Appeared in:

IEEE International Conference on Systems, Man and Cybernetics (IEEFE SMC’98)-
pages 1491-1495, San Diego, California, October 11-14,1998.

Integrating Symbolic Knowledge in Reinforcement

Learning

G. Hailu, G. Sommer

Christian Albrechts University
Department of Cognitive Systems
Preusserstrasse 1-9, D-24105 Kiel, Germany

Abstract

A tabula rasa learning technique has worked well in
a well defined grid like problems [1]. Nevertheless,
it has severe limitations when applied in complex
domains. In order to build a true learning system
in complex domains, we have to begin to integrate
a considerable amount of bias with the learner that
has the ability to adapt a prior: knowledge. This
bias can assume a variety of forms. In this paper,
in addition to reflex rules [8], symbolic knowledge
about the environment is embedded into the learn-
ing system [5]. The incorporation of such knowl-
edge aids the learner to identify and split key states
rapidly. The learner is tested on a B21 robot for a
goal reaching task. Experimental results show that
after few trials the robot has indeed learned to un-
fold its path and to consistently follow the shortest
path to the goal.

1 Introduction

For more than a decade reinforcement learning (RL)
has been studied extensively and its properties are
well understood. One of its nice property is that
it allows agents to be programmed by reward and
punishment, without the need to specify how the
task is achieved. Unfortunately, it has an inherent
problem - its learning time increases exponentially
with the size of the state space. Consequently, RL
has remained difficult to implement in realistic do-
mains that are characterized by large state and ac-
tion spaces - typically robot domain. Yet, despite
this inherent problem,there is still a surge of interest
in putting RL onto a real robot.

In the past, researchers have tried to overcome

the in ability of RL to scale well to learning tasks
with large state and action spaces. Mahadevan
et. al. [6] have decomposed the task into sets of
simple sub-tasks each with its own prewired appli-
cability predicate. Matarié¢ [7] has minimized the
state space by transforming state-action pairs to
condition-behavior pairs and maximized learning by
designing reward rich heterogeneous reinforcement.
Recently, Millan [8] has tremendously accelerated
RL by integrating it with reflex rules that focus ex-
ploration where it is mostly needed. The common
characteristic of the above examples is that the ba-
sic RL algorithm has been endowed with some built-
i knowledge. In each case, however, the built-in
knowledge has different forms and is used for differ-
ent purposes: in [6] to break down and to arbiter
tasks, in [7] to design rich reward and, in [8] to focus
exploration.

This paper is concerned with the use of symbolic
knowledge to pre-structure the state space. There
is a conflict between the required number of states
and the actual states constructed by the adaptive
state space construction algorithm [8]. The con-
structed states are much higher than what the prob-
lem demands. As aresult, the number of learning
instances, interactions with the environment, that
the agent must have in order to correctly catego-
rize all the states is prohibitively high. Therefore
in order to make learning possible, symbolic knowl-
edge about the environment is embedded into the
controller. The incorporation of such knowledge en-
ables the learner to distinguish key states instantly
and there by accelerates the learning process con-
siderably.

2 The robot and its task

The B21 robot from RWI, Fig. 1, has been used
as our experimental platform. The robot is a four-
wheeled cylindrical synchro-drive with two parts: a
base and an enclosure. The base carries 32 infra-red
(TR) and 32 tactile sensors. Whereas the enclosure
carries 24 tactile, 24 IR and 24 sonar sensors.

Figure 1: The B21 robot

The task of the robot is to reach a specified goal
(p,), through a (sub)-optimal path. Optimality is
defined on a certain payoff function. For every ac-
tion the robot has chosen, it receives an immedi-
ate reinforcement r; that has two components. The
first component penalizes the robot when it either
collides with or approaches an obstacle. Whereas
the second component penalizes the robot in pro-
portion to the angle between the robot heading and
the vector connecting the current robot and goal lo-
cations. The immediate reinforcement value 1s the
sum of these two components and the payoff func-
tion is defined as the sum of immediate reinforce-
ments the robot receives until it reaches the goal,
e, R=5",r.

Any mobile robot controller that uses the robots’
absolute position to generate a control signal suf-
fers from the inaccuracy of determining the robot
position. This is even severe in the presented learn-
ing system, where the robot position p, (¢) has been
used twice; first, to decode the relative distance be-
tween the robot and the goal (section 3) and sec-
ond to provide a part of the reinforce function from
which the robot learns (previous paragraph). From
the two, the latter one is more sensitive to the inac-
curacy of robot position. Because it leads to incon-
sistent reinforce function that makes learning dif-
ficult or even impossible®. Therefore, for learning

*Noting this, Milldn [9] has eliminated the dependence of
the reinforcement value on the odometry reading by build-

+
y
Figure 2: The experimental environment

to occur, the sensed position of the robot must not
differ from the actual value considerably. In or-
der to guarantee this, we have exploited the cru-
cial property of the robots’ dead reckoning system.
Dead reckoning system performs satisfactory pro-
vided that the robot does not move for an extended
periods of time without reaching the goal. This
characteristic puts directly a limit on how far and
how hidden the goal should be placed away from
the initial robot position, Fig. 2.

3 Embedding

The input ® = [s | d] to the controller is a vec-
tor of 32 elements, each between [0,1]. The first
24 elements are normalized depth readings of the
sonar sensors', while the remaining eight inputs
are codified distance between the robot and the
goal. In the work of [8], where sensor values are
made independent of the robot heading, the input
to the controller turns out to be a function of the
robot position (if sensors noise is neglected), i.e.,
x = [s(p,(t))|d(p,(t),py)]. In this case, the adap-
tive state space construction algorithm automati-
cally splits key states that require different actions.

For most platforms, however, the sensors can not
be aligned independently of the base. Consequently,
the perceived sensory data would be different ev-
ery time the robot visits a given location at differ-
ent headings, i.e., ® = [s(p,(t), 0. (t))|d(p, (1), p,)]-
This results in huge states which the adaptive state
space construction algorithm could not cope with
identifying and splitting key states quickly. To

ing other types of sensor that are capable of detecting the
goaldirectly.

tSince IRs are short range (~ 0.3m) proximity sensors,
they are used herein emergency routine only.

overcome this problem, we have embedded symbolic
knowledge into the learning architecture* [5] so that
key states can be categorized instantly.

Since there i1s no general method of embedding
knowledge, ad hoc method of constructing environ-
ment knowledge is followed. We have constructed
four symbolic knowledge by partitioning the envi-
ronment into regions that are considered to be the
same for the purpose of learning and generating ac-
tions. The symbols are: a concave region that mis-
leads and fold the robot path, a door region through
which the robot has to carefully pass, a corridor
where the goal 1s located, and a vast space inside the
room from where the robot starts off. Each symbol
is associated with a metric data that roughly define
the start and end coordinates of a region for which
the symbol stands for. These symbols together with
their corresponding metric data are supplied to the
controller as built-in knowledge. From the metric
data and the robot position disjointed rules have
been written to single out a particular symbol where
the robot is in. This early splitting of the state
space based on prior environment knowledge can be
viewed as one way of giving leverage to the adaptive
state space construction algorithm so that during
the course of learning it can construct appropriate
states for each partition.

Apart from environment knowledge, two fuzzy
behaviors [10] Fig. 3, obstacle avoidance and goal
following are used as reflex to enable the learner
to act initially in some reasonable way. The fuzzy
reflex works as follows. First, the possible robot
headings have been fuzzified into three fuzzy sets:
left, straight and, right. The obstacle avoid-
ance behavior receives the range data of the sonars
and outputs avector a, - whose elements indicate
the activation levels of the above fuzzy sets. Like-
wise, the goal following behavior inputs the acute
angle # between the robot heading and the vec-
tor connecting the current robot and goal locations
and outputs a similar vector aryg. A simple behav-
ior blender with constant desirability functions d,
and dg is used to combine the output of the two
behaviors, i.e., oy = dgay + dya,. Subsequently,
a defuzzifier decodes the fused vector a; to a crisp
value «a using centroid technique.

4 Learner

The architecture of the learner is an actor-critic
type proposed by [8]. In most actor critic systems,
two networks are adapted over time - an action net-
work and a critic network [12]. In the proposed

tAdmittedly, embedding makes the system less au-
tonomous. But it is also clear that without it, RL would
not achieve a worth while performance within a bounded
time.

Godl
behavior

behavior

Defuzzifier

Figure 3: Two fuzzy behaviors as reflex

architecture, however, these networks are lumped
into one network. Besides, unlike the former ones
where the training rules adjusts some parameters or
weights of the action or the critic network, the latter
one adapts directly the critic and action values.
The learner, Fig. 4, consists of a gradually grow-
ing RBF neurons [2] in the input layer and a
stochastic neuron in the output layer. Whenever
a situation i1s perceived, the learning system first
determine the symbol associated with the current
situation. Within the symbol existing neurons (if
any neuron was dedicated to the symbol before)
compete to win the situation. If a winning neuron
exists, 1t will be connected to the output layer to
generate action. Action is generated by exploring
a restricted area around a prototypical action. To
enforce exploration a Gaussian stochastic unit with
parameters (p,) is introduced at the output layer
[3]. The extent of the exploration is determined by
the critic value of the winning unit and the temper-
ature factor T'(n). At the end of every trial n the
temperature is cooled down so that the stochastic
unit produces a progressively deterministic output

[1].

Figure 4: The learning architecture

A new neuron is introduced into the network ei-
ther when existing neurons can not generalize the
current situation or if a selected neuron has per-
formed poorly for the previous situation. When a

new neuron is created four learning parameters [8]:
prototypical action p;, expected discounted sum of
reinforcement u;, weight w;, and center location c;
are attached to it. While the prototypical action
and the center position are initialized by the ac-
tion suggested by the reflex and by the currently
perceived situation respectively, the weight and the
expected discounted sum of reinforcement are ini-
tialized to zero.

4.1 Adaptation

Each of the above parameters are adapted by differ-
ent adaptation algorithms. However, the basic error
source used for adaptation is the TD error [11] be-
tween the actual and expected discounted sum of
the reinforcement value of the winning unit j, i.e.,

(1)
where ¢ is the next state and 741 is the immediate
reinforcement received in going from state j to state
t. Based on the TD error, the utility value of the
winning neuron u;(t) is updated by,

§(t+1) =11 +yui(t +1) —u;(t)

u]’(t—l— 1) = Uj(t) —|—Au]'(t—|— 1)

(2)
St 1) S(t+1)>0
A“j<t+1>={zpaﬁt+1§ 5Et+1;zo 3)

where 1, and 5, with n, < 5, are two learning rates.
Millan [8] has suggested to adapt the utility value at
lower rate when the TD error is negative than when
it 1s positive. A negative TD error may not nec-
essary mean that the expected discounted sum of
reinforcement value is lower than the actual one. It
could be caused by a bad exploration in which case
the utility value should not be altered. Williams’
REINFORCE algorithm [13], that performs gradi-
ent descent on the expected total reinforcement, is
employed to adapt the weight w;.

wj(t—l— 1) = wj(t) +ij(t—|— 1)

(4)
ﬁrét—i—lej d(t+1)>0
Aw;(t+1) = { 5})5515 + 1;(3]» 6Et + 1; <0 (5)

Where ¢; is the eligibility factor that determine how
influential w; was in determining the stochastic ac-
tion [13]. For the same reason like the utility up-
date, two learning rates 8, and 3, with 8, < 3, are
used to adapt the weight too. Depending on the
performance of the winning neuron (as measured
by its TD error) the center position c¢; is either
shifted toward the previous sensation (Eqn. 6) or
is left untouched.

¢ =c¢j + Ac; where Ac; =e(x — ¢;)

(6)

Finally, when the robot reaches the goal through
a trajectory whose total payoff is greater than the

X

al or
glllslon

?

no

explore
& act

Figure 5: The control flow

maximum payoff so far obtained, then a) prototyp-
ical actions p; of all neurons that lie along the cur-
rent trajectory are overridden by a more accurate
learned action, b) utility values u; of all neurons
that were active during the current trial are backed

up [6],
pi(t) —a(t) t=T...0 (7)
uit—1) —re+yu(t) t=T...1 (8)

Where T is the total number of steps the robot has
required to reach the goal. Figure 5 shows the con-
trol flow diagram of the learning process.

5 Experimental results

Figures 6 and 7 depict the trajectories of the robot
during the first and the last trials and figures 8, 9
and 10 show the learning curves against the number
of trials. Ten sets of experiments, each consisting of
20 trials, were carried out. While the vertical error
bars on the learning curves indicate the variations
of the performance of the network in the set of ten
experiments, table 1 shows the performance of the
final network obtained from these experiments.
Despite the use of a temperature in the described
reinforcement learning architecture, an asymptot-
ically deterministic optimal policy has not been
achieved. This is because noise in the: a) sensor
readings triggers either an in correct neuron or even
creates a new state from which a policy different
from the current optimum one is followed, b) mo-
tor action makes the robot to land in an in cor-
rect state from which again a different policy is fol-
lowed. Therefore, for a situated agent noise makes

certain parts of the policy to fluctuate and waiting
for asymptotic convergence is not feasible.

During the first few trials, the robot has taken
many steps (Fig. 9) to reach the goal and the trajec-
tories followed were not better than what the basic
reflex could have produced [4]. During these early
trials, the learning system has incurred a high pay-
off (Fig. 10), and the number of neurons added to
the network has grown sharply (Fig. 8). As tri-
als went on, however, the robot has started to un-
fold its path gradually and neurons have began to
be added at a much reduced slope than earlier tri-
als. On the sixth trial and afterwards the robot has
straighten 1ts path, except at the eighth trial where
the robot has left the optimum path in search for a
better one. In subsequent trials, however, the robot
has returned to its previous performance. A similar
phenomena is also observed in the work of [8].

O

-,

b

Figure 6: First trial

Comparing our results with that of [8] the follow-
ing observations can be made. In our system, the
dependence of the sensor reading on the orientation
of the robot is combated by integrating symbolic
knowledge into the learner and letting input neu-
rons cover a wide width. This strategy, however,
don’t eliminate the dependence completely. The
net effect of this is that in the last few trials the
network has not been abated to grow (Fig. 8) like
that of [8]. The second observation, which is the
consequence of the first one, is the variances of final
network performance (table 1) are larger than the
one reported in [8].

6 Conclusion

Two kinds of built-in knowledge have been used to
support RL on B21 robot. The first one is a pri-
ort knowledge of the environment to pre-structure

o ,y-—?"")/@

'Y

(5->—>—>—>—>—>—>—>_>_,_>_>—->—->—>

Figure 7: Last trial

of neurons

0 5 10 15 20

trials

Figure 8: Number of neurons vs. trials

of steps

10 -

0 5 10 15 20

trials

Figure 9: Number of steps vs. trials

the state space rapidly. Whereas the second one
1s two fuzzy behaviors combined with fixed desir-
ability values to focus exploration. Ten set of ex-
periments each lasting for twenty trials have been
conducted. In all the experiments, the results have

reinforcements

trials

Figure 10: Total reinforcementsvs. trials

Quantities Mean | Variance
Number of neurons 82.5 4.7286
Number of steps 27.9 1.9000
Total reinforcement || -6.24 0.8752

Table 1: Final Network Performance

shown that the robot has indeed learned to unfold
its path and to 6 consistently follow a trajectory
that has a minimum payoff value.

7 Acknowledgment

We would like to thank to José. R. Milldn for a use-
ful discussion on TESEQ’s architecture that helped
us greatly in this work. The support given to the
first author by DAAD under grant code 413/ETH-
4-BOA 1s also acknowledged.

References

[1] Andrew G. Barto, Steven J. Bradtke, and
Satinder P. Singh. Learning to act using real
time dynamic programming. Artificial Intelli-

gence, 72(1):81-138, 1995.

[2] Jorg Bruske and Gerald Sommer. Dynamic cell
structure learns perfectly topology preserving
map. Neural Computation, 7(4):834-846, 1995.

[3] Vijaykumar Gullapalli. A stochastic reinforce-
ment learning algorithm for learning real val-
ued function. Neural Networks, 3:671-692,
1990.

[4] Getachew Hailu and Gerald Sommer. Learning
by biasing. In IEEE Proceedings of Robotics
and Automation, pages 2168-2173, Belgium,
Leuven, 1998.

[5] Leslie P. Kaelbling. Learning in Embedded Sys-
tems. The MIT Press, Cambridge, 1993.

[6] Sridhar Mahadevan and Jonathan Connell.
Automatic programming of behavior-based
robots using reinforcement learning. Artificial

Intelligence, 55:311-365, 1992.

[7] Maja J. Matdric. Reward functions for accel-
erated learning. In Proceedings of the Eleventh
International Conference on Machine Learin-
g, 1994.

[8] José R. Millan. Rapid, safe and incremen-
tal learning of navigation stratagies. [EEE
Transactions on Systems, Man, and Cybernet-

ics, 26(3):408-420, 1996.

[9] José R. Millan. Incremental acquisition of lo-
cal networks for the control of autonomous
robots. In 7th International Conference on Ar-
tifictal Neural Networks, pages 739-744, Lau-
sanne, Switzerland, 1997.

D. W. Payton, J. K. Rosenblatt, and D. M.
Keirsey. Plan guided reaction. [EEE Trans-
action on Systems, Man, and Cybernetics,

20(6):1370-1382, 1990.

Richard S. Sutton. Learning to predict by
the methods of temporal differences. Machine

Learning, 3(1):9-44, 1988.

Paul J. Werbos. A menu of design for reinforce-
ment learning over time. In Neural Networks

for Control. Bradford Book, 1992.

[13] Ronald J. Williams. Simple

gradient-following algorithms for connection-

statistical

ist reinforcement learning. Machine Learning,

8:229-256, 1992.

