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Abstract

Reinforcement learning is widely regarded as elegant in
theory but hopelessly slow in practice. This is because it
is often studied under the assumption that there is little
or no prior information about the task at hand. This as-
sumption, however, is not the defining characteristic of
learning. Learning involves the incorporation ofprior
knowledge or bias that can greatly accelerates or other-
wise improves the learning process.

In this paper we address the influence of the amount
and quality of bias on the speed of reinforcement learn-
ing. For a chosen class of learning problem different
forms of biases are initially identified. Some of the bias
are extracted from the knowledge of the environment,
others from the task, and yet a few from both. Belief ma-
trices, which reset Q-tables before learning commences,
encode the biases. The average number of interactions
between the agent and the environment is used to quan-
tify the biases. Based on this performance measure, the
biases are graded and some new results are reported. In
addition, the paper compares continual learning to learn-
ing from scratch and presents results that clearly demon-
strate the advantages of the former.

Key Words: reinforcemnt learning, bias, continual
learning.

1 Introduction

Bias, in the context of learning, is a term used to de-
scribe a learning system’s pre disposition for learning
something at the expense of others. By having a vary-
ing degree of built-in structure, learning systems can
fall almost anywhere in the continuum from unbiased to
highly biased memory systems. Lookup tables are near
the unbiased end of this continuum because they do not
impose constraints other than a certain quantization of
the data they store. Whereas memory systems are near

the highly biased end that assume specific functional re-
lationship between their inputs and outputs. Highly bi-
ased memory systems have few degrees of freedom, but
the form of their bias enables them to generalize beyond
the data with which they have direct experience [1].

Biasing, once regarded as “cheating” in the machine
learning community, is now understood and accepted as
a necessary part of designing useful learning systems.
In the past different kinds of biases have been used to
speed up RL [6, 8, 10, 3]. Mahadevan et al. [6] have
decomposed the task into sets of simple sub-tasks, each
with its own prewired applicability predicate. Matáric
[8] has minimized the state space by transforming state-
action pairs to condition-behavior pairs and maximized
learning by designing reward rich heterogeneous rein-
forcement. Millán [10] has tremendously accelerated
RL by integrating it with reflex rules that focus explo-
ration where it is mostly needed. Recently Hailu et al.
[3] have embedded environment knowledge to ease state
space construction. The common characteristic of the
above examples is that the basic RL algorithm has been
endowed with somebuilt-in knowledge. In each case,
however, the built-in knowledge has different form and
is used for different purpose: in [6] to break down and
to arbiter tasks, in [8] to design rich reward, in [10] to
focus exploration , and in [3] to mitigate the dimension-
ality problem by crafting key states by hand.

Even though it is agreed that biasing is a necessary
and crucial step in RL, it is not yet clear by how much
and with what quality a learning system should be bi-
ased. Intuitively, the more human effort and insight is,
the less time is required to converge. In the limit, how-
ever, the system becomes less autonomous and non in-
teresting. The challenge now is on the amount, quality
and way of expressing this bias in a systematic way that
will give enough inductive leap to the learning system.
The main issue of this paper is, therefore, to shed light
on the amount and quality of bias needed to brutally cut
the learning time of an RL system.



2 Labyrinth World

To study the influence of the amount and quality of bias
in reinforcement learning, a deterministic world with
denumerable states is considered. In this world, the
agent is assumed to be a point robot with simplified mo-
tor actions (such as move to the next square and turn
90 degrees). Such robot-world configurations are often
called labyrinthworlds. Clearly, the labyrinth world is
a highly simplified scenario of a real robot world. It
is unrealistic to think of a dimensionless robot or denu-
merable world states. Similarly, it is impossible to throw
away the details of low level control and deal with only
simplified motor actions. Nevertheless, despite these
unrealistic assumptions, we have based the experiment
on a labyrinth world for three justifiable reasons.

First, since the influence of different types of biases
on the learning speed is investigated, an RL experiment
has to be set up as many times as the number of bi-
ases available. Often, however, each RL set up requires
large number of expensive learning trials. Expensive in
many ways: wall clock time, danger to the robot, power
consumption, etc. Techniques such as Dyna [12], ex-
perience replay [5], transition proximity Q-learning [9]
and asynchronous dynamic programming [2] are all ex-
amples of efforts to cut this expensive learning trial by
substituting world experience with storage and compu-
tation. Therefore, it is clearly inefficient to carry out an
RL experiment on the real robot for each and every bias
introduced into the learning system.

Second, once again the main goal is to identify those
biases that significantly enhance learning. Clearly a
problem domain that enables us to vary the strength of
the bias and also to qualify this variation has an impor-
tant consideration. As we shall see shortly, external in-
ductive biases that are hard to manipulate in real do-
mains can be easily manipulated in labyrinth domains.

Third, even if we decided to undertake the experiment
on a real robot, there is a danger to come up with in-
correct conclusion. Varying the bias and studying the
learning performance of a physical agent is notoriously
difficult because noise and error makes certain parts of
the agent policy to fluctuate. So, even if the learning sys-
tem is appropriately biased, due to noise and error it may
still exhibit a bad performance, unless it is smoothed out
by averaging over a large set of experiments.

Therefore, a more efficient and inexpensive method
is to perform the experiment on artificial world, that re-
quires much less experimental effort than running on the
real domain and yet to come up with domain free bias-
ing scheme that suggest the best way of biasing an RL
system.

The robot world, figure 1(a), is grid world consisting
of 16 states, one of which is identified as a goal state
and any of the state can be chosen as a start state. It is
assumed that all the states are distinct and completely
distinguishable. Furthermore, there are three possible
actions:turn left, forward , andturn right

which the agent can choose from and all actions can be
tried at every states. Figure 1(b) defines the state tran-
sitions as a function of present state and action. Pre-
viously, Matáric [7] has used this same world to study
and compare the performance of Q-learning and Bucket
Brigade algorithms.

In this domain, the task of the agent is to reach the
goal state through the shortest steps. Reward is zero
for all transitions except for those into the goal state, in
which case it is +1. Upon entering the goal state the
system is instantly transported back to the start state to
begin the next trial. Attempting an action against world
boundary does not change the state. None of this struc-
ture and dynamics is known to the unbiased learning
systema priori.

(a)

(b)

Figure 1: A two-dimensional labyrinth problem: (a) The
point robot must find the shortest path from any start
state to the goal state, numbered bold. (b) State transi-
tions table that governs the motion of the robot.

3 Belief Matrices

As we have discussed in section 1, biases come in differ-
ent forms and shape different parts of the reinforcement
learning components. For example, domain rich het-
erogeneous reinforcement is fundamentally used to ease
the problem of temporary credit assignment. Likewise,
reflex is primarily used to focus exploration.

In this work, we have usedbelief matrices, a version
of reflex for discrete state-action space that restricts the
set of possible hypothesis by putting a strong belief on
each hypothesis, so that strong negative belief is needed
to eliminate an hypothesis from consideration. An hy-
pothesis is a pairing of any state with any action and it is
associated with a belief value that represents the appro-
priateness of the pairing. In short, belief values either
eliminate or put preference on the set of possible ac-
tions that can be tried at each state by encodingdomain
knowledgein the belief matrix (equation 1). In general,
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4 Bias Design

For the task described above, we have considered
four different types of biases, namely:unbiased,
environment, insight , andgoal. The choice
of these biases is primary guided by the particular task
at hand. For the case of tasks not requiring to reach a
given destination, biases such asgoal are neither use-
ful nor available. But other biases likeenvironment
are more generic that could be applied across tasks.

Unbiased, B0
In this case the agent does not know before hand the na-
ture of the problem, therefore, its action selection strat-
egy isoptimism in the face of uncertainty[4]. That is,
entries of the belief matrices are like the unused black-
board and learning proceeds from scratch.

Environment Bias, B1
In this type of bias a part of the environment knowledge
that inform the agent to stay away from likely collision
(which can be the boundary of the world or other obsta-
cles) is encoded in the belief matrix. Under this category
two forms of biases are identified.

The first formB10 excludes those actions that have an
immediateconsequence. Referring to figure 1(a) among
the three actions at state #0, the actionforward has
an immediate consequence of collision with the world
boundary. Hence, in the belief matrix this action is dis-
criminated by putting a high negative value so that it will
not be chosen by the action selection mechanism.

The second formB11, which is the more general case,
looks one step ahead and puts preference to actions in
the belief matrix. That means, actions that havepoten-
tial consequence are less preferred to those actions that
do not have consequence. Again referring to figure 1(a),
like biasB10 theforward action at state #0 is excluded
in this bias, too. In addition, the actionleft potentially
results in collision with world boundary (if a forward
action is chosen after a transition has taken place). But,
actionright is safe, since it does not bound the robot
to world boundary. Therefore, this form of bias places
at state #0 of the belief matrix a higher preference to the
right action than to theleft.

Insight Bias, B2
This type of bias tries to exploit the unique character-
istics of the task. It is a know fact that every task has
its own unique characteristics that could be of a great
help, if discovered, in solving the task. In the task de-
scribed above, since the goal is placed at the third col-
umn, the main strategy of the agent should be to arrive at
this column first before heading to the right destination
state. A close look at the task reveals that for some states
there are more than one choice of actions the agent can
choose from, but all leading to the same end effect. For
instance, if the agent is at state #3, its immediate strat-
egy must be to reach state #1 so that it can choose the
forward action and leave that column. This can be ac-
complished by choosing either of these two sequence of
actions:left left or right right. So the agent
need not execute both actions as they have the same end
result. Therefore, one of this sequence is eliminated by
putting again a negative value in the belief matrix. It
is worth noting that leaving the insight bias and letting
the RL algorithm discover on its own these redundant
state-action pairs enormously debilitates the learner.

Goal Bias, B3
This is a goal directed bias. Since the destination is
known, it is possible to bias the learner with vector fields
that will ultimately lead the agent to the goal. How-
ever, if all vector fields are supplied, there is nothing
left for the agent to learn. Therefore, similar to environ-
ment bias, we have identified two goal directed biases,
namelynear, B30, andfar, B31, biases. In the near
bias case, the right vector fields are supplied only for
those states that are near to the goal and the remaining
states are left for the agent to discover the right vectors
through RL. The far bias case is the dual of the near bias
in which all far vector fields are supplied and the agent
learns only the near vector fields.

Note here the wordfar andnear are not used in
their literal meaning to represent spatial distance. Far
more, they carry semantic meanings that represent the
reachabilityof a state. The reachability of a state is de-
fined as the minimum sequence of actions required to
reach a specified goal starting from that state. An agent
can be near to the goal spatially, however, it may re-
quire a series of actions before it reaches that goal (e.g.,
if a robot position and its goal are very near but sepa-
rated by, say, a wall). In the task described, state #7 is
spatially nearer to the goal than state #12, however, an
agent that starts from this state requires at least five ac-
tions before it reach the goal whereas if it starts from
state #12 it needs only one action, namelyleft.

5 Q-learning

Q-learning [13] is an RL algorithm that can be used
whenever there is no explicit model of both the sys-



tem and the cost structure. The algorithm works by
maintaining an estimate of the expected reinforcement
for each state-action pair (called Q-values) and adjust-
ing these values based on actions taken and rewards re-
ceived. This is done by using the difference between the
immediate reward received plus the discounted value of
the next state and the Q-value of the current state-action
pair,�Q(x; u) = �(r + 
maxu Q(y; u) �Q(x; u)) (2)

wherey is the next state of the system after applying
actionu in statex.

The choice of� and 
, the key parameters in Q-
learning, affects the efficiency of the learner. The pa-
rameter� determines the learning rate, thus� = 1 re-
sults in an update rule which disregards all history ac-
cumulated in the current Q-value. It resets the Q-value
to the current sum of the received and expected reward
at every time step, which usually causes the algorithm
to oscillate. The parameter
 is the discount factor for
future reward. Ideally
 should be close to 1, but in gen-
eral case0 � 
 � 1.

The values used for the two learning parameters and
the initial Q-values are shown in Table 1. Since the
world is deterministic, a unity discount factor is cho-
sen so that the relevance of future reward is maximized.
For each bias the Q-values are initialized by the belief
matrix,b, of that bias.� 
 initial Q

0.9 1.0 b
Table 1: Q-learning parameters initialization.

Action Selection

During the learning process, two opposing objectives
have to be combined. On the one hand the environ-
ment must be sufficiently explored in order to find a
(sub)optimal controller. On the other hand, the env-
iorment must also be exploited to minimize the cost of
learning. The simplest way of balancing exploration and
exploitation is to take an action with the best estimated
expected reward but with the probabilityq, of choosing
action at random. This simple strategy, however, has
no mechanism to distinguish a promising action from
hopeless actions during exploration.

We chooseBoltzmann-explorationstrategy [11], a
slightly more complex strategy in which actions are cho-
sen according to probabilities that depend on the current
evaluation functionQ(x; u). At statex, the probability
that the controller executes actionu 2 U (x) is:p(u) = e�Q(x;u)=TPv2U(x) e�Q(x;v)=T (3)

whereT is a decreasing positive valued function of-
ten referred to ascomputational temperature[2], which
controls the exploration by adjusting how sharply the
probability peaks at the greedy policy,u�(x) 8x.

6 Experimental Results

To test the Q-learning algorithm with the different types
of biases, a particular state in the labyrinth problem,
state #7, is chosen as a start state of the agent. Hence,
the specific task of the agent is to find the shortest
path from state #7 to state #15. Since the start and
the goal states are known, the optimal number of ac-
tions required to reach the goal can be computed by
hand - in this case it is five. There are many optimal
policies that takes the agent to the goal state through
the shortest path. Such two policies, for example, arefleft left forward left leftg andfleft
left forward right rightg. In the following,
the learning algorithm seeks to find only one of these
policies.

Each bias type involves a Q-learning experiment,
hence a total of six (the number of biases) learning ex-
periments were conducted and figures 2 to 4 show the
respective learning curves. For the purpose of com-
parison, the learning curves of biasesB1, B2 and,B3
are plotted together with the unbiased,B0–light curve.
Furthermore, each learning curve is an average of ten
episodes (runs). An episode in turn consists of 100 tri-
als. The vertical axes of each figures depict the number
actions the agent has required to reach the goal at each
trials.
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Figure 2: Environment biases: While the light curve is
the unbiased,B0 performance, the dark and heavy dark
curves are the performances ofB10 andB11, respec-
tively.

On these curves the performance, i.e., learning time,
can be defined in two different ways. The first method
is to equate the learning time to the number oftrials
the agent has required before reaching the optimal per-
formance. This measure, however, is misleading since
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Figure 3: Insight bias: The dark curve is the perfor-
mance of the agent with biasB2.
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Figure 4: Goal biases: The dark and heavy dark curves
are performance withB30 andB31 biases respectively.

it does not take into account the actual time elapsed in
each trial. A more accurate performance measure that
considers both the number of trials and the time per trial
is given byJ = 1T R T0 f(t) dt, wheref(:) is a function
whose plot is one of the above graphs andt is a trial.
This equation represents the average number of actions
the agent has taken before convergence.

For discrete states and actionsJ is reformulated toJ = 1N Pj f(j), whereN is the number of trials before
convergence andf(j) is the number of actions taken in
trial j. Table 2 shows performance indices of various
biases that is computed by equation (4). The equation
measures the reduction in the number of actions gained
relative to the unbiased performance.r = 1� J(Bi)J(B0) i = 1; 2; 3 (4)

By incorporating the two environment biasesB10 andB11 we have reduced the average number of action by22:7% and 41:7%, respectively. BiasB11 (that looks
one step ahead and put preference to actions) is more
profitable thanB10. However, as shown in figure 2

Bias types Indices

unbiased 0.0
environment I 22.7
environment II 41.7

insight 45.3
goal I 23.9
goal II 75.9

Table 2: Performance index of different types of biases.

the final learned policy ofB11 is poorer than even the
unbiased performance. This paradox is explained as-
follows. In general, biased reinforcement takes advan-
tage of the cleverness of the designer to reduce the state
space manually. During this process most irrelevant in-
puts are eliminated, but potentially useful ones can be
overlooked resulting inincompletestate space andsub-
optimal solution. On the other hand, an unbiased re-
inforcement is complete in state space and guarantees
that the agent will, given sufficient time and reinforce-
ment, produce complete (optimal) policy. This reassur-
ing quality, however, is useless in practical terms. An
agent that quickly reaches a plateau at99% of optimality
may, in many applications be preferable to an agent that
guarantees eventual convergence and a sluggish early
learning [4].

Insight bias,B2, has reduced the average action by45:3%. This is an astonishing result, since the search
space in biasB1 is 38, whereas in biasB2 it is 40. So,
even with large search space, the insight bias has en-
abled the agent to learn faster than biasB1. This signi-
fies the fact that biases derived from the problem insight
are stronger than environment biases.

Unfortunately, neither environment nor insight bias is
sufficient in real and complex systems. Even for this
simple and well defined problem, the best bias,B2, has
reduced the average action only by half. This suggests
that the system still needs an efficient (task oriented)
bias to leverage learning significantly. Figure 4 shows
the learning curve when biasesB30 andB31 are em-
ployed. As seen from the figure, the near goal bias,B30,
performs even worse thanB2, therefore it is not worth
discussing it. With the far goal bias,B31, the average
action before convergence has reduced by75:9% from
the unbiased one. Hence, among all the biases intro-
duced, only biasB31 had produced a significant leap in
learning.

7 Continual Learning

Most reinforcement learning works start from scratch
and adapt only to asinglepolicy. However, rather than
learning each task independently from scratch, contin-
ual learning is indisputably useful. Here, we have car-
ried out an experiment to investigate if the agent is able



to use previously learned knowledge to speed up the
learning of an entirely new policy.

The procedure followed is as follows. First the sys-
tem had been trained for the previously described task,
i.e., initial state #7 and goal state #15. This training
was unbiased and the final learned Q-values were stored
for later use, let us designate these values asQ� for fu-
ture reference. Next, a new task is constructed namely,
the goal state is altered to state #2 that corresponds to a
complete shift in the relative goal location from right to
left. For this new task, two RL experiments have been
carried out. In the first experiment, the Q-values were
initialized to an identical value, which corresponds to
learning from the scratch. While in the second experi-
ment, the values are initialized with the stored values of
the previous learned task,Q�.

Figure 5 shows the learning curves of the two experi-
ments. Note that the optimum number of actions for the
new task is two and, both ways of initializations have ar-
rived at this optimum value. However,continual learn-
ing, where the agent accumulates what it has learned in
the previous task, has performed far better than learn-
ing each task independently. Continual learning scheme
has brought us two advantages; first the number of ac-
tions taken at each trials has significantly reduced and
second few trials have been required to arrive at the op-
timum action. Based on the performance index of equa-
tion (4), the average number of actions the agent has
required when it has used continual learning scheme
to adapt to a new policy has been lowered by 31.9%
from that of learning from scratch. In order to check
if this enhancement is dependent on the new task, we
have carried out the experiment for various goal states
in the labyrinth grid. Surprisingly, in no instance earlier
training has interfered and caused continual learning to
perform poorer.
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Figure 5: The performance of continual learning (the
dark curve) and learning from scratch (the light curve).

8 Conclusions

Different types of biases have been considered and their
effect on the learning time of an RL have been studied.
Generally, results indicate that: 1) Not all biases have
a similar influence on the learning speed; while some
biases aid learning more intensively, others aid less. 2)
No bias has been seen mitigating the learning process,
however, care must be taken when constructing a bias. It
is important to ensure that the introduced bias is harm-
less to the final learning performance. 3) The widely
accepted method of biasing a learning system by cutting
the search space may not always be the best choice. Cer-
tain biases, particularly derived from the unique charac-
teristics of the problem, sometimes perform better than
the former, in spite of their large state space. Finally,
continual learning agents learn new tasks much faster
than agents that learn tasks independently.
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