
Appeared in:Seventh International Fuzzy Systems Associations (IFSA'97) - World Congress,pages 496-500, Prague, Czech, June 25-29, 1997.Fuzzy Logic Control of a Situated AgentG. Hailuy, J. Bruske, G. SommerChristian Albrechts UniversityDepartment of Cognitive SystemsPreu�erstra�e 1-9, D-24105 Kiel, GermanyAbstractIn this paper we present a sensor preprocessor anda fuzzy logic based navigation control for a situ-ated agent. We address the problem of sensor in-accuracy in mobile robots by partitioning the totalperceptual space into overlapping regions and de-signing a Kalman �lter for each region. The �lterestimates the true depth of each region by propa-gating an assumed conditional probability densityfunction from sometime, arbitrary deep in the past,up to the present time. In applying fuzzy controlwe depart from Sa�otti et al. [13] by discarding thecontext blender. Here we build a clean monolithicrule bank for an atomic task. Our controller has� 1000 fuzzy rules and two crisp outputs. The out-puts of the controller are motor velocity and jograte.The implemented controller has successfully steeredboth the TRC mobile robot that has a belt of tenultrasonic range sensors around its waist and itssimulator. The observed collision free, smooth anduninterrupted trajectories demonstrate the robust-ness of the fuzzy controller and the noise tolerancenature of the preprocessor, even in the presence oflarge sensor noise.Keywords: Situated agent, Kalman �lter, Fuzzycontrol.1 IntroductionSince the �rst notion of fuzzy sets [18], fuzzy con-trol has emerged as one of the most active researchareas. Over the past several years, application offuzzy control in backing up an autonomous vehicle[5, 7], real time target tracking [9], avoiding colli-yCorresponding author.

sion of ships [3], and navigation of mobile robots[14, 16] have shown the potential and fruitfulnessof fuzzy control. This is because fuzzy logic controlis able to cope with lack of models and can handlevaguely de�ned processes which in many case canonly be controlled by a skillful human operator.In the context of mobile robots, fuzzy control isused for reactive navigation. Reactive navigationcan be de�ned as a mapping between sensory dataand motor commands [12]. Unlike classical reactivemethods, such as potential �eld [6], which searchesfor a function that best �ts this mapping, fuzzysystem use a small number of structured linguis-tic input-output samples. We shall refer to theseinput-output samples as Fuzzy Associative Mem-ory (FAM). Each FAM rule de�nes a patch in theinput-output space and the fuzzy control approxi-mates the unknown function by covering its graphwith FAM-rule patches [9]. The FAM rules can thusbe regarded as forming the skeleton of a fuzzy con-trol architecture.Here we are interested in constructing a fuzzycontroller to steer a TRC mobile robot in an un-known indoor environment. Our controller usesonly the sensory information, coming from the envi-ronment, and the vehicle velocity to provide a con-trol command at each control cycle. However, onthe one hand, the sensors are still far from perfectto perceive the environment and on the other, theirraw data are too huge and redundant to explain thecondition to be dealt with by the agent. Therefore aspecial sensor preprocessor that provides only fewand relevant data for decision making, has to bedesigned.The work described in this paper bears some sim-ilarity to [14, 15, 16]. However, they all work ona simulated environment and robot that usuallyhides the real dynamics and sensor uncertainty of



the actual system. To control Toto, Matari�c [10]has relied solely on the high accuracy of the sen-sors at small incident angle. Even though sonarsensors have such a characteristic, it is very di�-cult to maintain always the sensors mounted on therobot at a small incident angle from the surface nor-mal. In addition, her controller is crisp and she hastackled the whole navigation task from a di�erentpoint of view - behavioral decomposition. Boren-stein et al. [1] have eliminated the noise due tosensor crosstalk using a special sensor �ring schemecalled (EERUF). However, their method is not eas-ily transferable to a system, such as ours, whereboth �ring sequence and �ring intervals are hard-ware �xed. Perhaps our work is close to [13] whoimplement a hierarchical fuzzy control architecture,similar to [4], on the Flakey. They decomposedthe overall control into a number of modules, whichthey call fuzzy behaviors, and have used a contextdependent blending scheme to combine behaviorsoutputs. But we argue that in fuzzy logic, sincewe can incorporate all available knowledge to writeclean rules, there is little bene�t, except the extrawork of designing the blender, in breaking downthe atomic task avoid obstacle into a number ofsmall modulesa like corridor follow, keep off,door pass, etc. In addition, they didn't discuss thewell-known problem of sensor noise and uncertaintyin mobile robot research!In section II, we briey describe the agent we areworking with. Section III provides details of thepartitioning of the perceptual space and the type ofsensor preprocessing employed. Section IV and Vdiscuss the fuzzy linguistic sets, the fuzzi�er and thecontroller. Here, no attempt is made to discuss thebasics of fuzzy theory, it is explained elsewhere [9,12]. The last two sections present our experimentalresults and the on going work.2 The Physical AgentThe agent which we are dealing with (Fig. 1) isa two wheeled 75 cm L � 70 cm W � 28 cm Hautonomous vehicle with a belt of ten ultrasonicsensors around its front waist. The vehicle canturn in place by an arbitrary angle rotate (rad),can move a straight path at an arbitrary ve-locity go (mm=sec) and can turn while movingjog (rad=sec). On board, two processors aremounted. The Motorola 68HC11 micro-controller�res and reads individual sonars, sends motor com-mands to the servo controller and handles all timerelated synchronization details at low level. Themicro-computer, which comes in between the hostaBut this is not to say that task decomposition, in general,is not necessary. In fact, when a task gets complex, taskdecomposition is the only preferred method.

and the micro-controller, runs various high-levelmotor and sensor utilities and routes sensor valuesfrom the agent to the host and motor commandsfrom the host down to the agent. The host, a SUNworkstation, implements the main fuzzy controllerand the sensor preprocessing stages. It communi-cates with the micro-computer through an Ethernetradio link (Fig. 2).
Figure 1: The TRC mobile robot.

Figure 2: The distributed computing layout.3 Sensor Preprocessing3.1 State space partitioningBecause of sensor uncertainty and combinatorial ex-plosion of the fuzzy rules, it is very di�cult to for-mulate the fuzzy rules directly from the huge rawsensory data. To reduce the number of fuzzy rules,Song et al. [14] have built two fuzzy controllersfor their simulated robot, each handling a portionof the total sensor space. This requires a separateswitching mechanism between the two controllersand makes control quite complex. Reignier [12] sug-gests to keep from each region only the sensors withminimum depth and to discard all the others. Thismethod does not consider the agent's inaccuracy insensing world state and is easily defeated in the ac-tual laboratory.Rather than designing two controllers or discard-ing all readings except the minimum, we have par-titioned the ten ultrasonic sensors into �ve regions,corresponding to the physical geometry of the agentand the task at hand. These regions are: I-rightcorner, II-right, III-front, and IV-left, andV-left corner. Moreover, we adopt sensor over-lapping across neighboring regions to increase the2



accuracy of depth measurement as well as to ac-count for the beam angle of the sonars. Followingpartitioning, the sensor values of each region arepassed through a median �lter, which gives as out-put a measurement depth of a region. We have em-ployed a Kalman �lter to estimate the true depthfrom the present and past measurement values. Af-ter estimating the true depth of each region, weproceed to the fuzzi�cation process, which is com-mon to all fuzzy based systems. Before describingthe fuzzi�cation process, we will discuss the Kalman�lter formulation.3.2 Kalman Filter FormulationUnlike [2] in which we use heuristic to estimate thetrue depth of each region from multiple readingstaken at each perceptual cycle, here a cascade of two�lters (Fig. 3) and a sliding window of size three,to hold the present and the past two measurementpro�les [17], are used. The �rst �lter is a non linearmedian �lter that estimates the current measureddepth of a region j using,Zj;t = median�Sj1;t;Sj2;t; : : : ;ZjNj ;t� (1)where Sji;t; i = 1 : : :Nj is the reading at time t ofsensor i located in region j, Nj the number of sen-sors in region j, and Zj;t is the measured depthof region j at time t. The measured depth Zj;t,however, is still noisy and unreliable for reactivecontrolb without further processing! Hence, we pro-pose a Kalman �lter to process the measured depthsfurther.The Kalman �lter operates on the presentand past measurement pro�les (Zj;t; : : : ;Zj;t�n),stacked in the sliding window, to estimate the cur-rent true depth, Dj;t, of a region j. To avoid theinuence of very past measurements on the presentestimate, only a limited window size (n = 2) istaken. Since a Baysian view point is adopted, weneed to select a model for the conditional proba-bility density function (CBDF) of the true depthgiven the measured depth P(Dj=Zj), that best �tsthe data generated by the real world. In this papera Gaussc CPDF is chosen. The main motivationsfor making this assumption is that the Kalman �lterso designed is optimal with respect to virtually anycriterion that makes sense [11]. As our view pointis Baysian, we require the �lter to propagate the as-sumed CPDF from some arbitrary time in the pastup to the present time. Once the CPDF is propa-gated the optimal estimate is computed using themaximum likelihood criterion.bWhen these values are used to generate control com-mands the robot is seen moving arbitrary.cThere is no mathematical or experimental prove thatguarantees a Gaussian noise distribution in ultrasonicsensors.

Figure 3: The proposed sensor preprocessingscheme.The Kalman �lter algorithm is tailored to suitthe agent at hand. To proceed with the algorithm,at each perceptual time the �lters in each regionare initialized by estimating the parameters of theGauss CPDF, i.e., mean �j and variance �2j . Weestimate the mean by equating it with the measuredvalue at time t� n i.e.,�j;0 = Zj;t�n; j = 1 : : :5 (2)and the variance �2j;0 by equating it with the mea-surement variance of the sonars, &2.To compute the measurement variance, we havepicked a sensor at randomd and made a separateexperiment on it. The selected sensor was placedin di�erent environments and at di�erent orienta-tions and depths that can be faced by the robotwhen it is in operation (such as corners, corridors,doors edges, walls, free ways, ...). For all environ-ments and depths, the sensor was �red and the true(d) and measured (r) depths were recorded. Afterrecording 1000 (d; r) pairs, the measurement vari-ance &2 was computed by,&2 = 1N jjd� rjj2 ; & = 137 mm (3)where N = 1000. But this is a low value which doesnot represent the actual measurement variance ofthe sensors when they are �red one after the otherand when the robot moves. To account for thesedynamics, the value obtained above is multipliedby a factor of 2:5 to result in & � 350 mm. At thebeginning of the updating algorithm the statisticalvariance is set to this measurement variance, i.e,�2j;0 = &2 j = 1 : : :5 (4)dAll the sensors are of the same Polaroid type.3



With Eqn. (2) and (4) the CPDF of each re-gion is initialized. The next step is to propagatethis CPDF forward up to the present time. Inher-ently our system is dynamic, i.e., agent position andhence sensor values change with time. Therefore,the dynamic Kalman �lter is more appropriate toour scenario. Unfortunately, this �lter requires amodel for the rate of change of the sonar return. Fora situated agent, this change depends among otherthings on: the speed and rotation of the robot, thedirection of motion, the environment and its acous-tic property, the dynamic property of each sensor,the position of the sensors on the robot and, thefrequency of sensor crosstalk. Looking at the pa-rameters involved, it is extremely di�cult to comeup with a clean mathematical model of the formEqn. (5) and (6) which the dynamic �lter requires._X (t) = A(t)X (t) + B(t)U(t) + V(t) (5)Z(t) = C(t)X (t) +W(t) (6)Here matrices A(t), B(t) and C(t) are systemtime varying coe�cients incorporating all the abovementioned parameters, vectors X (t) and Z(t) areestimated and measured depths respectively, andV(t) and W(t) are system and measurement noisesrespectively.Because of lack of the above system coe�cients, alinear recursive Kalman �lter is employed, and theCPDF is updated only at discrete time, i.e., whenmeasurement value is available. At each updatestep, i = 1; : : : ; n, and for any perceptual region,j = 1 : : :5, the updating algorithm is given by:� compute the Kalman gain:Kj;i = �2j;i�1�2j;i�1 + &2 (7)� update the mean:�j;i = �j;i�1 +Kj;i(Zj;t�n+i � �j;i�1) (8)� update the variance:�2j;i = (1�Kj;i)�2j;i�1 (9)At the last update, we have the CPDF of the es-timated depth given the present and the past twomeasured values, P(Dj;t=Zj;t�2;Zj;t�1;Zj;t). Oncethis CPDF is determined, the maximum liklihoodcriterion is used to extract the best estimate fromthe CPDF, i.e.,Dj;t = max P(Dj;t=(Zj;t�2;Zj;t�1;Zj;t))= �j;2; j = 1 : : :5 (10)We have implemented Fig. 3, Eqn. (2),(4) and Eqn.(7)-(10) for each region separately. These taken to-gether de�ne our sensor preprocessing stage.

4 Sensor Fuzzi�cationAfter the preprocessing stage is completed, thenext step is to de�ne fuzzy linguistic sets foreach region. Akin to Matari�c, we have de�nedthree fuzzy linguistic zones, namely: dangerous(d), maneuver (m), and safe (s) zones. In-stead of designing a separate membership func-tions for each region, we exploit domain knowl-edge to reduce the size of membership functions.We have taken identical membership functions (Fig.5) for the three regions (II-IV), which are basi-cally on the front side of the robot, and di�er-ent membership functions (Fig. 6) for the two re-gions (I and V), which are on the corner side ofthe robot. With these we account for the di�er-ence in the degree of danger and degree of safetybetween front and corner regions [12]. Kosko's [9]rule of thumb 25 percent overlapping betweenadjacent fuzzy sets performs poorly for our sce-nario. In our application the degree of overlap is dif-ferent between adjacent fuzzy sets. Note also thatthe micro-controller is preprogrammed for a timeout distance of 2 m, a reasonable choice for ourrobot size.
00.51 25 50 75 100 200membershipregion depth (cm)Figure 4: Overlapping trapezoidal membershipfunctions for regions II-IV.

00.51 20 40 60 200region depth (cm)Figure 5: Overlapping trapezoidal membershipfunctions for regions I and V.4



The plots of the membership function actuallyde�ne the fuzzi�ers, which give as output a �t vectorof dimension three. The i � th �t vector measuresor indicates the degree to which the input belongsto the i� th fuzzy set. As a concrete example, for asensor value of 350mm in regions II-IV, the fuzzi�eroutputs a �t vector f=(0:33; 0:67; 0:0)T .Apart from the depth information coming fromexternal sensors, the controller also use the base ve-locity that is coming from the internal sensor. Fourtrapezoidal fuzzy sets: reverse (r), slow (s),normal (n), and fast (f) with membership func-tions shown in Fig. 7 are de�ned to encode the crispvelocity into a �t vector of dimension four. Againas an example, a base velocity value of 80 mm=secis encoded as v=(0; 0; 1; 0)T .00.51-10 -5 -2.5 2.5 5 10 12.5 15base velocity (cm/sec)Figure 6: Velocity fuzzi�er.5 The Fuzzy ControllerOur fuzzy controller uses a bank of fuzzy associativerules of the form (Ai; Ci); i = 1 : : :k to capture therelationship between the observed variables and thecontrolled variables. Ai represents the antecedent(if) part of rule and Ci is the conclusion (then)part. Unlike the more generalized fuzzy rules, whichhave fuzzy sets in both antecedent and conclusionparts, our fuzzy rules have fuzzy sets only in theantecedent part and crisp values in the conclusionpart - Sugeno typee. The antecedent part of therules are boolean combinations of six propositionscorresponding to the base velocity (taking any oneof the four fuzzy values, Fig. 7) and the depth infor-mation of the �ve perceptual regions (each takingany one of the three fuzzy values, Fig. 5 and 6).The controller (Fig. 8), has a total of 19 fuzzyinputs, k = 35� 4 � 1000 fuzzy rules and two crispoutputs. Note the size of the fuzzy rules even forlow granularity level of description used for depthand velocity. A representative of our FAM rule is:eIn our subsequent work, we have changed this to a moregeneralized one.

Figure 7: The fuzzy control structure.rule 143: if(right corner=maneuver zone,left corner=maneuverzone,right=danger zone,front=safe zone,left=safe zone andbasevelocity=reverse) thenvelocity=-50, jograte=10.At each control cycle, the antecedent part of allthe rules are satis�ed simultaneously, but to a dif-ferent degree. Let us say for rule r at time t itsantecedent part is satis�ed to a degree �tr, where0 � �tr � 1. To impose competition among rules[9], Eqn. (11) must be satis�ed:kXr=1�tr = 1; 8t (11)For each rule r = 1 : : :k there are two crisp sug-gestions: motor velocity Vr and jograte Jr. ForSugeno rules, these quantities are �xed during thewriting of the rules. In addition, let the contribu-tion of a rule r at time t to the velocity and jo-grate be designated by vtr and jtr respectively. Notethat these quantities are variable at each time. Thestrength of the conclusion part of rule r at any con-trol time t is based on the degree to which its an-tecedent part is satis�ed, i.e.,vtr = �trVr; 8t (12)jtr = �trJr; 8t (13)where r = 1 : : :k. The �nal crisp control commandvtand jt is then simply the sum of the contributionsof each rules, i.e.,vt = kXr=1 vtr; 8t (14)jt = kXr=1 jtr ; 8t (15)In each time step the host computes Eqn. (12)-(15) and sends vt and jt to the on board microcom-puter, who initiates appropriate motor routines forexecutions.5



6 Experimental ResultsTo avoid the pitfalls of simulation, we decided todo most of our experiment on the actual agent andthe results are available on video. However, for thesake of this report, we have included test resultsof the proposed sensor preprocessor and simulationoutputs of our fuzzy controller.To test the proposed preprocessor, the robot wasplaced at a distance of 2 m in front of a wall. Af-ter �ring all the sonars the robot is set to moveagainst the wall at a constant velocity. While itis moving, we keep on recording the readings ofthe sonars in the front regions until the robot ap-proaches the wall. Later we have applied our pre-processing algorithmand Reignier's [12] suggestionson the data gathered. We have plotted both re-sults against time in �gures 9 and 10. As can beseen clearly, our preprocessing scheme, Fig. 10, farexceeds Reignier's suggestion, Fig. 9. Speci�cally,notice how the Kalman �lter holds (sustains) thedepth estimate at a relatively high value withoutmuch swing while the robot is far from the wall.Undeniably, there is some swing in our preproces-sor, too. However, the fuzzy controller is not sensi-tive to such little noise, because such noise a�ectsthe membership function only slightly, and there-fore changes the �nal control command in minorway.
012 0 5 10 15 20 25 30 35time stepFigure 8: Performance test using the method sug-gested in [12].Apart from the physical TRC robot, experimentshave been carried out on a TRC simulator. Thesimulator we have built has only a simpli�ed dy-namics to account for the inertia of the robot, and itdoesn't simulate the behavior of the sensors to testour preprocessorf . However, it takes into accountthe physical dimension of the robot by reducing itssize proportionally and attempts to place each sen-sor in exactly the same locations as in the real robot.fAs we don't know how real world sensors behave, it isdi�cult to simulate them. Therefore, any claimed sensorpreprocessor can only be tested on the actual system.

012 0 5 10 15 20 25 30 35time stepFigure 9: Performance test using the method sug-gested in this paper.In the simulation, neither the rules nor the shape ofthe membership functions build for the actual robothave been tampered.After creating a fairly dense block world, we letthe robot free to navigate under the fuzzy con-troller. As can be seen from the ghost path of therobot in Fig. 11a, the simulated robot is able tonavigate safely, smoothly, and slowing down rarely(as the robot tries to pass between the dining tableand the walls) without halting.To ground our claim, a monolithic rule bank foran atomic task, we subjected the TRC robot to thesame environment used by Sa�otti et al. page 14in [13]. As shown in Fig. 11b our monolithic ruleexhibits the same behavior without breaking downthe task into two modules, corridor follow andavoid obstacle and later blending them together.7 Summary and Future WorkThe paper has introduced a noise tolerant sensorpreprocessor for an autonomous robots and hasused it together with fuzzy logic control to navi-gate a TRC mobile robot in a noise prone envi-ronment. The preprocessor estimates the depth bypropagating a Gaussian CPDF through the presentand past measured values. Even though nothingis known about the noise properties of ultrasonicsensors, by assuming this particular distribution asatisfactory result is obtained! In the application offuzzy control, we have departed from Sa�otti et al.by building a well written monolithic rule bank foran atomic task. In our system Sa�otti's et al. fuzzybehaviors appear as some part(s) of the rules andthe blender exists implicitly within the rule bank.The problem we faced in fuzzy logic approach isthe trial and error nature of determining the rightmembership functions and tuning the fuzzy rules g,gBut this is common for any fuzzy logic based system.6



(a)
(b)Figure 10: The simulated robot cruising through ablock world environment.so that the robot can exhibit satisfactory behav-ior for a broad range of environments. In addi-tion, it is observed that the oscillatory behavior ofthe robot which is inherent in other methods, suchas potential �eld [8], and the susceptibility of be-ing trapped into local minimum also exist in fuzzycontrol. These undesirable behaviors can only beavoided when the robot has some learning capabil-ity.Our intent is to design a goal directed navigatingagent that adapts itself to a particular environmentand task by self tuning its parameters. Reinforce-ment learning methods together with an RBF net-works allow the agent to achieve this goal by lettingthe agent to do its own experiment and select thebest action among the viable candidates. However,without some coarse initial knowledge this learningalgorithm is extremely slow and costly.Hence as a �rst step, we have chosen 250 rulesfrom the working fuzzy controller (only a quarter ofthe total knowledge) and gave it to an RBF neuralnetwork which has 250 neurons, where by the center
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