
Appeared in:IEEE International Conference on Robotics and Automation (ICRA'98)Leuven, Belgium, May 16-21, 1998. Learning by BiasingG. Hailu, G. SommerChristian Albrechts UniversityDepartment of Cognitive SystemsPreusserstrasse 1-9, D-24105 Kiel, GermanyAbstractIn the quest for machines that are able to learn, re-inforcement learning (RL) is found to be an appealinglearning methodology. A known problem in this learn-ing method, however, is that it takes too long beforethe robot learns to associate suitable situation - actionpairs. Due to this problem, RL has remained appli-cable only to simple tasks and discrete environment.To accelerate the learning process to a level requiredby real robot tasks, the traditional learning architecturehas to be modi�ed. We propose a modi�ed reinforce-ment based robot skill acquisition and adaptation ar-chitecture. The architecture has two components: abias and a learning components. The bias componentimparts to the learner coarse a priori knowledge aboutthe task. Subsequently, the learner re�nes the acquiredactions through reinforcement learning. We have vali-dated the architecture and the learning algorithm on asimulated TRC mobile robot for a goal reaching task.1 IntroductionProgramming an autonomous robot to reliably carryout its task demands a complete knowledge of the taskand the environment. Systems designed with completeknowledge are called expert systems and have no learn-ing ability. Instead they are equipped with a largeamount of data base that requires careful tuning. How-ever, because of the complexity and uncertainty of thereal world, it is prohibitive to create an expert sys-tem with large data base. Besides, it is argued that

if the robot some how possesses a self-learning ability,an enormous amount of human e�ort would be savedfrom tuning the data base.In the past many machine learning techniques havebeen proposed. Most of the learning techniques assumethe presence of teacher provided training instances inthe form of stimuli and desired response. These typesof learning techniques are known as supervised learn-ing and successful applications have been booked in:function approximation, pattern recognition and, nav-igation of mobile robots [5, 12].However, for many real world systems such as mobilerobots working in dynamic environments, training in-stances in the form of stimuli and desired response arenot easily available. Therefore, the robot has to learnfor every stimulus the optimal response directly by in-teracting with its environment. This type of learningmethod falls into a class of learning methodology calledreinforcement learning (RL). In RL the robot learns toassociate the right responses to di�erent stimuli of theworld. It involves four components: the robot, its en-vironment, a learnera (controller) to be trained and atrainer that provides only a scalar reinforcement signal.Although RL method �ts very nicely to robot learn-ing, it is a slow learning process - it takes too longfor the controller to converge toward the desired per-formance. There are many reasons [2, 8, 9] that con-tribute to the slow convergence of RL. The major one,however, is that the controller does not know beforehand where to search in action space for suitable reac-tions. This problem stems from the de�nition of RL:reinforcement based learning robots learn by doing andaIn this paper we use learner and controller interchangeably.



do not require a teacher. To overcome the problem, wehave lifted up the above unsupervised learning restric-tion by providing the learner with a bias component .The bias component can be compared with a teacherin supervised learning. However, it does not supplythe learner the desired response, hence we still demandthe desired response to emerge from RL. Apart fromaccelerating the learning process, biasing enables thelearner to avoid those actions that takes the robot toundesirable locations, thereby making the learning pro-cess safe [11].The paper is organized as follows. Section 2 presentsbriey the architecture of the bias component, fromwhich the controller gets a rough action. Section 3 de-scribes the proposed learning architecture and adapta-tion algorithms. Section 4 presents the trajectory andthe learning curves of the robot. At last, a conclusionis drawn from the experimental results.2 Bias ComponentThe agent, for which the simulator is built, is atwo wheeled 60cm square and 40cm high TRC mobilerobot, �gure 1. On the front periphery of the robotthere are tactile and sonar sensors. The sonar sensorsare programmed for a time out distance of 2m. Oursimulator assumes sonar values are repeatable and mo-tor actions are invertible. In addition, the simulatedrobot is given a capability to access global information- such as its position.
Figure 1. TRC robotThe architecture of the bias component is similar to[15] and is shown in �gure 2. It consists of two purpo-sive fuzzy behaviors: obstacle avoidance and goalfollowing. As the purpose of the bias component is todeliver a rough estimate of the optimal action, it suf-�ces to have few fuzzy rules and coarse input/outputgranulation levels.To come up with few fuzzy rules, the sonars are�rst grouped into �ve regions: right corner, right,front, left and, left corner corresponding to their

physical location on the TRC. Subsequently, from eachregion only the sonar that has the minimum reading isconsideredb, i.e.,Dj = mini (Si;j) i = 1; : : : ; Nj ; j = 1; : : : ; 5 (1)where Dj is the depth value of region j, Si;j is thereading of sonar i located inregion j and, Nj is thenumber of sonars in the region.
Figure 2. Bias component architectureThe obstacle avoidance behavior has a set of 32 fuzzyrules that are build by granulating the depth valuesof each regions into two fuzzy sets: n (near) and f(far). Whereas the goal following behavior has a setof three fuzzy rules that are constructed by fuzzifyingthe acute angle � between the robot heading and thevector connecting the current robot and goal locationsinto three fuzzy levels: l (left), f (front) and r (right).The output of the bias component is the turn ratecof the robot that is fuzzi�ed into three fuzzy sets: L(Left), F (Front) and R(Right).The obstacle avoidance and goal following behav-iors output vectors �a and �g respectively. The ele-ments of the vectors indicate the activation levels ofthe output fuzzy sets. To combine the outputs of thebehaviors a simple behavior blender with constant de-sirability functions da = 0:9 and dg = 0:1 is employed.The blender blends the outputs of the behaviors usingEqn. (2) and passes the fused vector �f to the defuzzi-�er, which decodes �f to a crisp value � using centroidtechnique. �f = dg�g + da�a (2)Note that when the robot is controlled by the biascomponent, most of the time it either collides or fol-lows non-optimal trajectories. It is only for very sim-ple tasks and carefully chosen desirability values thatthe bias component produces smooth and short tra-jectories. An example is shown in �gure 3 where thebOn real robot this assumptiondoes not hold true and anothertechnique must be sought, see [6] for a possible method.cThe velocity of the robot is kept constant and only the turnrate is controlled within the range of [��=9; �=9] rad=sec.2



robot has failed to follow optimal trajectory, thoughit reached the goald. It is also very simple to �nd yetanother example where the robot would fail to reachthe goal point at all!
Figure 3. Non optimal trajectory3 Learning ComponentThe task of the learner is to take the robot from ahome location pr(0) to some goal location pg . We as-sume that both the robot and goal locations are spec-i�ed in a Cartesian coordinate system. Furthermore,at any time the robot determines its position by deadreckoning method.The learner has eight inputs and one output. The�rst �ve inputs are depth information of each regions,Eqn. (1) and the remaining three inputs are the robot'scurrent heading � and position pr(t). However, be-fore these inputs are applied to the learner they areconverted to \primed" quantities by normalizing themappropriately. Hence the input, commonly called situ-ation in connectionist, is characterized by a vector,x = � �D1; �D2; �D3; �D4; �D5; ��; �xr; �yr�T (3)Similar to the bias component, the learning componentmaintains the vehicle velocity constant and controls theturn rate.3.1 TrainerOur trainer has two terms that penalize the learnerimmediately for every bad actions chosen. The �rstterm f1 penalizes the learner whenever the robot col-lides with or moves close to obstacles. If the robot col-lides, it is penalized by a �xed value, otherwise if thedThe bias component has been implemented on the real robotand the same result is obtained for the environment depicted.

minimum depth reading is less than a certain thresh-old, the trainer penalizes the learner proportional tothe inverse of the minimum reading with Dn as a pro-portional constant. Therefore, the term that teachesthe robot to keep away from obstacles is:f1 = 8<: �3 : if collision�Dn=minj( �Dj) : if close0 : otherwise (4)The other term f2 teaches the robot how to ap-proach a goal point. It computes �rst the acute angle� between the robot heading and the vector connect-ing the current robot and goal locations. Then as longas j�j < �, for some positive �, the trainer penalizesthe robot proportional to j�j. Beyond �, however, therobot is penalized as if a collision has occurred. Thisforces the robot to explore only the space which lies be-tween �� from the goal direction, there by boundingboth the network size and the exploration space.f2 = � �j�j=� : if� � � � � ��3 : otherwise (5)The total immediate reinforcement r is the sum ofthe two terms, r = f1 + f2. Note that the trainer doesnot teach the robot directly how to reach the goal. Ittrains only how to approach (f2) the goal without col-lision (f1). Therefore, the above reinforce function pre-supposes that the environment satis�es the constraintthat it has a free way (path) through which the robotcan reach the goal without collision.3.2 LearnerThe learner architecture is a feed forward neural net-work consisting of RBF neurons in the input layer anda stochastic neuron in the output layer, �gure 4. Thearchitecture is an actor-critic type. The critic elementis a one step ahead predictor of the expected futurediscounted sum of reinforcement values (utility). Andthe actor element is a multi-parameter stochastic unitthat generates actions stochastically from a given dis-tribution [4]. In the architecture, all neurons are tiedup to the input and only a winning neuron is connectedto the output. Each neuron represents a localized re-ceptive �eld of width � that covers a hyper-sphere inthe input space. In the present architecture the widthof the receptive �elds are all the same and kept �xed.The learner is initially empty but grows gradually,similar to the work of [3], as it learns and explores theenvironment. When a new situation is presented tothe learner, existing neurons (if any) compete to winthe situation. If a winning neuron exists, it will be-connected to the output layer to generate an action.3



Otherwise, a new neuron j is introduced and the fol-lowing four learning parameters are attached to it: a)utility, uj, b) prototypical action, pj , c) output weight,wj and, d) center position, cj . Each ofthese parametersare initialized �rst and evolve later through RL.
Figure 4. The architecture of the learnerThe winning neuron generates an action by explor-ing only a restricted area around its prototypical ac-tion pj. Restricted exploration accelerates the learningspeed by focusing the search area to a fraction of thetotal action space. To enforce exploration, a Gaussianstochastic unit with parameters (�; �) is introduced atthe output layer [14]. The parameters of the unit aredirectly determined from the learning parameters ofthe currently winning neuron using,� = wj and � = T (n)f(uj ) (6)Where � is the mean of the distribution, � is the ex-tent to which the stochastic unit searches for a betteraction, T (n) is the search-range temperature, n is trialnumber, f() is the logistic function that take values be-tween [0; 1], Once the parameters are determined, theunit draws a random number s = N (�; �) and gen-erates the �nal action by modulating the prototypicalaction with the random number, i.e.,a = pj + s. Thetemperature T is cooled downe, similar to [1], everytime a trialf is started, so that the stochastic unit pro-duces progressively deterministic actions.Before learning starts the robot is located at ori-gin pr(t = 0). At this location, the robot perceives asituation x. Since the learner is empty (has no neu-rons), it can not generalize the situation. Therefore,eMill�an[10] has reported that his learner has determined suit-able reactions without employing annealing techniques. How-ever, this is only true if the learner starts near to the optimalactions and utility values - a case which is di�cult to meet ingeneral.fA trial is a trajectory that starts at the home location andterminates when the robot collides or reaches the goal.

it invokes the bias component. Upon request, the biascomponent sends its action to the learner. The learnerreceives the action, adds a neuron, attaches the abovelearning parameters to the new neuron and initializesthe parameters as described below.To every new neuron j, the algorithm initializes thelearning parameters as follows: the center position cj isequated to the perceived situation x, the prototypicalaction pj is set to the action received from the biascomponent, the utility uj is estimated by computingthe terms of the reinforce function for the current statesof the robot and sonars readings and �nally, the weightwj is set to zero.After initializing the parameters, the learner ex-plores and generates action that moves the robot toa new location pr(t + 1). At this location, the trainercomputes the immediate reinforcement r(t+1) for theaction that brought the robot from pr(t) to pr(t + 1)and the robot perceives a new situation x. The newsituation is presented to the learner that identi�es �rstthe winning neuron closest to the situation, i.e.,winner = arg mini (di)di = (ci � x)T (ci � x) (7)If the distance of the winning neuron is larger than�, the situation is regarded as novel and the learnerinvokes the bias component and adds a neuron as dis-cussed above. This way of adding neurons is calleddistance driven. Otherwise the situation is not newand can be generalized.Next the learner adapts the learning parameters ofthe previous winning neuron using the immediate re-inforcement received and the utility value of the cur-rent winning neuron. Thereafter, the learner exploresand generates an action for the new situation. If thenew action results in collision or takes the robot to thegoal, the current trial is terminated, the robot is re-located to home location and, a new trial is started.Otherwise, adaptation and exploration continue untilthe robot collides or reaches the goal.3.3 AdaptationBefore the learner generates an action for the presentsituation, it adapts the learning parameters of the pre-vious winning neuron. Each of the learning parametersare adapted using di�erent adaptation algorithms anderror sources.The utility value of the previous winning neuronuj(t) is updated by temporal di�erence (TD) method[13]. Assuming neuron i is the present winning neuronwith an associated utility ui(t+ 1), r(t+ 1) is the im-mediate reinforcement, and  is a real value between4



[0; 1], the estimation error of uj (commonly called TDerror) between the estimates at t+ 1 and t is,�(t+ 1) = r(t+ 1) + ui(t + 1)� uj(t) (8)During learning �(t+1) is di�erent from zero eitherbecause the utility values do not yet converge or therobot has chosen a non optimal action. If �(t+1) < �,where � is some negative constant, then the situationat time t is incorrectly classi�ed to neuron j. Because,even if the situation is close to neuron j as measuredby Eqn. (7), it is found to have quite a di�erent utilityvalue from uj . Therefore, the learner splits this situa-tion from neuron j by creating and adding a new neu-ron at that situation. This is a second way of addingneuron and is called error driven, where the error isthe TD error. Otherwise, if �(t + 1) > �, then uj isadapted by:uj(t+ 1) = uj(t) + �uj(t+ 1) (9)�uj(t+ 1) = � �r �(t + 1) �(t+ 1) > 0�p �(t + 1) �(t+ 1) < 0 (10)where �r and �p are two learning rates with �r > �p.The utility uj is adapted less intensively when the TDerror is negative than when it is positive. This is be-cause a negative TD error is probably caused by badaction selection that results in a less utility estimate[11].The output weight wj directly controls the mean �of the output stochastic unit and is updated in a direc-tion that lies along the gradient of the expected utility.Williams' REINFORCE algorithm [14] is employed toupdate the weight wj,wj(t+ 1) = wj(t) + �wj(t+ 1) (11)�wj(t+ 1) = � �r�(t + 1)ej �(t+ 1) > 0�p�(t + 1)ej �(t+ 1) < 0 (12)where �(t + 1) is the TD error given by Eqn. (8) andej is the characteristic eligibility of wj that measureshow inuential wj was in determining the stochasticaction [14]. Similar to utility update, the weight wj isupdated less intensively when the TD error is negativethan when it is positive, i.e. �r > �p.Finally, the center position cj of the winning neuronis shifted to ward x using,�cj = �(x � cj) (13)where � is the learning rate. Our present architectureprevents neurons from collapsing in a region of highdata density, since it activates only one neuron for ev-ery situation and the widths of all neurons are constant.

Every time the robot moves, the learner keeps trackof the winning neuron j(t), its associated utility valueu(j(t)) and, the immediate reinforcement r(t) along thetrajectory. If a trajectory leads to the goal, the learningalgorithm back up the utility values of all neurons thatlie along this trajectory [7, 11]. While utility, outputweight and, center position are adapted at each move,prototypical actions are replaced by the actual actionsif the robot reaches the goal with the best total rein-forcement. We de�ne total reinforcement as the sum ofimmediate reinforcements the learner receives till therobot reaches the goal point.R = TXt=0 r(t) (14)Where T is total number of moves required to reachthe goal. If the robot reaches the goal through a tra-jectory whose total reinforcement is greater than themaximumRmax so far obtained, the algorithm replacesthe prototypical actions of all neurons that lie along thetrajectory by their respective actual actions.4 ResultsWe validate our architecture and learning algorithmon a simulator made for the TRC robot. The simulatorhas simpli�ed dynamics and assumes noise free sensors.However, it takes into account the physical dimensionsof the robot by reducing its size proportionally andplaces each sensors at the same locations as in the realrobot. Besides, the fuzzy rules wired for the real robotare directly transfered without tampering to the simu-lator.Figure 5 shows the �nal trajectory of the robot and�gure 6 shows the number of neurons and total re-inforcement value against the number of trials. It isobserved that during the �rst eight trials the robotfailed to reach the goal. This is not surprising, be-cause the learner is empty and has to acquire enoughsituation-action pairs. Note that the total reinforce-ment Eqn.(14) is not de�ned if the robot fails to reachthe goal, hence no data is available to plot.At the ninth trial the robot reached the goal forthe �rst time. It is during this trial that the learnerreceived the lowest total reinforcement (�gure 6 be-low). Furthermore the path followed during this triallooks more of haphazard motion. After the robot hasreached the goal at the ninth trail, it has chosen eighttimes non optimal actions that ultimately lead to realor virtual collisions (�gure 6 below). This is due to theexploratory nature of the actor element and is commonin any reinforcement learning [11]. From the twelfth5



trial and afterwards the bias component has practi-cally stopped intervening. Besides the size of network(�gure 6 above) has become saturated (between trialsonly few neurons are added). This indicates that thelearner has already started operating in reinforcementmode.
Figure 5. Robot trajectoryAfter trial thirty the robot has visited the goal con-stantly, the total reinforcement remains stable within�3, except at trial 41, where the learner explore otheractions from the currently known optimal values (�g-ure 6 below). In subsequent trials, however, it hasquickly discovered its previous performance. The �nalresult (�gure 5) demonstrates that the robot has indeedadapted quickly the coarse and instinct skill acquiredfrom the bias component to get smooth and plannedlike trajectory.5 ConclusionWe have proposed a feasible robot learning archi-tecture that learns quickly from reinforcement signalalone. The architecture has two components: a biascomponent and a learning component. Initially thebias component intervenes in the learning process fre-quently to resolve unknown situations. As learningproceeds, however, it stops intervening and the learneroptimizes (re�nes) the acquired situation-action pairsusing the reinforcement signal. The architecture hasbeen tested on a simulated TRC mobile robot for goalreaching task. The �nal planned like trajectory andthe number of trials required validates our approach.Work is going on to transfer the obtained result on thereal robot.
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