors are shown in mm. The fifth
column shows the error of the equation system. Since the error of the equation
system describes the Hesse distance of the entities, the value of the error is an
approximation of the squared average distance of the entities. It is easy to see,
that the results obtained with the different approaches are all very close to each
other, though the implementation leads to totally different calculations and al-
gorithms. Furthermore the EKF’s perform more stable than the matrix solution
approaches.

The visualization of some errors is done in figure 6. We calculated the motion
of the object and projected the transformed object in the image plane. The
extracted line segments are overlayed in addition. Figure 6 shows the results of
nos. 5, 3, 7 and 8 of table 2, respectively.

Fig. 6. Visualization of some errors. The results of nos. 5, 3 7 and 8 of table 2 are
visualized respectively.

In a second experiment we compare the noise sensitivity of the Kalman filters
and of the matrix solution approaches for pose estimation. The experiment is
organized as follows. We took the point correspondences of the first experiment
and estimated both R and t. Then we added a Gaussian noise error on the
extracted image points. The error varied from 0 to 16 pixels in 0.25 steps and
we estimated R’ and t’ for each step. Then we calculated the error between
R' and R and between t’ and t. The results are shown in figure 7. Since R
and R’ are rotation matrices, the absolute value of the error differs in the range
0 < eqp < 1. The error of the translation vector is evaluated in mm. So the error
of the translation vector differs by using the matrix solution approach at around
0 < €t < 10 cm, while using the Kalman filter the corresponding range is 0 <
€t < 6 cm. The matrix based solutions look all very similar. Compared with the
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EKF results they are very sensitive to noise and the variances between the noise
steps are very high. The results are in agreement with the well known behavior of
error propagation in case of matrix based rotation estimation. The EKF based
solutions perform all very stable and the behavior of the different constraints
are also very similar. This is a consequence of the estimators themselves and of
the fact that the concatenation of rotors is more robust than that of rotation
matrices. It is obvious, that the results of these experiments are affected by
the method to obtain the entities in the image. In this experiment we selected
certain points directly by hand and derived from these the line subspaces. So
the quality of the line subspaces is directly connected to the quality of the point
extraction. For comparison purposes between the algorithms this is necessary
and reasonable. But for real applications, since the extraction of lines is more
stable than that of points, the XP or LP algorithms should be preferred.

Rotation Translation

noise(Pxl) noise{Pxl)

Fig. 7. Performance comparison of different methods in case of noisy data. With in-
creasing noise the EKF performs with more accurate and more stable estimates than
the matrix based methods.

7 Conclusions

In this paper we describe a framework for 2D-3D pose estimation. The aim of
the paper is to compare several pose modeling approaches and estimation meth-
ods with respect to their performance. The main contribution of the paper is to
formulate 2D-3D pose determination in the language of kinematics as a prob-
lem of estimating rotation and translation from geometric constraint equations.
There are three such constraints which relate the model frame to an observation
frame. The model data are either points or lines. The observation frame is con-
stituted by lines or planes. Any deviations from the constraint correspond the
Hesse distance of the involved geometric entities. From this starting point as a
useful algebraic frame for handling line motion, the motor algebra has been intro-
duced. The estimation procedure is realized as extended Kalman filters (EKF).
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The paper presents EKF's for estimating rotation and translation for each con-
straint model in different algebraic frames. The experiments show advantages of
that representation and of the EKF approaches in comparison to normal matrix
based LMS algorithms, all applied within the context of constraint based pose
estimation.
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