
Appeared in:IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC'98)-pages 1491-1495, San Diego, California, October 11-14,1998.Integrating Symbolic Knowledge in ReinforcementLearningG. Hailu, G. SommerChristian Albrechts UniversityDepartment of Cognitive SystemsPreusserstrasse 1-9, D-24105 Kiel, GermanyAbstractA tabula rasa learning technique has worked well ina well de�ned grid like problems [1]. Nevertheless,it has severe limitations when applied in complexdomains. In order to build a true learning systemin complex domains, we have to begin to integratea considerable amount of bias with the learner thathas the ability to adapt a priori knowledge. Thisbias can assume a variety of forms. In this paper,in addition to reex rules [8], symbolic knowledgeabout the environment is embedded into the learn-ing system [5]. The incorporation of such knowl-edge aids the learner to identify and split key statesrapidly. The learner is tested on a B21 robot for agoal reaching task. Experimental results show thatafter few trials the robot has indeed learned to un-fold its path and to consistently follow the shortestpath to the goal.1 IntroductionFor more than a decade reinforcement learning (RL)has been studied extensively and its properties arewell understood. One of its nice property is thatit allows agents to be programmed by reward andpunishment, without the need to specify how thetask is achieved. Unfortunately, it has an inherentproblem - its learning time increases exponentiallywith the size of the state space. Consequently, RLhas remained di�cult to implement in realistic do-mains that are characterized by large state and ac-tion spaces - typically robot domain. Yet, despitethis inherent problem,there is still a surge of interestin putting RL onto a real robot.In the past, researchers have tried to overcome

the in ability of RL to scale well to learning taskswith large state and action spaces. Mahadevanet. al. [6] have decomposed the task into sets ofsimple sub-tasks each with its own prewired appli-cability predicate. Matari�c [7] has minimized thestate space by transforming state-action pairs tocondition-behavior pairs and maximized learning bydesigning reward rich heterogeneous reinforcement.Recently, Mill�an [8] has tremendously acceleratedRL by integrating it with reex rules that focus ex-ploration where it is mostly needed. The commoncharacteristic of the above examples is that the ba-sic RL algorithm has been endowed with some built-in knowledge. In each case, however, the built-inknowledge has di�erent forms and is used for di�er-ent purposes: in [6] to break down and to arbitertasks, in [7] to design rich reward and, in [8] to focusexploration.This paper is concerned with the use of symbolicknowledge to pre-structure the state space. Thereis a conict between the required number of statesand the actual states constructed by the adaptivestate space construction algorithm [8]. The con-structed states are much higher than what the prob-lem demands. As aresult, the number of learninginstances, interactions with the environment, thatthe agent must have in order to correctly catego-rize all the states is prohibitively high. Thereforein order to make learning possible, symbolic knowl-edge about the environment is embedded into thecontroller. The incorporation of such knowledge en-ables the learner to distinguish key states instantlyand there by accelerates the learning process con-siderably.



2 The robot and its taskThe B21 robot from RWI, Fig. 1, has been usedas our experimental platform. The robot is a four-wheeled cylindrical synchro-drive with two parts: abase and an enclosure. The base carries 32 infra-red(IR) and 32 tactile sensors. Whereas the enclosurecarries 24 tactile, 24 IR and 24 sonar sensors.
Figure 1: The B21 robotThe task of the robot is to reach a speci�ed goal(pg), through a (sub)-optimal path. Optimality isde�ned on a certain payo� function. For every ac-tion the robot has chosen, it receives an immedi-ate reinforcement rt that has two components. The�rst component penalizes the robot when it eithercollides with or approaches an obstacle. Whereasthe second component penalizes the robot in pro-portion to the angle between the robot heading andthe vector connecting the current robot and goal lo-cations. The immediate reinforcement value is thesum of these two components and the payo� func-tion is de�ned as the sum of immediate reinforce-ments the robot receives until it reaches the goal,i.e., R =Pt rt.Any mobile robot controller that uses the robots'absolute position to generate a control signal suf-fers from the inaccuracy of determining the robotposition. This is even severe in the presented learn-ing system, where the robot position pr(t) has beenused twice; �rst, to decode the relative distance be-tween the robot and the goal (section 3) and sec-ond to provide a part of the reinforce function fromwhich the robot learns (previous paragraph). Fromthe two, the latter one is more sensitive to the inac-curacy of robot position. Because it leads to incon-sistent reinforce function that makes learning dif-�cult or even impossible�. Therefore, for learning�Noting this, Mill�an [9] has eliminated the dependence ofthe reinforcement value on the odometry reading by build-

Figure 2: The experimental environmentto occur, the sensed position of the robot must notdi�er from the actual value considerably. In or-der to guarantee this, we have exploited the cru-cial property of the robots' dead reckoning system.Dead reckoning system performs satisfactory pro-vided that the robot does not move for an extendedperiods of time without reaching the goal. Thischaracteristic puts directly a limit on how far andhow hidden the goal should be placed away fromthe initial robot position, Fig. 2.3 EmbeddingThe input x = [s j d] to the controller is a vec-tor of 32 elements, each between [0; 1]. The �rst24 elements are normalized depth readings of thesonar sensorsy, while the remaining eight inputsare codi�ed distance between the robot and thegoal. In the work of [8], where sensor values aremade independent of the robot heading, the inputto the controller turns out to be a function of therobot position (if sensors noise is neglected), i.e.,x = [s(pr(t))jd(pr(t);pg)]. In this case, the adap-tive state space construction algorithm automati-cally splits key states that require di�erent actions.For most platforms, however, the sensors can notbe aligned independently of the base. Consequently,the perceived sensory data would be di�erent ev-ery time the robot visits a given location at di�er-ent headings, i.e., x = [s(pr(t); �r(t))jd(pr(t);pg)].This results in huge states which the adaptive statespace construction algorithm could not cope withidentifying and splitting key states quickly. Toing other types of sensor that are capable of detecting thegoaldirectly.ySince IRs are short range (� 0:3m) proximity sensors,they are used herein emergency routine only.2



overcome this problem, we have embedded symbolicknowledge into the learning architecturez [5] so thatkey states can be categorized instantly.Since there is no general method of embeddingknowledge, ad hoc method of constructing environ-ment knowledge is followed. We have constructedfour symbolic knowledge by partitioning the envi-ronment into regions that are considered to be thesame for the purpose of learning and generating ac-tions. The symbols are: a concave region that mis-leads and fold the robot path, a door region throughwhich the robot has to carefully pass, a corridorwhere the goal is located, and a vast space inside theroom from where the robot starts o�. Each symbolis associated with a metric data that roughly de�nethe start and end coordinates of a region for whichthe symbol stands for. These symbols together withtheir corresponding metric data are supplied to thecontroller as built-in knowledge. From the metricdata and the robot position disjointed rules havebeen written to single out a particular symbol wherethe robot is in. This early splitting of the statespace based on prior environment knowledge can beviewed as one way of giving leverage to the adaptivestate space construction algorithm so that duringthe course of learning it can construct appropriatestates for each partition.Apart from environment knowledge, two fuzzybehaviors [10] Fig. 3, obstacle avoidance and goalfollowing are used as reex to enable the learnerto act initially in some reasonable way. The fuzzyreex works as follows. First, the possible robotheadings have been fuzzi�ed into three fuzzy sets:left, straight and, right. The obstacle avoid-ance behavior receives the range data of the sonarsand outputs avector �a - whose elements indicatethe activation levels of the above fuzzy sets. Like-wise, the goal following behavior inputs the acuteangle � between the robot heading and the vec-tor connecting the current robot and goal locationsand outputs a similar vector �g. A simple behav-ior blender with constant desirability functions daand dg is used to combine the output of the twobehaviors, i.e., �f = dg�g + da�a. Subsequently,a defuzzi�er decodes the fused vector �f to a crispvalue � using centroid technique.4 LearnerThe architecture of the learner is an actor-critictype proposed by [8]. In most actor critic systems,two networks are adapted over time - an action net-work and a critic network [12]. In the proposedzAdmittedly, embedding makes the system less au-tonomous. But it is also clear that without it, RL wouldnot achieve a worth while performance within a boundedtime.

Figure 3: Two fuzzy behaviors as reexarchitecture, however, these networks are lumpedinto one network. Besides, unlike the former oneswhere the training rules adjusts some parameters orweights of the action or the critic network, the latterone adapts directly the critic and action values.The learner, Fig. 4, consists of a gradually grow-ing RBF neurons [2] in the input layer and astochastic neuron in the output layer. Whenevera situation is perceived, the learning system �rstdetermine the symbol associated with the currentsituation. Within the symbol existing neurons (ifany neuron was dedicated to the symbol before)compete to win the situation. If a winning neuronexists, it will be connected to the output layer togenerate action. Action is generated by exploringa restricted area around a prototypical action. Toenforce exploration a Gaussian stochastic unit withparameters (�; �) is introduced at the output layer[3]. The extent of the exploration is determined bythe critic value of the winning unit and the temper-ature factor T (n). At the end of every trial n thetemperature is cooled down so that the stochasticunit produces a progressively deterministic output[1].
Figure 4: The learning architectureA new neuron is introduced into the network ei-ther when existing neurons can not generalize thecurrent situation or if a selected neuron has per-formed poorly for the previous situation. When a3



new neuron is created four learning parameters [8]:prototypical action pj , expected discounted sum ofreinforcement uj, weight wj , and center location cjare attached to it. While the prototypical actionand the center position are initialized by the ac-tion suggested by the reex and by the currentlyperceived situation respectively, the weight and theexpected discounted sum of reinforcement are ini-tialized to zero.4.1 AdaptationEach of the above parameters are adapted by di�er-ent adaptation algorithms. However, the basic errorsource used for adaptation is the TD error [11] be-tween the actual and expected discounted sum ofthe reinforcement value of the winning unit j, i.e.,�(t + 1) = rt+1 + ui(t+ 1)� uj(t) (1)where i is the next state and rt+1 is the immediatereinforcement received in going from state j to statei. Based on the TD error, the utility value of thewinning neuron uj(t) is updated by,uj(t+ 1) = uj(t) + �uj(t+ 1) (2)�uj(t + 1) = � �r �(t+ 1) �(t+ 1) > 0�p �(t+ 1) �(t+ 1) < 0 (3)where �r and �p with �p < �r are two learning rates.Millan [8] has suggested to adapt the utility value atlower rate when the TD error is negative than whenit is positive. A negative TD error may not nec-essary mean that the expected discounted sum ofreinforcement value is lower than the actual one. Itcould be caused by a bad exploration in which casethe utility value should not be altered. Williams'REINFORCE algorithm [13], that performs gradi-ent descent on the expected total reinforcement, isemployed to adapt the weight wj.wj(t+ 1) = wj(t) + �wj(t+ 1) (4)�wj(t + 1) = � �r�(t+ 1)ej �(t+ 1) > 0�p�(t+ 1)ej �(t+ 1) < 0 (5)Where ej is the eligibility factor that determine howinuential wj was in determining the stochastic ac-tion [13]. For the same reason like the utility up-date, two learning rates �r and �p with �p < �r areused to adapt the weight too. Depending on theperformance of the winning neuron (as measuredby its TD error) the center position cj is eithershifted toward the previous sensation (Eqn. 6) oris left untouched.cj = cj +�cj where �cj = �(x � cj) (6)Finally, when the robot reaches the goal througha trajectory whose total payo� is greater than the

Figure 5: The control owmaximum payo� so far obtained, then a) prototyp-ical actions pj of all neurons that lie along the cur-rent trajectory are overridden by a more accuratelearned action, b) utility values uj of all neuronsthat were active during the current trial are backedup [6], pj(t) a(t) t = T : : :0 (7)uj(t� 1) rt + ui(t) t = T : : :1 (8)Where T is the total number of steps the robot hasrequired to reach the goal. Figure 5 shows the con-trol ow diagram of the learning process.5 Experimental resultsFigures 6 and 7 depict the trajectories of the robotduring the �rst and the last trials and �gures 8, 9and 10 show the learning curves against the numberof trials. Ten sets of experiments, each consisting of20 trials, were carried out. While the vertical errorbars on the learning curves indicate the variationsof the performance of the network in the set of tenexperiments, table 1 shows the performance of the�nal network obtained from these experiments.Despite the use of a temperature in the describedreinforcement learning architecture, an asymptot-ically deterministic optimal policy has not beenachieved. This is because noise in the: a) sensorreadings triggers either an in correct neuron or evencreates a new state from which a policy di�erentfrom the current optimum one is followed, b) mo-tor action makes the robot to land in an in cor-rect state from which again a di�erent policy is fol-lowed. Therefore, for a situated agent noise makes4



certain parts of the policy to uctuate and waitingfor asymptotic convergence is not feasible.During the �rst few trials, the robot has takenmany steps (Fig. 9) to reach the goal and the trajec-tories followed were not better than what the basicreex could have produced [4]. During these earlytrials, the learning system has incurred a high pay-o� (Fig. 10), and the number of neurons added tothe network has grown sharply (Fig. 8). As tri-als went on, however, the robot has started to un-fold its path gradually and neurons have began tobe added at a much reduced slope than earlier tri-als. On the sixth trial and afterwards the robot hasstraighten its path, except at the eighth trial wherethe robot has left the optimum path in search for abetter one. In subsequent trials, however, the robothas returned to its previous performance. A similarphenomena is also observed in the work of [8].
Figure 6: First trialComparing our results with that of [8] the follow-ing observations can be made. In our system, thedependence of the sensor reading on the orientationof the robot is combated by integrating symbolicknowledge into the learner and letting input neu-rons cover a wide width. This strategy, however,don't eliminate the dependence completely. Thenet e�ect of this is that in the last few trials thenetwork has not been abated to grow (Fig. 8) likethat of [8]. The second observation, which is theconsequence of the �rst one, is the variances of �nalnetwork performance (table 1) are larger than theone reported in [8].6 ConclusionTwo kinds of built-in knowledge have been used tosupport RL on B21 robot. The �rst one is a pri-ori knowledge of the environment to pre-structure

Figure 7: Last trial
0102030405060708090 0 5 10 15 20#ofneurons trials33333333333333333333Figure 8: Number of neurons vs. trials
01020304050 0 5 10 15 20#ofsteps trials

33333333333333333333Figure 9: Number of steps vs. trialsthe state space rapidly. Whereas the second oneis two fuzzy behaviors combined with �xed desir-ability values to focus exploration. Ten set of ex-periments each lasting for twenty trials have beenconducted. In all the experiments, the results have5



-30-25-20-15-10-50 0 5 10 15 20reinforcements trials33333333333333333333Figure 10: Total reinforcementsvs. trialsQuantities Mean VarianceNumber of neurons 82.5 4.7286Number of steps 27.7 1.9000Total reinforcement -6.24 0.8752Table 1: Final Network Performanceshown that the robot has indeed learned to unfoldits path and to 6 consistently follow a trajectorythat has a minimum payo� value.7 AcknowledgmentWe would like to thank to Jos�e. R. Mill�an for a use-ful discussion on TESEO's architecture that helpedus greatly in this work. The support given to the�rst author by DAAD under grant code 413/ETH-4-BOA is also acknowledged.References[1] Andrew G. Barto, Steven J. Bradtke, andSatinder P. Singh. Learning to act using realtime dynamic programming. Arti�cial Intelli-gence, 72(1):81{138, 1995.[2] J�org Bruske and Gerald Sommer. Dynamic cellstructure learns perfectly topology preservingmap. Neural Computation, 7(4):834{846, 1995.[3] Vijaykumar Gullapalli. A stochastic reinforce-ment learning algorithm for learning real val-ued function. Neural Networks, 3:671{692,1990.[4] Getachew Hailu and Gerald Sommer. Learningby biasing. In IEEE Proceedings of Roboticsand Automation, pages 2168{2173, Belgium,Leuven, 1998.

[5] Leslie P. Kaelbling. Learning in Embedded Sys-tems. The MIT Press, Cambridge, 1993.[6] Sridhar Mahadevan and Jonathan Connell.Automatic programming of behavior-basedrobots using reinforcement learning. Arti�cialIntelligence, 55:311{365, 1992.[7] Maja J. Mat�aric. Reward functions for accel-erated learning. In Proceedings of the EleventhInternational Conference on Machine Learin-ing, 1994.[8] Jos�e R. Mill�an. Rapid, safe and incremen-tal learning of navigation stratagies. IEEETransactions on Systems, Man, and Cybernet-ics, 26(3):408{420, 1996.[9] Jos�e R. Mill�an. Incremental acquisition of lo-cal networks for the control of autonomousrobots. In 7th International Conference on Ar-ti�cial Neural Networks, pages 739{744, Lau-sanne, Switzerland, 1997.[10] D. W. Payton, J. K. Rosenblatt, and D. M.Keirsey. Plan guided reaction. IEEE Trans-action on Systems, Man, and Cybernetics,20(6):1370{1382, 1990.[11] Richard S. Sutton. Learning to predict bythe methods of temporal di�erences. MachineLearning, 3(1):9{44, 1988.[12] Paul J. Werbos. A menu of design for reinforce-ment learning over time. In Neural Networksfor Control. Bradford Book, 1992.[13] Ronald J. Williams. Simple statisticalgradient-following algorithms for connection-ist reinforcement learning. Machine Learning,8:229{256, 1992.
6


