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Abstract

This article contributes to the understanding of how symbols can profitably be integrated into a numeric reinforcement
learning approach so as to realize a learning robot in a continuous problem setting. An initial experiment clearly revealed that
the underlying task could not be learned merely on the basis of numeric reinforcement values. The unstructured utilization of
sensory values of the reinforcement approach is dealt with by incorporating readily available domain knowledge. The domain
knowledge pre-labels the task space into different regions and builds a connection between the direct sensory experience and
the high level features. Teams of networks, each dedicated to a particular feature, exploit the differential characteristics of the
regions to rapidly learn the sub-tasks. In addition, a pre-wired fuzzy controller whose function is to restrict the set of actions
from which the learner composes a control policy is integrated into the learner. The task faced by the robot has interesting
characteristics that are unknown initially, and must be learned. Experimental results indicate that after the robot has been
placed in the task space and given the externally motivated needs, it has been able to learn, with a handful of trials, the right
policy that fulfills the external needs. © 2001 Published by Elsevier Science B.V.
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1. Introduction

An intelligent agent presented with a learning task
has two sources of information available: the instan-
taneous training instant drawn from experience, and
a prior knowledge about the task that may have been
derived from earlier experience. These two sources of
information are compatible and complementary. Prior
knowledge guides and organizes the process of learn-
ing from new experience and new experience is the
basis for incremental addition to knowledge.

� This work is a part of the author’s dissertation work that is
done at the University of Kiel, Germany.

Depending on how they make use of prior knowl-
edge, learning methods fall anywhere in the contin-
uum from unbiased to highly biased, see [5,14,34].
Since reinforcement learning isnumeric (i.e., works
with unstructured raw sensory data), andinductive
(i.e., learns and generalizes from experience alone), it
is near the unbiased end. Consequently, it requires a
large number of training episodes that lead to imprac-
tical memory requirement. The problem is not just the
memory space, but more importantly thetimeneeded
to fill the memory with data and to subsequently learn
from the data.

Several shortcomings that hinder the practicability
of reinforcement learning have been reported in the
literature. For example, reinforcement learning fails to
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recognize and identify new situations quickly [11,31],
cannot pass back rewards to other states, except to
states of the current path [4], is unable to cope with
large states and actions space [9,35], does not know
how to maintain a balance between exploration and ex-
ploitation [23,50], is unable to attach suitable reactions
to incoming new situations [37], etc. For few of them,
solutions have been suggested; but to a greater degree,
the reason that hinders its applicability is hinged on
the reward feedback, which gives little guidance for
feature extraction or action selection.

For example, when a reinforcement learning system
fails by choosing the wrong action, the reward feed-
back does not specify which of the output nodes were
wrong. If the system has a hidden layer of feature de-
tectors, acting properly will depend on both identify-
ing the current context, as well as selecting an action
appropriate to the context. The feedback signal does
not indicate which of these processes is at fault: it
does not distinguish between the case where the sys-
tem rightly identified its context but selects the wrong
response, and the case where the system learned re-
sponses were correct, but its feature detectors misiden-
tified the context. In network terminology, the system
needs to know whether it should tune its feature de-
tector, or the weights placed on the outputs of those
feature detector, or both.

This article advocates the need for bottom-up infor-
mation or some type of domain knowledge to supple-
ment the top-down reward feedback so as to realize
a reinforcement-based learning on physical robots. It
integrates two kinds of biasing schemes into the learn-
ing network. The first bias is aimed at overcoming
the inability of reinforcement learning to identify out-
standing features at once in the task space. In many
practical problems, there is hardly a genuine lack of
knowledge, domain knowledge after all is available.
Therefore, the scheme utilizes this available knowl-
edge to construct a heuristic that aids the learner to de-
tect and classify key features [19,30,31]. In this article,
a feature is a subset of input space that is considered to
be the same for the purpose of learning and generating
action. Under this bias, learning takes place by a team
of networks [21,22,52], each specializing on individ-
ual features. The second bias is a reflex, introduced and
applied by Millán [37], that restricts the action search
space. While the primary advantage of restricting the
search space is to focus exploration where it is mostly

needed, its added advantage is to eliminate undesirable
actions from consideration and make the robot func-
tional at the early stage of its learning process [37].

We begin the article by describing the task, the robot
is facing. Subsequent to that, the robot sensory system
and the environment in which the robot operates are
presented. We then go on by defining the constituents
(inputs and outputs) of the learning network, and the
reinforcement signal used to teach the network. After
presenting the two built-in knowledge bases in detail,
the learning architecture and the adaptation algorithms
are overviewed. Afterwards experimental results ob-
tained by the path taken from an early development
in the simulation to the actual testing on a physical
robot are presented. Finally, the work of this article
and the result obtained are compared to relevant rein-
forcement works done in the past.

2. Problem statement

Reinforcement learning has been used to solve the
shortest path problem in maze-like structures, for ex-
ample [6,34,47]. Furthermore, algorithms have been
developed to extend it to non-maze-like structures
[39,41]. These algorithms find solution paths without
ever attempting to optimize the path. In this article, the
interest is still searching for a path in a non-maze-like
structure, but with additional constraint of optimizing
the path.

Formally, the problem consists of two Cartesian
coordinate systems specifying the start and the target
locations of the robot. The task faced by the robot is
to build a self-adaptive controller that searches for a
trajectory, which (when followed by the robot) would
lead to a minimum cost. We define the cost of a pathP
as,C(P) = CD+CS. The first term represents the cost
associated with the path duration and the second term
is the cost associated with its safety. Thus, among all
the feasible pathsQ that lead to the target, the prob-
lem searches for the minimum cost pathP that is both
safe and short, i.e.,P = arg minL∈QC(L).

3. The experimental system

In this section, both the robot and the environment
in which the learning experiment is carried out are
presented.
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3.1. The robot

The B21 robot from the Real World Interface (RWI),
Fig. 1, is used as our experimental platform. The robot
is a cylindrical four-wheeled synchronous drive with
two parts: a base and an enclosure. The base carries
32 infrared (IR) and 32 tactile sensors, whereas the en-
closure has a belt of 24 tactile, 24 IR, and 24 sonar sen-
sors, each placed evenly around the robot’s periphery.
A two finger manipulator with six DOF and a binocu-
lar CCD camera are mounted on the top of the enclo-
sure. In addition, it is equipped with an encoder that
provides the position of the robot with an accuracy of
0.254 cm, though the actual accuracy is dependent on
the slippage between the robot’s wheels and the floor.

The 24 sonar sensors define the robot’s view of
the environment and form a part of the input space
of the learning system. The IR and tactile sensors are
used in emergency to detect real or virtual collisions.
Whereas a real collision is detected by the tactile sen-
sors, a virtual collision is detected by the IR sensors,
see Section 5 for detail.

3.2. The environment

Fig. 2 shows the top view of the robot’s environment
consisting of an indoor space of 25 m2 and a corridor

Fig. 1. The experimental robot equipped with sonar, IR, tactile
sensors, and an odometry system. The six DOF manipulator and
the binocular CCD camera are reserved for visual processing.

Fig. 2. Top view of the robot world. The three linesl1, l2, and l3
encode domain-specific knowledge, see Section 6.1.

of width 1.8 m. The origin of the robot is the black dot
inside the room and the big circle in the corridor is
the goal location. As mentioned in Section 2, the task
is to take the robot from the origin,pr(t = 0) to the
goal location,pg. Both the robot and the goal positions
are specified in a Cartesian coordinates system, and
the coordinate of the center of the goal relative to the
origin is

pg =
(

xg
yg

)
=

(
4.00 m

−2.00 m

)
(1)

At first glance, both the task and the environment
seem relatively simple compared to what we would
like our robots be able to do. However, when one tries
to implement it on present day robots, it becomes
clear that this seemingly simple task is no longer
easy. First and foremost, the task is performed us-
ing local sensory information; the robot has neither
access to the global view of the environment nor a
comprehensive world model. This is controversial;
there is no universal consensus if biological systems
also learn from local sensory information alone. But
this will not hinder us; as Landelius [27] put it: in
the same way it is possible to build machines that
fly but do not flutter their wings, machine learning
is aimed at designing machines that show intelligent
behavior but lack the full perceived process found in
biological systems. Second, it is a high-dimensional
continuous learning task and successful goal reach-
ing requires a non-linear mapping from this space
to the space of continuous real-valued actions. In
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general, it is not easy to train a network on large
spaces.

4. Inputs and outputs

The learning system builds its input from the exter-
nal as well as the internal sensors of the robot. Among
the three types of external sensors used, only the sonar
sensors form a part of the input space, i.e., the con-
troller learns an action map from the sonar sensors.
It also uses the IR and tactile sensors, but solely in
emergency conditions that require a fixed and prior
mapping.

Before the sonar sensors are fed to the controller,
their values are normalized so that each falls in the
interval [0, 1], i.e.,si ∈ [0, 1], ∀i ∈ {0, . . . , 23}. Apart
from this normalization process, no attempt is made
either to process or collapse the sensory data as done in
[18]. The main reason for retaining the whole sensory
data in the input is to capture as much information
about the environment as possible so that the problem
of hidden states can be minimized [54].

In addition to the sonar data, the controller gets
the relative distance of the robot from the goal, i.e.,
‖pr(t)−pg‖. In order to make this scalar distance value
comparable to the dimension of the sonars, Millán’s
codification scheme [37] is applied to the scalar rela-
tive distance. The scheme involves eight localized pro-
cessing units, whose activation values depend on how
far the normalized relative distance is away from the
respective center positions of the Gaussian processing
units, i.e.,φi = exp(−(µi − ρ)2). Here theµi, i ∈
{0, . . . , 7}, are the pre-assigned center positions of the
units, which are placed evenly along the abscissa span-
ning the interval [0, 1], andρ is the normalized rela-
tive distance between the robot and the goal. Hence,
it is these values,φi ∀i ∈ {0, . . . , 7} forming a vector
ρ̄, that are used as part of the input space of the con-
troller. Thus, the overall input vector to the controller
is a vector of 32 continuous value elements,

x =
(

s
ρ̄

)
(2)

The B21 robot has multiple motor parameters that one
can use to efficiently control its motion. But learning
multi-motor parameter is extremely difficult. First,
the reward does not tell us which of the motor para-

meters are at fault. Second, if common internal
representations (such as common neurons or weight
vectors) are used, adapting the internal representa-
tions for one of the parameter often have a damaging
consequence on the values of the other parameters.
Therefore, it is more effective to restrict the reper-
toire of motor parameters. Consequently, the robot’s
angular rotation, which determines its next direction,
is the only motor parameter chosen to control the
robot. However, for every rotation, two motor actions
are initiated; first the robot completely rotates by
the specified angle, after rotation has ceased it will
move to a new location by translating forward a fixed
distance,l = 20 cm.

5. Reinforcement functions

The controller receives an immediate reinforcement
(carved by and passed from the environment) every
time the robot executes an action. This does not mean
that it is an immediate reinforcement learning task.
Rather, the controller computes and optimizes the long
term desirability of states after taking into account
the states that are likely to follow and the immediate
reinforcements available in those states.

The reinforcement function has two components.
The first component penalizes the robot whenever it
collides with or approaches an obstacle. To detect
these events, two flags:collision andclose are
defined. The collision flag is set either when the body
of the robot is in contact with obstacles (real collision)
or when the reflectance of any of the IR sensors1 is
greater than 70 (virtual collision). As pointed out in
[1,37], the virtual collision is included to make the
learning process safe. When collision occurs, the con-
troller receives a fixed penalty and reverse the robot to
clear the collision. The close flag is set when any of the
sonars measures a distance less than a given specified
value,dc = 30 cm. In this case, the generated penalty
increases as the distance between the robot and the
obstacle decreases. Altogether, the component of the
reinforcement that teaches the robot to avoid obstacles

1 The IR sensors detect objects that are within the range of 0.5 m
by emitting light and measuring the intensity of the reflection
bounced from the objects. The reflectance values range from 0 to
100 and are highly dependent on the color of the object.
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has the form

f1 =




−3 if collision

−1 + minj

(
dj

dc

)
if minj dj < dc

0 otherwise

(3)

The other component teaches the robot how to ap-
proach the goal point by first computing the acute
angle between the robot headingθh, and the line con-
necting the goal and the robot locationθgr. This angle
measures the divergence of the robot from the goal
— if the angle is increasing then the robot is moving
away from the goal. Hence, the second component of
the reward function is proportional to this angle and
is normalized to lie between [−1, 0], i.e.,

f2 = −acute(|θh − θgr|)
π

(4)

The total immediate reinforcement is the sum of
Eqs. (3) and (4). This reinforcement function does not
teach the robot directly how to reach the goal; it only
trains the robot how to approach the goal without col-
lision. Approaching and reaching are quite different;
the robot can approach a goal without ever reaching
the goal (e.g., if the goal is enclosed). Therefore, the
above reinforcement function presupposes that the
environment satisfies the constraint that it has at least
one free way or path through which the robot can
reach the goal without collision.

5.1. Inconsistent reinforcement

Properties of the physical hardware of a robot,
which are often constrained by various sensory, me-
chanical, and computational limitations, impose re-
strictions not only on the control strategies that can be
applied but also on the type of tasks and experiments
that can be used. One of these hardware limitations
is the robot’s dead reckoning system. Most mobile
robot controllers rely on reasonably accurate dead
reckoning for localization or spatial learning. How-
ever, overtime slippage between the robot’s wheels
and the floor results in errors, both in the position and
orientation of the robot. The robot’s rotational error
tends to be more serious than the translational error,
since small errors in rotation lead to large errors in

translation at a location far away from the origin of
the coordinate frame.

In this article, the robot position is used to decode
the relative distance between the robot and the goal and
to provide implicitly (by computing the goal angle) a
part of the reinforcement function, Eq. (4). From the
two, the latter one is more sensitive to the inaccuracy
of the robot position, because it leads to an inconsis-
tent reinforcement that makes learning difficult or even
impossible.2 But, in order to guarantee that the mea-
sured position is close to the true robot position, we
have exploited the only crucial property of the robot’s
dead reckoning system. Dead reckoning performs sat-
isfactorily provided that the robot does not move for
an extended period of time without reaching the goal.
This characteristic has directly restricted how far and
how hidden the goal should be placed away from the
origin.

6. Built-in knowledge

This section is devoted to the two forms of built-in
knowledge used to realize reinforcement learning on
our robot.

6.1. Environment model

Much work has been performed with discrete
state-space particularly in an MDP domain known as
grid world, see example [6,47]. Most useful learning
applications, however, take place in multi-dimensional
continuous state space. The obvious way of trans-
forming such a state space into a discrete problem
involves a uniform quantization. But it is rarely the
case that the entire space requires a fixed quanti-
zation; since there are significant sub-spaces of the
state space that are either unimportant or for which
the optimal response is the same throughout. On the
other hand, it is often the case that some critical areas
require high resolution. Hence, it would be inefficient
to represent all the space at high level of resolution.
Different methods have been tried to improve the
representation [26,31,35,37,41,48].

2 Noting this [38] has eliminated the dependence of the rein-
forcement value on the odometry reading by buildinggoal sensors
that are capable of detecting the goal explicitly.
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Millán’s method [37] uses an on-line adaptive state
construction algorithm within the reinforcement learn-
ing. His construction algorithm apportions states not
only according to the perceived distribution of the in-
put but also according to thevariability of the tar-
get function (Section 8.1). For the algorithm to work
without falling pray to the curse of dimensionality, he
has exploited the unique feature of the Nomad 200
robot: the turret motor. Since the turret motor orients
the sensors independent of the robot heading, sensor
readings were made independent of the robot head-
ing, i.e.,x = s(pr(t), θr) = s(pr(t)). In this case, the
state space has been contained, and appropriate states
have been constructed directly from the raw sensory
data.

Unfortunately, these types of robots are the excep-
tion rather than the rule; most robots do not align
their sensors independent of the base. Consequently,
the perceived sensory data would be different every
time a robot visits a given location at different head-
ings, i.e.,x = s(pr(t), θr(t)). Therefore, in the ab-
sence of prior knowledge, the adaptive state construc-
tion algorithm either requires a training period that
would challenge the most patient teacher or fails to
cope with the states and identify key structures. The
only way that we can give leverage to the algorithm is
by introducing some domain-specific knowledge that
determines how much the robot knows about the dif-
ferent parts of its environment. Hence, prior to learn-
ing, non-overlapping features, whose union covers the
all state space, were extracted by cutting the world
at its joints. Choosing features appropriate to the task
is an important way of adding domain knowledge to
a learning system [24]. Earlier works of this kind
where the task space is partitioned a priori to enforce
specific goal sequence or behavior selection include
[11,31,44].

Our chosen features are:concave, door,
corridor, and room, which are delineated by
the lines l1: y = −1.0 m, l2: x = 3.50 m, andl3:
x = 3.75 m (see Fig. 2). The features correspond
to the natural constituents (components) of the task
space along which generalization is likely. Based on
the x and y intercepts of the lines and the robot po-
sition pr(t), a set of heuristic rules are written. The
rules serve as an interface between the low level sen-
sory signals and the high level cognitive knowledge
by singling out a unique feature where the robot is

currently found.

In the heuristic below,l1y is they intercept of the
line l1, l2x and l3x are thex intercepts of linesl2 and
l3, respectively, see Fig. 2

corridor = l3x < px(t)

concave = px(t) < l3x&& py(t) < l1y

room = px(t) < l2x&& !concave

door=!corridor&& !concave
&& !room

Heuristic signal-to-symbol mapper.

The heuristic bias decomposes the global controller
into four separate and non-interacting learning compo-
nents. In lieu of tackling the problem by a monolithic
network that poorly covers everything, the problem is
now shared by a team of networks, each dedicated to a
particular region. Once the heuristic identifies a unique
symbol, it completely cuts off the sensory input of all
the networks, except the one chosen. In so doing, it
carves up the state space into mutually exclusive and
exhaustive regions, and each network learns the action
map of the subset of the input variables relevant to
its specific region. The architecture of the controller
looks much like themixture of experts[22,52] with
the heuristic bias replacing the gated network. The es-
sential difference is while in the former case, the par-
tition of the output is due to the result of partitioning
the input, in the latter case it is due to the weighted
average of the output of each network. The bias has
also the advantage of minimizing state aliasing. Since
each network stores its own state history informa-
tion; a single statecan infer two or more different
actions from different networks without causing any
ambiguity.

Although we are aware that such a bias is gen-
erally ad hoc, causes sub-optimality in performance,
and trades with autonomy, all these drawbacks are
out-weighted by the benefit it brings to the learning
system. Further, we argue that the provision of this
domain-specific knowledge is not a large sacrifice to
the robot autonomy; because this is only a coarse par-
tition that is not adequate to learn the task. Other as-
pects of the task faced by the robot are still to be
learned inductively and numerically by splitting the
initial partitions.
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6.2. Fuzzy behaviors as reflex

The other stumbling block that limits the practical
applicability of reinforcement learning is that the robot
does not know how to act when it gets into a new situa-
tion. Often, it either collides with obstacles that termi-
nate the learning process or wanders aimlessly without
ever reaching the goal. Observing this, Millán [36,37]
has introduced and applied a new prior knowledge
calledreflex, which not only ameliorates the problem
but also brutally cuts down the learning trials. Unlike
the earlier bias, the reflex is independent of a partic-
ular environment, and therefore does not have to be
re-wired in a new environment. Subsequently, Hailu
and Sommer have applied the reflex both on a sim-
ulated [18] and a physical [17] robot. The reflex ac-
tions, though eventually overridden by more accurate
learned actions, keep the agent safe and direct it in the
right direction while it is trying to learn. The added
advantage of the reflex bias is its silency; it intervenes
only when the learning system needs help [20].

Our reflex consists of two fuzzy behaviors; while
the first one is a reactiveobstacle avoidance,
the other one is a purposivegoal following. The
behaviors are implemented by a set of fuzzy rules
that have fuzzy sets in the antecedent and conclusion
parts [32,45,58]. Since the outputs of the behaviors
are combined one to one, the number of output fuzzy
sets of each behavior and the form of their mem-
bership functions are identical; but their input fuzzy
sets and fuzzy variables are different. The output
fuzzy sets that decode the robot heading areleft,
forward, and right, and have overlapping tri-
angular membership functions spanning the interval
[−π , π ]. The obstacle avoidance behavior re-
ceives the sonar data as input variables and outputs
a three-dimensional vectorαa, whose elements in-
dicate the activation levels of the output fuzzy sets.
Likewise, the goal following behavior inputs
the acute angle between the robot heading and the
vector connecting the current robot and goal loca-
tions and outputs a similar three-dimensional vector
αg. Note that, since this behavior seeks a particular
goal that cannot be sensed by the robot’s perceptual
sensors, it utilizes the robot’s internal representation
to indirectly sense the goal.

The outputs of the behaviors are fused using Pay-
ton et al. [42] architecture of combining outputs of

Fig. 3. The reflex bias realized as two fuzzy behaviors.

multiple behaviors (Fig. 3). Since it is our desire that
the reflex points always to the direction of the goal, this
scheme of combining outputs guarantees that the fi-
nal command is goal directed. The other approach, the
command arbitrator scheme, where a single behavior
is chosen based on behavior priorities,maynot always
be goal directed, since information regarding, say goal
following, would not be available once the command
arbitrator selects the collision avoidance behavior.

The outputs of the behaviors are combined by as-
signing different desirability functions for each behav-
iors [42,43,57]. Generally, desirability functions are
complex and vary with the context. However, since the
reflex is used to provide only an initial search location,
it suffices to consider a less rigorous blending scheme,
where the behaviors, irrespective of their context,
have fixed desirability functions. Following this, two
constant desirability valuesd = (da, dg), one for each
behavior, are chosen. Fusion is done by combining the
activation strengths of the corresponding nodes of the
behaviors with their respective desirability values, i.e.,

αf = d
(

αa
αg

)
= daαa + dgαg, (5)

whereαf is the fused vector. Following fusion is the
defuzzification process that decodes the fused vector
to a crisp equivalentαr.

7. Learning architecture

In continuous space reinforcement learning, most
states encountered will never have been experienced
exactly before. The only way to learn and successfully
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cope with such a space is when the system has the abil-
ity to generalize from previously experienced states to
the one that has never been seen before. One simple
way to transform such space is to quantize the space
into a multi-dimensional uniform grid and treat each
cell within the grid as an atomic state. Although this
can be effective in certain problem domains, such as
[7], a uniform grid approach generally leads to un-
manageable states [9,12].

The other method is the use of a global approx-
imator such as a multi-layer sigmoidal neural net-
work. This method has booked successful results
[3,16,28,49] in approximating the value function in a
variety of tasks. But there is no reason to believe that
such networks are well suited to reinforcement learn-
ing. First, they tend to forget episodes unless they
are frequently retrained for those episodes. Second,
the need to make small gradient descent steps makes
learning very slow, particularly in the early stages.

7.1. Localized AHC architecture

Instead of a global approximator, the other alter-
native is a sparse and coarse-coded local approxima-
tor known as radial basis functions (RBFs) network
[40]. Although most works of RBF network are either
supervised (e.g., estimating regression functions from
noisy data [29,51]) or unsupervised (e.g., building fea-
ture maps [10,25,33]), it has recently been applied by
Millán [37] in the framework of reinforcement learn-
ing to locally generalize states and through them state
values. His architecture, called TESEO, operates sim-
ilar to the way the global adaptive heuristic critic [53]
operates; namely, the critic network guides how the
action network is to be adapted. Architecturally, how-
ever, there is a subtle difference between them. In the
latter case, two distinct networks are adapted simul-
taneously; whereas in the former, the actor and critic
networks are lumped together and only a single net-
work is adjusted.

Here TESEO’s architecture is employed; however,
as a direct consequence of the a priori partitioning
of the task space, four separate and non-interacting
function approximating networks are employed.
Fig. 4 shows one of the four functions approximating
network working in tandem with a neural “reinforce-
ment-learning” unit, which is shared by all the ap-
proximating networks. The approximating network

Fig. 4. A localized AHC architecture. A state generalization in-
put layer and a “reinforcement-learning” output layer working in
tandem.

(upper part of Fig. 4) is a single layer RBF network
where the input neurons are fully connected to the
continuous input vector,x, through the excitatory
connection vector,c. The network generalizes states
and through them state values by covering the con-
tinuous space with finite and overlapping receptive
fields to produce features representations for the final
mapping where reinforcement learning takes place.

The strength of the activation value of the basis
function is determined from the distance between the
sensory input and the excitatory connection vectors,
i.e., φj (x) = exp(−‖x − cj‖2/ς2) where cj is the
excitatory connection vector of thejth RBF neuron.
While TESEO adapts the width of receptive fields of
each RBF neurons (provided that their widths do not
fall below a fixed minimum, at which point adaptation
ceases), here the receptive widths of the neurons are
kept fixed toς , i.e., ς = σj = 0.1 ∀j. The rationale
behind this is varying both parameters (cj and σ j )
upsets the initial formed cluster (input coverage) and
subsequently the state values.3 Therefore, in order to
avoid this “high” variation in cluster formation, the
receptive widths are kept fixed and only the excitatory
connection weights are variable.

Apart from the parameterscj , which hold the loca-
tion (in the continuous space) of the feature, additional
three adjustable parameters are associated to each fea-
ture state of Fig. 4. Earlier it has been mentioned
that the approximating network gradually partitions

3 It is an experimental observation.
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the high-dimensional real-valued state into finite dis-
crete features space. Hence, much in the spirit of
Q-learning that defines action and utility values for
discrete states, the first two parameters represent the
action pj and utility uj values. The other parameter
µj controls the mean location where the output layer
performs exploration when this particular feature is
chosen.

8. Network growth, exploration, and adaptation
algorithms

In this section, we will be discussing: the mech-
anisms of growing the network, the strategy of ex-
ploration, and the algorithms that adapt the network
parameters. Since the mechanisms and algorithms are
based on the known methods, our discussion is quali-
tative, highlighting the main aspects only. Details can
be found in [15,37,46,55].

8.1. Network growth

Initially, the function approximating network is
empty (i.e., no situation is encoded) but gradually
grows like the works of Refs. [2,10,26,37] as it starts
partitioning the sub-region. When a new situation
arrives from the robot’s sensory module, existing
neurons (if any) compete to win the situation. The
winning neuron is the one with the highest activation
value or with the closest distance to the situation, i.e.,
i = arg maxj φj (x) = arg minj (x − cj )

T(x − cj ).
If the distance between the winning neuron and the
situation is larger than the width of the receptors,
the situation can not be generalized. In this case, a
new neuron is introduced into the network with its
center position equals to the current perceived input.
This way of growing the network is calleddistance
driven.

The other method of growing the network involves
the mechanism introduced and applied by Millán
[37] to identify states that deliver inconsistence re-
inforcements. The idea is, if the TD error is larger
than a specified threshold, then the past situation is
wrongly classified. Because, even if the situation is
close to the past winning neuron, after action is taken
it is discovered that the estimated utility is quite
different from the stored utility — as attested by a

large TD error. Therefore, the controller “undone”
the previous association by creating a new neuron
at the location of the past perceptual input. In this
way, sensory states that initially look similar and
categorized in the same feature, will gradually be
split according to their consequences. This is the
other method of growing the network and is called
error driven.

8.2. Utility-based exploration

As indicated earlier, the lower part of Fig. 4 is the
output layer that is shared by the four approximating
networks to explore and generate a continuous action.
The layer has a “reinforcement-learning” unit devel-
oped by Gullapalli [15] for use in continuous action
space. It is a stochastic unit that draws actions from
a Gauss distribution and adjusts the parameters based
on the experience. The distribution parameters (µ and
σ ) that control the Gauss process are derived from the
learning parameters of the winning neuron of the ap-
proximating network (Fig. 4) by

µ = µi, σ = f (ui)T (n) = T (n)

1 + exp(ui)
, (6)

where T(n) is a computational temperature that
decreases with trialn. While the mean, as men-
tioned earlier, determines the locationwhere the
unit explores, the variance controls its exploratory
behavior.

We have related the extent of exploration to the
utility value through a sigmoid function. If the utility
is small, meaning the chosen action is not performing
well, the variance becomes high, resulting in explo-
ration of the range of choice. On the other hand, when
an action performs well (meaning the utility is high)
the mean moves in that direction and the variance
decreases, resulting in a tendency to generate action
values near the successful one. Once the parameters
are computed, similar to [37] a random value is drawn
from the distribution that modulates the actionpi , and
generates the final stochastic actionα = pi + ξ . The
computational temperature is intended to control the
necessary trade-off between exploration and control.
It progressively narrows the extent of exploration
(σ of Eq. (6)) around the mean, and gradually pro-
duces a deterministic action by controlling the strength
of modulation. Both these are achieved by cooling
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the temperature after each trial4 until a pre-selected
minimum value is reached.

8.3. Parameters adaptation

The learning parameters are defined when a new sit-
uation is discovered and an RBF neuron (representing
the situation) is created.

The four adjustable parameters (defined for each
feature) are first initialized as follows: the center po-
sition cj is equated to the current perceived situation,
the prototypical actionpj is set to the action received
from the reflex component, the utilityuj is estimated
by computing the reinforcement function for the cur-
rent robot states and sonar readings, and the meanµj

is set to zero. These initial values are subsequently
adapted during the course of learning through the re-
inforcement algorithm.

The basic error source used to adapt the parameters
is the temporary difference [46] between the actual
and the expected utility values. Since adaptation takes
place after the receipt of a reinforcement value, the
controller adapts the parameters of the past winning
neuron, before it generates action for the present sen-
sation. The utility value of the winning neuronuj (t) is
updated by the TD method. Williams’ REINFORCE
algorithm [55] is employed to adapt the center of
exploration µj . Depending on the sign of the TD
error of the winning neuron, its center positioncj is
either shifted toward the previous sensation or left
unchanged and, actionpj is replaced by a more ac-
curate learned action when the robot reaches the goal
through a trajectory whose total payoff is greater than
the maximum payoff so far obtained.

9. Experimental results

In this section, results obtained by the path taken
from an early development in the simulation to the
actual testing on the real robot is presented. The con-
troller described so far is the one that was implemented
on the physical environment. Prior to its implemen-
tation, however, another controller that worked on a

4 A trial is defined as a time interval that begins as soon as the
robot starts moving from the origin toward the goal and stops
immediately after the robot reaches the goal.

simulated robot was developed [18]. Despite the fact
that some parts of the simulated controller were car-
ried over to the real world, the difference between the
simulated and the real world has necessitated modifi-
cations to be made before transferring it to the physi-
cal robot.

First, the controller of the simulator had only the
reflex bias (Section 6.2) and key states were disam-
biguated by the state construction algorithm alone.
Nevertheless, when this controller was used on the
physical robot, it was no longer possible to quickly
split key world states. Consequently, the controller
had been modified to accommodate additional bias
that substantially altered the architecture. Second, the
input data of the simulator was highly pre-processed
by hashing the sonars into regions and throwing all the
sonars in the region, except the one that read the mini-
mum. The rationale behind this technique was to keep
the dimension of the input space low. The method
when applied to the robot, however, has caused fre-
quent occurrences of a state aliasing (hidden state)
problem that is difficult to deal with. Consequently, in-
stead of hashing the processed sonars, the unprocessed
raw sensory data is used on the real robot (Section 4).
Third, as soon as a real or virtual collision occurred,
the agent was immediately terminated and a new trial
was initiated by placing the robot back to its home lo-
cation. Although this scheme worked well on the sim-
ulation, it was inefficient in terms of time when applied
to the real robot. Therefore, instead of terminating
the agent and aborting the trial altogether, an emer-
gency handler was incorporated into the controller
that rescues the robot and lets the robot resume its
trial.

9.1. Simulation results

9.1.1. A note on the simulation
At the time of simulation, a TRC robot was the only

platform available in our laboratory, and the simulator
was built keeping this robot in mind as the target robot.
However, after the simulation was completed, we ac-
quired a B21 robot that has far better sensor-motor
characteristics and development software. To exploit
the advantages of the new platform, instead of work-
ing on the TRC, for which the simulator was built,
we began working on the B21. Therefore, while
the simulation results were obtained from the TRC
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simulator, the real results have been obtained from the
B21 robot.

At this point, we want to stress that the reason why
a major architectural adjustment was needed when
transferring to the physical robot was not due to the
change in the platform. As indicated in [13], the mo-
tivation for using simulation is not to finish the de-
sign stage there and transfer the components directly
to the physical robot. Rather, it is to allow us to come

Fig. 5. Trajectories of the simulated robot at the first trial (top-left), the first time the robot arrives at the goal (top-right), and at the final
trial (below-left). The behavior of the final controller for four sampled starting locations (below-right).

up with a working (often coarse, however) version of
the controller. Hence, architectural corrections were
inevitable even if the platform had not been changed,
see [56] for an example.

9.1.2. Results
Fig. 5 (top and bottom-left) shows the ghost paths

of the robot at different sampled trials of its learning
phase. A ghost is placed when the controller toggles
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Fig. 6. Trajectories taken by the robot during the first (left) and final (right) trials.

neurons, so as to represent pictorially where along the
route neurons are concentrated. During the initial few
trials, it was observed that the robot failed to reach
the target; this is attributed to the initial state of the
controller, which is empty and has to encode enough
situation–action pairs. At trial nine, the robot reached
the goal for the first time. But the path followed, Fig. 5
(top-right), does not look like a planned path; it is more
of a haphazard motion. The plot of Fig. 5 (below-left)
shows the final trajectory obtained after the robot has
made 50 trials. Comparing this final path with that of
Fig. 5 (top-right) it can been seen that the robot had
rapidly adapted the coarse and instinct skill acquired
from the reflex component to get a smooth, short (10%
shorter than Fig. 5, top-right) and planned-like path.

Also, the behavior of the final controller was tested
to see if it could still take the robot to the target when
the starting location of the robot is altered. Fig. 5
(below-right) shows trajectories obtained from four
different starting locations. As can be seen, the con-
troller is able to produce feasible trajectories even
when the robot is started from other locations for
which it is not trained. But we observed that this be-
havior is true for restricted regions; if the chosen start-
ing location is within the region that the robot had
already explored during the learning phase. Outside
of this region, the controller fails. This is because
situation–action pairs are decoded locally. As a con-
sequence, if the robot is placed at a location that has

not been explored before, either no neuron would be
active or, even worse, the learned action of the active
neuron is quite different from the one needed in that
location.

9.2. Real experiments

We will now present results obtained from the
physical robot. As pointed out at the beginning of this
section, the results were obtained after the necessary

Fig. 7. Number of neurons present in the network at the end of
each trials.
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Fig. 8. Number of steps the robot has required to reach the target.

adjustments on the controller of the simulator had
been made.

Fig. 6 shows sample robot trajectories and Figs. 7–9
are plots of the learning curves. During the initial trial,
the controller produced a trajectory that was no better
than what the reflex would have produced, if it had
been directly connected to the robot. Furthermore, it
was during the first few trials the robot incurred a high
payoff (Fig. 9) and a sharp growth in the network size
was registered (Fig. 7). Both of these signify that the
robot was exploring the environment during its initial
learning phase. As the trials proceeded, however, the
robot gradually started to unfold its path. In addition,
the size of the network has begun to increase at a much

Fig. 9. The total payoff (cost), the robot received at each trial.

Table 1
Final network performance

Quantities Mean Variance

Number of neurons 82.5 4.7286
Number of steps 27.7 1.9000
Total reinforcements −6.24 0.8752

reduced slope than the earlier trials. By the sixth trial
and afterwards the robot had practically straightened
its path, except in the eighth trial where it took a differ-
ent action and depart from the already learned path. In
the following trials, however, the robot has returned to
its previous performance and followed the same path,
without any significant divergence through out the re-
maining trials. A similar phenomena was observed in
the [37] work, too. Comparing the initial and final
robot trajectories (Fig. 6), we observe that the robot
learned three useful abilities: (1) to short circuit the
concave region that causes the robot to fold its path,
(2) to avoid colliding with the door edges by passing
through the middle of the door, and (3) to head-on di-
rectly to the goal after it had passed the door.

The repeatability of the controller was also tested
by conducting 10 sets of experiments, each consisting
of 20 trials. On the learning curves of Figs. 7–9, the
vertical error bars indicate the minimum and maxi-
mum variations of the network performance values at
each trial. Generally, as the trial continues, the varia-
tion of the values tends to decrease. Table 1 character-
izes these variations by computing the mean and the
variance of the network performance values at the last
trial in the set of 10 experiments.

10. Related work

Mahadevan and Connell [31] employedQ-learning
to learn a global box pushing task. They employed
a prior domain-specific knowledge to learn the task.
The difference from the work of this article is in
the way the prior knowledge was used. While in
Mahadevan and Connell it is used to define the appli-
cability conditions, in this work it is used to directly
decompose the task space. But these are different
sides of the same coin — defining the applicability
conditions indirectly entails task decomposition. The
other difference is that while they used a statistical
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clustering technique for state representation and
learnedQ-values, here an RBF network was used for
state representation and state values were learned.

Mataríc [35] applied implicit domain knowledge to
facilitate the learning process in a multi-agent environ-
ment. The domain knowledge was primarily utilized to
shape the reward function and to transform states and
actions to conditions and behaviors. Conditions and
behaviors, however, are more suitable to subsumption
like architecture [8] and are not directly applicable to
connectionist architecture that works very close to the
raw sensory data.

Millán [37] realized reinforcement learning on a
Nomad 200 mobile robot for a similar goal reaching
task. Our work is close to his, but differs in the fol-
lowing: The major difference, as mentioned in Section
6.2, is the physical capability of the robot. While the
Nomad robot has a turret motor that enables it to focus
its sensors on the goal, the B21 robot lacks this abil-
ity; consequently it has to deal with the resulting large
space. To cope with this, symbolic knowledge about
the environment, absent in the work of Millán [37],
is integrated into the controller. Though the method
works satisfactorily, it does not “contain” the state
space as the turret did in [37]. The net effect is that in
the last few trials the size of the network did not abate
to grow (Fig. 7), and the variance values of the final
network performance (Table 1) were a bit higher than
that reported in [37].

11. Conclusions and remarks

The article has presented a physically based learning
robot that is realized by endowing the robot with ap-
propriate and sufficient prior knowledge. On the robot
we worked, the use of domain-specific knowledge that
pre-labels and decomposes the environment has been
found necessary in order to ease the construction of
the state space. The other built-in knowledge is a
hard-wired controller that focuses exploration where it
is mostly needed. With the help of these two biases, the
robot has able to correct, after a handful of trials, the
initial acquired actions, and learned the short and safe
path to the goal by unfolding its original trajectory.

The paper has two main drawbacks or limitations.
Both limitations are a direct consequence of the way
the learning system uses the position information.

The first limitation has already been discussed in
Section 5.1. There, we have emphasized how the po-
sition information (due to inaccurate odometry) leads
to inconsistent reinforcement and distorts the learning
process.

Likewise, the domain specific bias presented in
Section 6.1 uses the position information and is,
therefore, subject to the same odometry error. That
is, the heuristic before routing the sensor information
compares the odometry reading with the stored data
base to figure out which environment feature needs to
be considered. Therefore, in the event of significant
mismatch between the odometry reading and the true
robot position, the heuristic may select the incorrect
feature and subsequently channels the sensory data to
the wrong controller — this too damages the overall
learning process. The obvious method to eliminate
this problem is to directly identify the key features,
similar to [38], without knowing the robot position.
One such mechanism, for instant, is to use unique
beacons in each region, that are easily detectable and
identifiable by robust sensors.

Experiments were conducted to determine if the fi-
nal learned controller was still able to take the robot to
the goal location, when the robot was started from dif-
ferent locations or when obstacles were placed along
its path. In both cases, however, negative results are
obtained that indicate the need for further investiga-
tion. The other point that needs improvement is the
symbols extraction method. Though symbols extrac-
tion and modularization have remained to be a strong
technique of biasing [24], to date they are entirely
done on a problem basis (e.g., [31,44]). It would be
helpful if some principled way of symbols extraction
and modularization are investigated.
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