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Abstract

In the quest for machines that are able to learn, re-
inforcement learning (RL) is found to be an appealing
learning methodology. A known problem in this learn-
g method, however, s that it takes too long before
the robot learns to associate suitable situation - action
pairs. Due to this problem, RL has remained appli-
cable only to simple tasks and discrete environment.
To accelerate the learning process to a level required
by real robot tasks, the traditional learning architecture
has to be modified. We propose a modified reinforce-
ment based robot skill acquisition and adaptation ar-
The architecture has two components: a
bias and a learning components. The bias component
wmparts to the learner coarse a priori knowledge about
the task. Subsequently, the learner refines the acquired
actions through reinforcement learning. We have vali-
dated the architecture and the learning algorithm on a
stmulated TRC mobile robot for a goal reaching task.

chitecture.

1 Introduction

Programming an autonomous robot to reliably carry
out its task demands a complete knowledge of the task
and the environment. Systems designed with complete
knowledge are called ezpert systems and have no learn-
ing ability. Instead they are equipped with a large
amount of data base that requires careful tuning. How-
ever, because of the complexity and uncertainty of the
real world, i1t is prohibitive to create an expert sys-
tem with large data base. Besides, it is argued that

if the robot some how possesses a self-learning ability,
an enormous amount of human effort would be saved
from tuning the data base.

In the past many machine learning techniques have
been proposed. Most of the learning techniques assume
the presence of teacher provided training instances in
the form of stimuli and desired response. These types
of learning techniques are known as supervised learn-
ing and successful applications have been booked in:
function approximation, pattern recognition and, nav-
igation of mobile robots [5, 12].

However, for many real world systems such as mobile
robots working in dynamic environments, training in-
stances in the form of stimuli and desired response are
not easily available. Therefore, the robot has to learn
for every stimulus the optimal response directly by in-
teracting with its environment. This type of learning
method falls into a class of learning methodology called
reinforcement learning (RL). In RL the robot learns to
associate the right responses to different stimuli of the
world. It involves four components: the robot, its en-
vironment, a learner® (controller) to be trained and a
trainer that provides only a scalar reinforcement signal.

Although RL method fits very nicely to robot learn-
ing, it is a slow learning process - it takes too long
for the controller to converge toward the desired per-
formance. There are many reasons [2, 8, 9] that con-
tribute to the slow convergence of RL. The major one,
however, is that the controller does not know before
hand where to search in action space for suitable reac-
tions. This problem stems from the definition of RL:
reinforcement based learning robots learn by doing and

%In this paper we use learner and controller interchangeably.



do not require a teacher. To overcome the problem, we
have lifted up the above unsupervised learning restric-
tion by providing the learner with a bias component.
The bias component can be compared with a teacher
in supervised learning. However, it does not supply
the learner the desired response, hence we still demand
the desired response to emerge from RL. Apart from
accelerating the learning process, biasing enables the
learner to avoid those actions that takes the robot to
undesirable locations, thereby making the learning pro-
cess safe [11].

The paper 1s organized as follows. Section 2 presents
briefly the architecture of the bias component, from
which the controller gets a rough action. Section 3 de-
scribes the proposed learning architecture and adapta-
tion algorithms. Section 4 presents the trajectory and
the learning curves of the robot. At last, a conclusion
i1s drawn from the experimental results.

2 Bias Component

The agent, for which the simulator is built, is a
two wheeled 60c¢m square and 40c¢m high TRC mobile
robot, figure 1. On the front periphery of the robot
there are tactile and sonar sensors. The sonar sensors
are programmed for a time out distance of 2m. Our
simulator assumes sonar values are repeatable and mo-
tor actions are invertible. In addition, the simulated
robot 1s given a capability to access global information
- such as its position.

Figure 1. TRC robot

The architecture of the bias component is similar to
[15] and is shown in figure 2. Tt consists of two purpo-
sive fuzzy behaviors: obstacle avoidance and goal
following. As the purpose of the bias component is to
deliver a rough estimate of the optimal action, it suf-
fices to have few fuzzy rules and coarse input/output
granulation levels.

To come up with few fuzzy rules, the sonars are
first grouped into five regions: right corner, right,
front, left and, left corner corresponding to their

physical location on the TRC. Subsequently, from each
region only the sonar that has the minimum reading is
considered?, i.e.,

Dj:mjn(Siyj) i:l,...,N]’;jzl,...,5 (1)

where D; is the depth value of region j, S;; is the
reading of sonar ¢ located inregion j and, N; is the
number of sonars in the region.
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Figure 2. Bias component architecture

The obstacle avoidance behavior has a set of 32 fuzzy
rules that are build by granulating the depth values
of each regions into two fuzzy sets: n (near) and £
(far). Whereas the goal following behavior has a set
of three fuzzy rules that are constructed by fuzzifying
the acute angle # between the robot heading and the
vector connecting the current robot and goal locations
into three fuzzy levels: 1 (left), £ (front) and r (right).
The output of the bias component i1s the turn rate®
of the robot that is fuzzified into three fuzzy sets: L
(Left), F (Front) and R(Right).

The obstacle avoidance and goal following behav-
iors output vectors a, and a respectively. The ele-
ments of the vectors indicate the activation levels of
the output fuzzy sets. To combine the outputs of the
behaviors a simple behavior blender with constant de-
sirability functions d, = 0.9 and dy = 0.1 is employed.
The blender blends the outputs of the behaviors using
Eqn. (2) and passes the fused vector as to the defuzzi-
fier, which decodes oy to a crisp value o using centroid
technique.

ay =dsa, + da, (2)

Note that when the robot is controlled by the bias
component, most of the time it either collides or fol-
lows non-optimal trajectories. It is only for very sim-
ple tasks and carefully chosen desirability values that
the bias component produces smooth and short tra-
jectories. An example 1s shown in figure 3 where the

50On real robot this assumption does not hold true and another
technique must be sought, see [6] for a possible method.

¢The velocity of the robot is kept constant and only the turn
rate is controlled within the range of [—7/9,7/9] rad/sec.



robot has failed to follow optimal trajectory, though
it reached the goal?. It is also very simple to find yet
another example where the robot would fail to reach
the goal point at all!

1= fuzzy logic control = ]
File | Pesttion | Draw | R | Exit
X
. X
NER LN .
TN
Ll
4 ¥
l " @
Y <
A
1K I = |

Figure 3. Non optimal trajectory

3 Learning Component

The task of the learner is to take the robot from a
home location p, (0) to some goal location p,. We as-
sume that both the robot and goal locations are spec-
ified in a Cartesian coordinate system. Furthermore,
at any time the robot determines its position by dead
reckoning method.

The learner has eight inputs and one output. The
first five inputs are depth information of each regions,
Eqn. (1) and the remaining three inputs are the robot’s
current heading ¢ and position p,.(t). However, be-
fore these inputs are applied to the learner they are
converted to “primed” quantities by normalizing them
appropriately. Hence the input, commonly called situ-
ation in connectionist, is characterized by a vector,

, , , , . T
€r = (DlaDZaD3aD4aD5a9aiTayr) (3)

Similar to the bias component, the learning component
maintains the vehicle velocity constant and controls the
turn rate.

3.1 Trainer

Our trainer has two terms that penalize the learner
immediately for every bad actions chosen. The first
term fi penalizes the learner whenever the robot col-
lides with or moves close to obstacles. If the robot col-
lides, it 1s penalized by a fixed value, otherwise if the

4The bias component has been implemented on the real robot
and the same result is obtained for the environment depicted.

minimum depth reading is less than a certain thresh-
old, the trainer penalizes the learner proportional to
the inverse of the minimum reading with D, as a pro-
portional constant. Therefore, the term that teaches
the robot to keep away from obstacles is:

-3 : 1if collision
fi =< =Dy, /min;(D;) if close (4)
0 : otherwise

The other term f5 teaches the robot how to ap-
proach a goal point. It computes first the acute angle
# between the robot heading and the vector connect-
ing the current robot and goal locations. Then as long
as |0] < O, for some positive O, the trainer penalizes
the robot proportional to |#]. Beyond ©, however, the
robot is penalized as if a collision has occurred. This
forces the robot to explore only the space which lies be-
tween £0 from the goal direction, there by bounding
both the network size and the exploration space.

p{ O

The total immediate reinforcement r is the sum of
the two terms, r = f; + f2. Note that the trainer does
not teach the robot directly how to reach the goal. It
trains only how to approach (fz) the goal without col-
lision (f1). Therefore, the above reinforce function pre-
supposes that the environment satisfies the constraint
that it has a free way (path) through which the robot
can reach the goal without collision.

if—0<0<0

otherwise

(5)

3.2 Learner

The learner architecture is a feed forward neural net-
work consisting of RBF neurons in the input layer and
a stochastic neuron in the output layer, figure 4. The
architecture is an actor-critic type. The critic element
is a one step ahead predictor of the expected future
discounted sum of reinforcement values (utility). And
the actor element is a multi-parameter stochastic unit
that generates actions stochastically from a given dis-
tribution [4]. In the architecture, all neurons are tied
up to the input and only a winning neuron is connected
to the output. Each neuron represents a localized re-
ceptive field of width ¥ that covers a hyper-sphere in
the input space. In the present architecture the width
of the receptive fields are all the same and kept fixed.

The learner is initially empty but grows gradually,
similar to the work of [3], as it learns and explores the
environment. When a new situation is presented to
the learner, existing neurons (if any) compete to win
the situation. If a winning neuron exists, it will be-
connected to the output layer to generate an action.



Otherwise, a new neuron j is introduced and the fol-
lowing four learning parameters are attached to it: a)
utility, u;, b) prototypical action, p;, ¢) output weight,
wj and, d) center position, ¢;. Each ofthese parameters
are initialized first and evolve later through RL.

Figure 4. The architecture of the learner

The winning neuron generates an action by explor-
ing only a restricted area around its prototypical ac-
tion p;. Restricted exploration accelerates the learning
speed by focusing the search area to a fraction of the
total action space. To enforce exploration, a Gaussian
stochastic unit with parameters (u, o) is introduced at
the output layer [14]. The parameters of the unit are
directly determined from the learning parameters of
the currently winning neuron using,

p=w; and o=T(n)f(y;) (6)
Where p is the mean of the distribution, ¢ is the ex-
tent to which the stochastic unit searches for a better
action, T'(n) is the search-range temperature, n is trial
number, f() is the logistic function that take values be-
tween [0, 1], Once the parameters are determined, the
unit draws a random number s = AN (u, o) and gen-
erates the final action by modulating the prototypical
action with the random number, i.e.,a = p; + s. The
temperature T is cooled down®, similar to [1], every
time a trialf is started, so that the stochastic unit pro-
duces progressively deterministic actions.

Before learning starts the robot is located at ori-
gin p,(t = 0). At this location, the robot perceives a
situation @. Since the learner is empty (has no neu-
rons), it can not generalize the situation. Therefore,

€Milldn[10] has reported that his learner has determined suit-
able reactions without employing annealing techniques. How-
ever, this is only true if the learner starts near to the optimal
actions and utility values - a case which is difficult to meet in
general.

fA trial is a trajectory that starts at the home location and
terminates when the robot collides or reaches the goal.

it invokes the bias component. Upon request, the bias
component sends 1ts action to the learner. The learner
receives the action, adds a neuron, attaches the above
learning parameters to the new neuron and initializes
the parameters as described below.

To every new neuron j, the algorithm initializes the
learning parameters as follows: the center position ¢; is
equated to the perceived situation «, the prototypical
action p; is set to the action received from the bias
component, the utility u; is estimated by computing
the terms of the reinforce function for the current states
of the robot and sonars readings and finally, the weight
wj 1s set to zero.

After initializing the parameters, the learner ex-
plores and generates action that moves the robot to
a new location p,(t + 1). At this location, the trainer
computes the immediate reinforcement r(¢ + 1) for the
action that brought the robot from p,.(t) to p.(t + 1)
and the robot perceives a new situation @. The new
situation 1s presented to the learner that identifies first
the winning neuron closest to the situation, i.e.,

winner = arg min(d;)
di = (¢; — x)" (¢; — @) (7)

If the distance of the winning neuron is larger than
Y, the situation is regarded as novel and the learner
invokes the bias component and adds a neuron as dis-
cussed above. This way of adding neurons is called
distance driven. Otherwise the situation is not new
and can be generalized.

Next the learner adapts the learning parameters of
the previous winning neuron using the immediate re-
inforcement received and the utility value of the cur-
rent winning neuron. Thereafter, the learner explores
and generates an action for the new situation. If the
new action results in collision or takes the robot to the
goal, the current trial is terminated, the robot is re-
located to home location and, a new trial is started.
Otherwise, adaptation and exploration continue until
the robot collides or reaches the goal.

3.3 Adaptation

Before the learner generates an action for the present
situation, it adapts the learning parameters of the pre-
vious winning neuron. Each of the learning parameters
are adapted using different adaptation algorithms and
ETTOT SOUrces.

The utility value of the previous winning neuron
u;(t) is updated by temporal difference (TD) method
[13]. Assuming neuron 7 is the present winning neuron
with an associated utility w; (¢ + 1), r(¢t + 1) is the im-
mediate reinforcement, and 7 is a real value between



[0, 1], the estimation error of u; (commonly called TD
error) between the estimates at ¢ + 1 and ¢ is,

S+ =+ ) Fyult+ ) — () (8)

During learning d(¢ + 1) is different from zero either
because the utility values do not yet converge or the
robot has chosen a non optimal action. If §(t+1) < A,
where A is some negative constant, then the situation
at time ¢ 1s incorrectly classified to neuron j. Because,
even if the situation is close to neuron j as measured
by Eqn. (7), it is found to have quite a different utility
value from u;. Therefore, the learner splits this situa-
tion from neuron j by creating and adding a new neu-
ron at that situation. This is a second way of adding
neuron and 1s called error driven, where the error is
the TD error. Otherwise, if §(t + 1) > A, then wu; is
adapted by:

Uj (t + 1) = Uj(t) + AUj(t + 1) (9)
s 0(t+1) d(Et+1)>0
A“J'(t“):{ " 5Et+1; 6Et—|—1;<0 (10)

where 7, and 7, are two learning rates with 7, > 7.
The utility u; is adapted less intensively when the TD
error is negative than when it is positive. This is be-
cause a negative TD error is probably caused by bad
action selection that results in a less utility estimate
[11].

The output weight w; directly controls the mean y
of the output stochastic unit and is updated in a direc-
tion that lies along the gradient of the expected utility.
Williams’ REINFORCE algorithm [14] is employed to
update the weight w;,

wj(t—I—l):wj(t)—l—ij(t—l—l) (11)
Br8(t+1)e; S(t+1)>0
ij(t“):{ 6p62t+1;ej stinzo 12

where 6(t 4 1) is the TD error given by Eqn. (8) and
e; 1s the characteristic eligibility of w; that measures
how influential w; was in determining the stochastic
action [14]. Similar to utility update, the weight w; is
updated less intensively when the TD error is negative
than when it is positive, i.e. 8, > 3,.

Finally, the center position ¢; of the winning neuron
is shifted to ward @ using,

Ac; = e(x — ¢;) (13)

where € is the learning rate. Our present architecture
prevents neurons from collapsing in a region of high
data density, since it activates only one neuron for ev-
ery situation and the widths of all neurons are constant.

Every time the robot moves, the learner keeps track
of the winning neuron j(t), its associated utility value
u(j(t)) and, the immediate reinforcement r(t) along the
trajectory. If a trajectory leads to the goal, the learning
algorithm back up the utility values of all neurons that
lie along this trajectory [7, 11]. While utility, output
weight and, center position are adapted at each move,
prototypical actions are replaced by the actual actions
if the robot reaches the goal with the best total rein-
forcement. We define total reinforcement as the sum of
immediate reinforcements the learner receives till the
robot reaches the goal point.

R=Y"r() (14)

t=0

Where T is total number of moves required to reach
the goal. If the robot reaches the goal through a tra-
jectory whose total reinforcement is greater than the
maximum R4, so far obtained, the algorithm replaces
the prototypical actions of all neurons that lie along the
trajectory by their respective actual actions.

4 Results

We validate our architecture and learning algorithm
on a simulator made for the TRC robot. The simulator
has simplified dynamics and assumes noise free sensors.
However, it takes into account the physical dimensions
of the robot by reducing its size proportionally and
places each sensors at the same locations as in the real
robot. Besides, the fuzzy rules wired for the real robot
are directly transfered without tampering to the simu-
lator.

Figure 5 shows the final trajectory of the robot and
figure 6 shows the number of neurons and total re-
inforcement value against the number of trials. It is
observed that during the first eight trials the robot
failed to reach the goal. This is not surprising, be-
cause the learner is empty and has to acquire enough
situation-action pairs. Note that the total reinforce-
ment Eqn.(14) is not defined if the robot fails to reach
the goal, hence no data is available to plot.

At the ninth trial the robot reached the goal for
the first time. It is during this trial that the learner
received the lowest total reinforcement (figure 6 be-
low). Furthermore the path followed during this trial
looks more of haphazard motion. After the robot has
reached the goal at the ninth trail, it has chosen eight
times non optimal actions that ultimately lead to real
or virtual collisions (figure 6 below). This is due to the
exploratory nature of the actor element and 1s common
in any reinforcement learning [11]. From the twelfth



trial and afterwards the bias component has practi-
cally stopped intervening. Besides the size of network
(figure 6 above) has become saturated (between trials
only few neurons are added). This indicates that the
learner has already started operating in reinforcement
mode.

. "
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Figure 5. Robot trajectory

After trial thirty the robot has visited the goal con-
stantly, the total reinforcement remains stable within
43, except at trial 41, where the learner explore other
actions from the currently known optimal values (fig-
ure 6 below). In subsequent trials, however, it has
quickly discovered its previous performance. The final
result (figure 5) demonstrates that the robot has indeed
adapted quickly the coarse and instinct skill acquired
from the bias component to get smooth and planned
like trajectory.

5 Conclusion

We have proposed a feasible robot learning archi-
tecture that learns quickly from reinforcement signal
alone. The architecture has two components: a bias
component and a learning component. Initially the
bias component intervenes in the learning process fre-
quently to resolve unknown situations. As learning
proceeds, however, it stops intervening and the learner
optimizes (refines) the acquired situation-action pairs
using the reinforcement signal. The architecture has
been tested on a simulated TRC mobile robot for goal
reaching task. The final planned like trajectory and
the number of trials required validates our approach.
Work is going on to transfer the obtained result on the
real robot.
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