Appeared in:

Seventh International Fuzzy Systems Associations (IFSA’97) - World Congress,
pages 496-500, Prague, Czech, June 25-29, 1997.

Fuzzy Logic Control of a Situated Agent

G. Hailu! J. Bruske, G. Sommer

Christian Albrechts University
Department of Cognitive Systems

Preuflerstrale 1-9, D-24105 Kiel, Germany

Abstract

In this paper we present a sensor preprocessor and
a fuzzy logic based navigation control for a situ-
ated agent. We address the problem of sensor in-
accuracy 1in mobile robots by partitioning the total
perceptual space into overlapping regions and de-
signing a Kalman filter for each region. The filter
estimates the true depth of each region by propa-
gating an assumed conditional probability density
function from sometime, arbitrary deep in the past,
up to the present time. In applying fuzzy control
we depart from Saffiotti et al. [13] by discarding the
context blender. Here we build a clean monolithic
rule bank for an atomic task. Our controller has
~ 1000 fuzzy rules and two crisp outputs. The out-
puts of the controller are motor velocity and jograte.
The implemented controller has successfully steered
both the TRC mobile robot that has a belt of ten
ultrasonic range sensors around its waist and its
simulator. The observed collision free, smooth and
uninterrupted trajectories demonstrate the robust-
ness of the fuzzy controller and the noise tolerance
nature of the preprocessor, even in the presence of
large sensor noise.

Keywords: Situated agent, Kalman filter, Fuzzy
control.

1 Introduction

Since the first notion of fuzzy sets [18], fuzzy con-
trol has emerged as one of the most active research
areas. Over the past several years, application of
fuzzy control in backing up an autonomous vehicle
[5, 7], real time target tracking [9], avoiding colli-

tCorresponding author.

sion of ships [3], and navigation of mobile robots
[14, 16] have shown the potential and fruitfulness
of fuzzy control. This is because fuzzy logic control
is able to cope with lack of models and can handle
vaguely defined processes which in many case can
only be controlled by a skillful human operator.

In the context of mobile robots, fuzzy control is
used for reactive navigation. Reactive navigation
can be defined as a mapping between sensory data
and motor commands [12]. Unlike classical reactive
methods, such as potential field [6], which searches
for a function that best fits this mapping, fuzzy
system use a small number of structured linguis-
tic input-output samples. We shall refer to these
input-output samples as Fuzzy Associative Mem-
ory (FAM). Each FAM rule defines a patch in the
input-output space and the fuzzy control approxi-
mates the unknown function by covering its graph
with FAM-rule patches [9]. The FAM rules can thus
be regarded as forming the skeleton of a fuzzy con-
trol architecture.

Here we are interested in constructing a fuzzy
controller to steer a TRC mobile robot in an un-
known indoor environment. Our controller uses
only the sensory information, coming from the envi-
ronment, and the vehicle velocity to provide a con-
trol command at each control cycle. However, on
the one hand, the sensors are still far from perfect
to perceive the environment and on the other, their
raw data are too huge and redundant to explain the
condition to be dealt with by the agent. Therefore a
special sensor preprocessor that provides only few
and relevant data for decision making, has to be
designed.

The work described in this paper bears some sim-
ilarity to [14, 15, 16]. However, they all work on
a simulated environment and robot that usually
hides the real dynamics and sensor uncertainty of

the actual system. To control Toto, Matarié [10]
has relied solely on the high accuracy of the sen-
sors at small incident angle. Even though sonar
sensors have such a characteristic, it 1s very diffi-
cult to maintain always the sensors mounted on the
robot at a small incident angle from the surface nor-
mal. In addition, her controller 1s crisp and she has
tackled the whole navigation task from a different
point of view - behavioral decomposition. Boren-
stein et al. [1] have eliminated the noise due to
sensor crosstalk using a special sensor firing scheme
called (EERUF). However, their method is not eas-
ily transferable to a system, such as ours, where
both firing sequence and firing intervals are hard-
ware fixed. Perhaps our work is close to [13] who
implement a hierarchical fuzzy control architecture,
similar to [4], on the Flakey. They decomposed
the overall control into a number of modules, which
they call fuzzy behaviors, and have used a context
dependent blending scheme to combine behaviors
outputs. But we argue that in fuzzy logic, since
we can incorporate all available knowledge to write
clean rules, there is little benefit, except the extra
work of designing the blender, in breaking down
the atomic task avoid obstacle into a number of
small modules® like corridor follow, keep off,
door pass, etc. In addition, they didn’t discuss the
well-known problem of sensor noise and uncertainty
in mobile robot research!

In section II, we briefly describe the agent we are
working with. Section III provides details of the
partitioning of the perceptual space and the type of
sensor preprocessing employed. Section IV and V
discuss the fuzzy linguistic sets, the fuzzifier and the
controller. Here, no attempt is made to discuss the
basics of fuzzy theory, it is explained elsewhere [9,
12]. The last two sections present our experimental
results and the on going work.

2 The Physical Agent

The agent which we are dealing with (Fig. 1) is
a two wheeled 75 em L x 70 em W x 28 em H
autonomous vehicle with a belt of ten ultrasonic
sensors around its front waist. The vehicle can
turn in place by an arbitrary angle rotate (rad),
can move a straight path at an arbitrary ve-
locity go (mm/sec) and can turn while moving
jog (rad/sec). On board, two processors are
mounted. The Motorola 68HC11 micro-controller
fires and reads individual sonars, sends motor com-
mands to the servo controller and handles all time
related synchronization details at low level. The
micro-computer, which comes in between the host

“But this is not to say that task decomposition, in general,
is not necessary. In fact, when a task gets complex, task
decomposition is the only preferred method.

and the micro-controller, runs various high-level
motor and sensor utilities and routes sensor values
from the agent to the host and motor commands
from the host down to the agent. The host, a SUN
workstation, implements the main fuzzy controller
and the sensor preprocessing stages. It communi-
cates with the micro-computer through an Ethernet

radio link (Fig. 2).

Figure 1: The TRC mobile robot.

x RS232C-link
. Pentium Motorola
ESUN station = 100MHz 68HC11 j

g

17}

£ TRC

o robot

Off-board On-board

Figure 2: The distributed computing layout.

3 Sensor Preprocessing

3.1 State space partitioning

Because of sensor uncertainty and combinatorial ex-
plosion of the fuzzy rules, it is very difficult to for-
mulate the fuzzy rules directly from the huge raw
sensory data. To reduce the number of fuzzy rules,
Song et al. [14] have built two fuzzy controllers
for their simulated robot, each handling a portion
of the total sensor space. This requires a separate
switching mechanism between the two controllers
and makes control quite complex. Reignier [12] sug-
gests to keep from each region only the sensors with
minimum depth and to discard all the others. This
method does not consider the agent’s inaccuracy in
sensing world state and is easily defeated in the ac-
tual laboratory.

Rather than designing two controllers or discard-
ing all readings except the minimum, we have par-
titioned the ten ultrasonic sensors into five regions,
corresponding to the physical geometry of the agent
and the task at hand. These regions are: I-right
corner, II-right, III-front, and IV-left, and
V-left corner. Moreover, we adopt sensor over-
lapping across neighboring regions to increase the

accuracy of depth measurement as well as to ac-
count for the beam angle of the sonars. Following
partitioning, the sensor values of each region are
passed through a median filter, which gives as out-
put a measurement depth of a region. We have em-
ployed a Kalman filter to estimate the true depth
from the present and past measurement values. Af-
ter estimating the true depth of each region, we
proceed to the fuzzification process, which is com-
mon to all fuzzy based systems. Before describing
the fuzzification process, we will discuss the Kalman
filter formulation.

3.2 Kalman Filter Formulation

Unlike [2] in which we use heuristic to estimate the
true depth of each region from multiple readings
taken at each perceptual cycle, here a cascade of two
filters (Fig. 3) and a sliding window of size three,
to hold the present and the past two measurement
profiles [17], are used. The first filter is a non linear
median filter that estimates the current measured
depth of a region j using,

Z; 1 = median (Sit, Séyt, .. .,Z‘}\,jyt) (1)
where Sgt;i = 1...Nj; is the reading at time ¢ of
sensor i located in region j, N; the number of sen-
sors in region j, and Z;; is the measured depth
of region j at time . The measured depth Z; .,
however, is still noisy and unreliable for reactive
control® without further processing! Hence, we pro-
pose a Kalman filter to process the measured depths
further.

The Kalman filter operates on the present
and past measurement profiles (Z;.,...,Z;:i_n),
stacked in the sliding window, to estimate the cur-
rent true depth, D;;, of a region j. To avoid the
influence of very past measurements on the present
estimate, only a limited window size (n = 2) is
taken. Since a Baysian view point is adopted, we
need to select a model for the conditional proba-
bility density function (CBDF) of the true depth
given the measured depth P(D;/Z;), that best fits
the data generated by the real world. In this paper
a Gauss® CPDF is chosen. The main motivations
for making this assumption is that the Kalman filter
so designed 1s optimal with respect to virtually any
criterion that makes sense [11]. As our view point
is Baysian, we require the filter to propagate the as-
sumed CPDF from some arbitrary time in the past
up to the present time. Once the CPDF is propa-
gated the optimal estimate is computed using the
mazimum likelthood criterion.

bWhen these values are used to generate control com-
mands the robot is seen moving arbitrary.

¢There is no mathematical or experimental prove that
guarantees a Gaussian noise distribution in ultrasonic
Sensors.

sensor dafa

measured
depth

filter

region depth

Figure 3:
scheme.

The proposed sensor preprocessing

The Kalman filter algorithm is tailored to suit
the agent at hand. To proceed with the algorithm,
at each perceptual time the filters in each region
are initialized by estimating the parameters of the
Gauss CPDF, i.e., mean y; and variance o7. We
estimate the mean by equating it with the measured
value at time t — n 1.e.,
j=1...5 (2)

and the variance 0']2»70 by equating it with the mea-

50 = Zjt—n;

surement variance of the sonars, ¢Z.

To compute the measurement variance, we have
picked a sensor at random? and made a separate
experiment on i1t. The selected sensor was placed
in different environments and at different orienta-
tions and depths that can be faced by the robot
when it is in operation (such as corners, corridors,
doors edges, walls, free ways, ...). For all environ-
ments and depths, the sensor was fired and the true
(d) and measured (r) depths were recorded. After
recording 1000 (d,r) pairs, the measurement vari-
ance ¢ was computed by,

¢ = (3)
where N = 1000. But this is a low value which does
not represent the actual measurement variance of
the sensors when they are fired one after the other
and when the robot moves. To account for these
dynamics, the value obtained above is multiplied
by a factor of 2.5 to result in ¢ & 350 mm. At the
beginning of the updating algorithm the statistical
variance 1is set to this measurement variance, i.e,

(4)

1
NHd_THZ ;<= 13T mm

dAll the sensors are of the same Polaroid type.

With Eqn. (2) and (4) the CPDF of each re-
gion is initialized. The next step is to propagate
this CPDF forward up to the present time. Inher-
ently our system is dynamic, i.e., agent position and
hence sensor values change with time. Therefore,
the dynamic Kalman filter is more appropriate to
our scenario. Unfortunately, this filter requires a
model for the rate of change of the sonar return. For
a situated agent, this change depends among other
things on: the speed and rotation of the robot, the
direction of motion, the environment and its acous-
tic property, the dynamic property of each sensor,
the position of the sensors on the robot and, the
frequency of sensor crosstalk. Looking at the pa-
rameters involved, it is extremely difficult to come
up with a clean mathematical model of the form
Eqn. (5) and (6) which the dynamic filter requires.

X(t) = AR)X () + BOU) + V(1) (5)
Z(t) =CH)x(t) + w(t) (6)

Here matrices A(t), B(t) and C(f) are system
time varying coefficients incorporating all the above
mentioned parameters, vectors X (¢) and Z(t) are
estimated and measured depths respectively, and
V(t) and W(t) are system and measurement noises
respectively.

Because of lack of the above system coefficients, a
linear recursive Kalman filter is employed, and the
CPDF is updated only at discrete time, i.e., when
measurement value is available. At each update
step, ¢ = 1,...,n, and for any perceptual region,
j =1...5, the updating algorithm is given by:

e compute the Kalman gain:

2
05 i-1

K. —
gt 7 2
Tji-1 TS

)

e update the mean:

(8)

pii = pii-1 +Kji(Zjnyi = pji-1)
e update the variance:

U?,i =(1- Kj,i)%z',i—1

)

At the last update, we have the CPDF of the es-
timated depth given the present and the past two
measured values, P(D;+/Z; -2, Z; -1, Z;+). Once
this CPDF is determined, the maximum liklihood
criterion is used to extract the best estimate from

the CPDF, i.e.,
Djr =
= Hjz

We have implemented Fig. 3, Eqn. (2),(4) and Eqn.
(7)-(10) for each region separately. These taken to-
gether define our sensor preprocessing stage.

mazx P(Dji/(Zj1-2, Zj-1, Zj¢t))
j=1...5 (10)

4 Sensor Fuzzification

After the preprocessing stage i1s completed, the
next step is to define fuzzy linguistic sets for
each region. Akin to Matari¢, we have defined
three fuzzy linguistic zones, namely: dangerous
(d), maneuver (m), and safe (s) zones. In-
stead of designing a separate membership func-
tions for each region, we exploit domain knowl-
edge to reduce the size of membership functions.
We have taken identical membership functions (Fig.
5) for the three regions (II-IV), which are basi-
cally on the front side of the robot, and differ-
ent membership functions (Fig. 6) for the two re-
gions (I and V), which are on the corner side of
the robot. With these we account for the differ-
ence in the degree of danger and degree of safety
between front and corner regions [12]. Kosko’s [9]
rule of thumb 25 percent overlapping between
adjacent fuzzy sets performs poorly for our sce-
nario. In our application the degree of overlap is dif-
ferent between adjacent fuzzy sets. Note also that
the micro-controller is preprogrammed for a time
out distance of 2 m, a reasonable choice for our

robot size.
1
(e
=
w
3
05 c
[
£
0 [
25 50 75 100 200
region depth (cm)
Figure 4: Overlapping trapezoidal membership

functions for regions II-1V.

1
0.5 -
0
20 40 60 200
region depth (cm)
Figure 5: Overlapping trapezoidal membership

functions for regions I and V.

The plots of the membership function actually
define the fuzzifiers, which give as output a fit vector
of dimension three. The ¢ — th fit vector measures
or indicates the degree to which the input belongs
to the ¢ —th fuzzy set. As a concrete example, for a
sensor value of 350 mm in regions II-1V, the fuzzifier
outputs a fit vector f=(0.33,0.67, O.O)T.

Apart from the depth information coming from
external sensors, the controller also use the base ve-
locity that is coming from the internal sensor. Four
trapezoidal fuzzy sets: reverse (r), slow (s),
normal (n), and fast (£f) with membership func-
tions shown in Fig. 7 are defined to encode the crisp
velocity into a fit vector of dimension four. Again
as an example, a base velocity value of 80 mm/sec

is encoded as v=(0,0, 1, O)T.

05 |

0
-10

-5 -25 25 5 10 12.5 15

base velocity (cm/sec)

Figure 6: Velocity fuzzifier.

5 The Fuzzy Controller

Our fuzzy controller uses a bank of fuzzy associative
rules of the form (A;, C;);i = 1...k to capture the
relationship between the observed variables and the
controlled variables. A; represents the antecedent
(if) part of rule and C is the conclusion (then)
part. Unlike the more generalized fuzzy rules, which
have fuzzy sets in both antecedent and conclusion
parts, our fuzzy rules have fuzzy sets only in the
antecedent part and crisp values in the conclusion
part - Sugeno type®. The antecedent part of the
rules are boolean combinations of six propositions
corresponding to the base velocity (taking any one
of the four fuzzy values, Fig. 7) and the depth infor-
mation of the five perceptual regions (each taking
any one of the three fuzzy values, Fig. 5 and 6).
The controller (Fig. 8), has a total of 19 fuzzy
inputs, £ = 3% x 4 & 1000 fuzzy rules and two crisp
outputs. Note the size of the fuzzy rules even for
low granularity level of description used for depth
and velocity. A representative of our FAM rule is:

¢In our subsequent work, we have changed this to a more
generalized one.

Prewired fuzzy
rules

Vf lJf

Y

. v’
Fuzzy inference| =~
engine J

AN

v

k

1

Figure 7: The fuzzy control structure.

rule 143: if(

right corner=maneuver zone,
left corner=maneuver
zone,right=danger zone,
front=safe zone,

left=safe zone and
basevelocity=reverse) then
velocity=-50, jograte=10.

At each control cycle, the antecedent part of all
the rules are satisfied simultaneously, but to a dif-
ferent degree. Let us say for rule r at time ¢ its
antecedent part is satisfied to a degree ok, where
0 < af < 1. To impose competition among rules
[9], Eqn. (11) must be satisfied:

k
Zaﬁ =1, Vvt
r=1

For each rule r = 1...k there are two crisp sug-
gestions: motor velocity V, and jograte J.. For
Sugeno rules, these quantities are fixed during the
writing of the rules. In addition, let the contribu-
tion of a rule r at time ¢ to the velocity and jo-
grate be designated by vl and j respectively. Note
that these quantities are variable at each time. The
strength of the conclusion part of rule r at any con-
trol time ¢ is based on the degree to which its an-
tecedent part is satisfied, 1.e.,

ot =alV,; Wt (12)
jt=alJ.; WVt (13)
where r = 1...k. The final crisp control command

vtand j! is then simply the sum of the contributions
of each rules, i.e.,

(11)

(14)
r=1
k

J= gk v (15)
r=1

In each time step the host computes Eqn. (12)-
(15) and sends " and j* to the on board microcom-
puter, who initiates appropriate motor routines for
executions.

6 Experimental Results

To avoid the pitfalls of simulation, we decided to
do most of our experiment on the actual agent and
the results are available on video. However, for the
sake of this report, we have included test results
of the proposed sensor preprocessor and simulation
outputs of our fuzzy controller.

To test the proposed preprocessor, the robot was
placed at a distance of 2 m in front of a wall. Af-
ter firing all the sonars the robot is set to move
against the wall at a constant velocity. While it
is moving, we keep on recording the readings of
the sonars in the front regions until the robot ap-
proaches the wall. Later we have applied our pre-
processing algorithm and Reignier’s [12] suggestions
on the data gathered. We have plotted both re-
sults against time in figures 9 and 10. As can be
seen clearly, our preprocessing scheme, Fig. 10, far
exceeds Reignier’s suggestion, Fig. 9. Specifically,
notice how the Kalman filter holds (sustains) the
depth estimate at a relatively high value without
much swing while the robot is far from the wall.
Undeniably, there is some swing in our preproces-
sor, too. However, the fuzzy controller is not sensi-
tive to such little noise, because such noise affects
the membership function only slightly, and there-
fore changes the final control command in minor
way.

0 I I I I I I
0 5 10 15 20 25 30 35

time step

Figure 8: Performance test using the method sug-
gested in [12].

Apart from the physical TRC robot, experiments
have been carried out on a TRC simulator. The
simulator we have built has only a simplified dy-
namics to account for the inertia of the robot, and it
doesn’t simulate the behavior of the sensors to test
our preprocessor! . However, it takes into account
the physical dimension of the robot by reducing its
size proportionally and attempts to place each sen-
sor in exactly the same locations as in the real robot.

fAs we don’t know how real world sensors behave, it is
difficult to simulate them. Therefore, any claimed sensor
preprocessor can only be tested on the actual system.

0 I I I I I I
0 5 10 15 20 25 30 35

time step

Figure 9: Performance test using the method sug-
gested in this paper.

In the simulation, neither the rules nor the shape of
the membership functions build for the actual robot
have been tampered.

After creating a fairly dense block world, we let
the robot free to navigate under the fuzzy con-
troller. As can be seen from the ghost path of the
robot in Fig. 11a, the simulated robot is able to
navigate safely, smoothly, and slowing down rarely
(as the robot tries to pass between the dining table
and the walls) without halting.

To ground our claim, a monolithic rule bank for
an atomic task, we subjected the TRC robot to the
same environment used by Saffiotti et al. page 14
in [13]. As shown in Fig. 11b our monolithic rule
exhibits the same behavior without breaking down
the task into two modules, corridor follow and
avoid obstacle and later blending them together.

7 Summary and Future Work

The paper has introduced a noise tolerant sensor
preprocessor for an autonomous robots and has
used it together with fuzzy logic control to navi-
gate a TRC mobile robot in a noise prone envi-
ronment. The preprocessor estimates the depth by
propagating a Gaussian CPDF through the present
and past measured values. Even though nothing
is known about the noise properties of ultrasonic
sensors, by assuming this particular distribution a
satisfactory result is obtained! In the application of
fuzzy control, we have departed from Saffiotti et al.
by building a well written monolithic rule bank for
an atomic task. In our system Saffiotti’s et al. fuzzy
behaviors appear as some part(s) of the rules and
the blender exists implicitly within the rule bank.
The problem we faced in fuzzy logic approach is
the trial and error nature of determining the right
membership functions and tuning the fuzzy rules 9,

9But this is common for any fuzzy logic based system.

" ,
= ‘urzy logic cantrol 12 =)

File | Position | Drew | Run | Exit

4 -
- =

I

‘
ey

7R oet2 3w

'
]

b]

(b)

Figure 10: The simulated robot cruising through a
block world environment.

so that the robot can exhibit satisfactory behav-
ior for a broad range of environments. In addi-
tion, it 18 observed that the oscillatory behavior of
the robot which is inherent in other methods, such
as potential field [8], and the susceptibility of be-
ing trapped into local minimum also exist in fuzzy
control. These undesirable behaviors can only be
avoided when the robot has some learning capabil-
ity.

Our intent is to design a goal directed navigating
agent that adapts itself to a particular environment
and task by self tuning its parameters. Reinforce-
ment learning methods together with an RBF net-
works allow the agent to achieve this goal by letting
the agent to do its own experiment and select the
best action among the viable candidates. However,
without some coarse initial knowledge this learning
algorithm is extremely slow and costly.

Hence as a first step, we have chosen 250 rules
from the working fuzzy controller (only a quarter of
the total knowledge) and gave it to an RBF neural
network which has 250 neurons, where by the center

of each neuron is represented by the antecedent part
of one of the selected rules and the output weight is
represented by the corresponding conclusion part.
After hooking the RBF neuro-controller” with the
agent, we observed that with this little knowledge,
the neuro controller has steered the robot collision
free for a long time, passing even through narrow
doors of our laboratory. This result is also avail-
able on video. The above experiment has shown us
the possibility of rendering coarse initial knowledge
to a connectionist system, in particular to an RBF
neural network.

8 Acknowledgment

The support given to the first author by DAAD un-
der grant code 413/ETH-4-BOA is greatly acknowl-
edged.

References

[1] Johann Borenstein and Yoram Koren. Error
eliminating rapid ultrasonic firing for mobile
robot obstacle avoidance. IEEE Transactions
on Robotics and Automation, 11(1):132-138,
1995.

[2] Getachew Hailu. Distributed fuzzy and neural
network based navigation behaviours. Tech-
nical Lab. Report H696, CAU, Cognitive Sys-
tems Laboratory, 1996.

[3] Ichiro Hiraga, Takeshi Furuhashi, Yoshiki
Uchikawa, and Shoichi Nakayama. An acquisi-
tion of operator’s rules for collision avoidance
using fuzzy neural networks. IEEFE Transac-

tions on Puzzy Systems, 3(3):280-287, 1995.

[4] Robert A. Jacob, Michael I. Jordan, Stevan J.
Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computation,

3:79-87, 1991.
[5] Chi-Cheng Jou and Nan-Ching Wang. Train-

ing a fuzzy controller to back up an au-
tonomous vehicle. In IEEE International Con-
ference on Neural Networks, pages 923-928,
San Francisco, 1993.

[6] Oussama Khatib. Real time obstacle avoid-
ance for manipulators and mobile robots. The
International Journal of Robotics Research,

5(1):90-98, 1986.

"We have steered the same robot with a multi-layer per-
ceptron [2], but now abandoned it because of its inability to
learn on-line incrementally.

[7]

[11]

[15]

[16]

[18]

Seong-Gon Kong and Bart Kosko. Adaptive
fuzzy systems for backing up a truck-and-
trailer. IEEE Transactions on Neural Net-
works, 3(2):211-223, 1992.

Yoram Koren and Johann Borenstein. Poten-
tial field methods and their inherent limita-
tions for mobile robot navigation. In Proceed-
wngs of the 1991 IEFEE International Confer-
ence on Robotics and Automation, pages 1398—
1404, Sacramento, 1991.

Bart Kosko. Neural Networks and Fuzzy Sys-
tems, A Dynamical Systems Approach to Ma-
chine Intelligence. Prentice-Hall International
Editions, 1992.

Maja J. Mataric. Integration of representa-
tion into goal-driven behavior-based robots.
IEEFE Transactions on Robotics and Automa-
tion, 8(3):304-312, 1992.

Peter S. Maybeck. The kalman filter: An in-
troduction to concepts. In 1. J. Cox and G. T.
Wilfong, editors, Autonomous Robot Vehicles.
Springer-Verlag, 1994.

Patrick Reignier. Fuzzy logic techniques for
mobile robot obstacle avoidance. Robotics and
Autonomous Systems, 12:143-153, 1994.

Alessandro Saffiotti, Enrique H. Ruspini, and
Kurt Konolige. Using fuzzy logic for mobile
robot control. In D. Dubois, H. Prade, and
H.J. Zimmermann, editors, Handbook of Fuzzy
Sets and Possibility Theory. Kluwer Academic,
1997.

K. T. Song and J. C. Tai. Fuzzy naviga-
tion of a mobile robot. In Proceeding of the
1992 IEFE/RSJ International Conference on
Intelligent Robots and Systems, pages 621-627,
Raleigh, 1992.

M. Sugeno and M. Nishida. Fuzzy control of
model car. Fuzzy Sets and Systems, 16:103—
113, 1985.

Tomoyoshi Takeuchi, Yutaka Nagai, and
Nobuyoshi Enomoto. Fuzzy control of a mo-
bile robot for obstacle avoidance. Information

Science, 45:231-248, 1988.

Jun Tani and Naohiro Fukumura. Learn-
ing goal-directed sensory-based navigation of a
mobile robot. Neural Networks, 7(31):553-563,
1994.

Lotfi A. Zadeh. Fuzzy sets. Information and
Control, 8:338-353, 1965.

