
Appeared in:International Conference on Arti�cial Neural Network,pages 1133-1138, Sk�ovde, Sweden, September 2-4, 1998.Embedding Knowledge inReinforcement LearningG. Hailu, G. SommerChristian Albrechts University, Department of Cognitive SystemsPreusserstrasse 1-9, D-24105 Kiel, Germanygha@informatik.uni-kiel.deAbstract. In almost all real systems where reinforcement learning is ap-plied, it is found that a knowledge free approach doesn't work. The basic RLalgorithms must su�ciently be biased to achieve a satisfactory performancewithin a bounded time. This bias takes di�erent forms. In this paper, in ad-dition to reex rules [6], environment (domain) knowledge is embedded intothe learner. Environment knowledge gives leverage to the adaptive state spaceconstruction algorithm by splitting key states quickly. The learner is tested ona B21 robot for a goal reaching task. Experimental results show that after fewtrials the robot has indeed learned the right situation action rules that unfoldits path.1 IntroductionFor more than a decade reinforcement learning (RL) has been studied exten-sively and its properties are well understood. One of its nice property is that itallows agents to be programmed by reward and punishment, without the needto specify how the task is achieved. Unfortunately, it has an inherent problem- its learning time increases exponentially with the size of the state space. Con-sequently, RL has remained di�cult to implement in realistic domains that arecharacterized by large state and action spaces - typically robot domains. Yet,despite this inherent problem, there is still a surge of interest in putting RLonto a real robot.Researchers have tried to overcome the inability of RL to scale well tolearning tasks with large state and action spaces. Mahadevan et al. [4] havedecomposed the task into sets of simple sub-tasks each with its own prewiredapplicability predicate. Matari�c [5] has minimized the state space by trans-forming state-action pairs to condition-behavior pairs and maximized learningby designing reward rich heterogeneous reinforcement. Recently, Mill�an [6] hastremendously accelerated RL by integrating it with reex rules that focus ex-ploration where it is mostly needed. The common characteristic of the aboveexamples is that the basic RL algorithm has been endowed with some built-in



knowledge. In each case, however, the built-in knowledge has di�erent formsand is used for di�erent purposes: in [4] to break down and to arbiter tasks,in[5] to design rich reward, and in [6] to focus exploration.This paper is concerned with using environment knowledge to pre-structurethe state space. There is a conict between the required number of states andthe actual states constructed by the adaptive state space construction algorithm[6]. This is not because of the algorithm, but because of the particular plat-form we are working with. To resolve this conict, the controller is shaped toaccommodate implicit environment knowledge that enables the algorithm toconstruct appropriate state space during the course of learning.2 The robot taskThe B21 robot from RWI has been used as our experimental platform. Therobot is a four-wheeled cylindrical synchro-drive with two parts: a base and anenclosure. The base carries 32 infra-red (IR) and 32 tactile sensors. Whereasthe enclosure carries 24 tactile, 24 IR, and 24 sonar sensors.The task of the robot is to reach a speci�ed goal pg through a (sub)-optimalpath. Optimality is de�ned on a certain payo� function. For every actionthe robot has chosen, it receives an immediate reinforcement rt that has twocomponents. The �rst component penalizes the robot when it either collideswith or approaches an obstacle. Whereas the second component penalizes therobot in proportion to the angle between the robot heading and the vectorconnecting the current robot and goal locations. The immediate reinforcementvalue is the sum of these two components and the payo� function is de�nedas the sum of immediate reinforcements the robot receives until it reaches thegoal, i.e., R =Pt rt.In any mobile robot control, determining the robot position is one of thecrucial issue. In the presented learning system the robot position has been usedin two ways. First to decode the relative distance between the robot and thegoal (section 3) and second to provide a part of the reinforce function fromwhich the robot learns. From the two, the latter one is more sensitive to theinaccuracy of robot position. Because it leads to inconsistent reinforce functionthat makes learning di�cult or even impossibley. In this work, dead reckoningmethod has been used to obtain the robot position, pr(t). However, to get asatisfactory reading, we have exploited the crucial property of the robots' deadreckoning system. Dead reckoning system performs satisfactory provided thatthe robot does not move for prolonged periods of time with out reaching thegoal. This characteristic puts directly a limit on how far and how hidden thegoal should be placed from the robot.yNoting this, Mill�an [7] has eliminated the dependence of the reinforcement value on theodometry reading by building other types of sensors that are capable of detecting the goaldirectly.



3 EmbeddingThe input x=[s,d] to the controller is a vector of 32 elements, each between[0; 1]. The �rst 24 elements are normalized depth readings of the sonar sensorsz,while the remaining eight inputs are codi�ed distance between the robot andthe goal. In the work of [6], where sensor values are made independent of therobot heading, the input to the controller turns out to be a function of therobot position (if sensors noise is neglected), i.e., x = [s(pr(t));d(pr(t);pg)].In this case, key states that require di�erent actions are easily split.For most platforms, however, the sensors can not be aligned independentlyof the base. Consequently, the perceived sensory data would be di�erent ev-ery time the robot visits a given location at di�erent headings, i.e., x =[s(pr(t); �r(t));d(pr(t);pg)]. This results in huge states which the adaptivestate space constructor could not cope with identifying and splitting key statesquickly. In order to overcome this problem, we have embedded environmentknowledge [3] [8] into the learning architecture. The environment in which therobot operates is �rst partitioned into four regions that are considered to be thesame for the purpose of learning and generating actions. These are: a concaveregion that misleads and fold the robot path, a door region through which therobot has to carefully pass, a corridor where the goal is located, and a vastspace inside the room from where the robot starts o�. These partitions togetherwith their corresponding metric data are supplied to the controller as built-inknowledge. From the metric data and the robot position pr(t), disjointed ruleshave been written to single out a particular partition where the robot is found.This early splitting of the state space based on prior environment knowledgecan be viewed as one way of giving leverage to the adaptive state space con-structor so that during the course of learning it can construct appropriate statesfor each partitions.Apart from environment knowledge, two fuzzy behaviors [9] obstacle avoid-ance and goal following are used as reex that enable the controller to actinitially in some reasonable way. The reex delivers the next robot heading�, whenever it is requested. The fuzzy reex works as follows. First, therange of possible robot heading has been fuzzi�ed into three fuzzy sets: left,straight and, right. The obstacle avoidance behavior receives the range dataof the sonars and outputs a vector �a - whose elements indicate the activationlevels of the above fuzzy sets. Likewise, the goal following behavior inputsthe acute angle � between the robot heading and the vector connecting thecurrent robot and goal locations and outputs a similar vector �g. A simplebehavior blender with constant desirability functions da and dg (dg � da) isused to combine the output of the two behaviors, i.e., �f = dg�g + da�a.Subsequently, a defuzzi�er decodes the fused vector �f to a crisp value � usingcentroid technique.zSince IRs are short range (� 0:3m) proximity sensors, they are used here in emergencyroutine only.



4 ControllerThe architecture of the controller is an actor critic type that is proposed by [6].In most actor critic systems, two networks are adapted over time - an actionand a critic network. In the proposed architecture, however, these networksare integrated into one network. Besides, unlike the former ones where thetraining rules adjust certain weights of the action or critic networks, the latterone adapts directly the critic and action values. The controller consists of agradually growing RBF neurons in the input layer and a stochastic neuron inthe output layer. Whenever a new situation is perceived, the controller uses thebuilt in knowledge to associate the situation to one of the partitions discussedin section 3. Within the partition existing neurons (if any) compete to win thesituation. If a winning neuron exists, it will be connected to the output layerto generate action. Action is generated by exploring a restricted area arounda prototypical action. To enforce exploration a Gaussian stochastic unit withparameters (�; �) is introduced at the output layer [2]. The extent of theexploration is determined by the critic (utility) value uj and the temperaturefactor T (n), i.e., � = T (n)f(u). At the end of every trial the temperature iscooled down so that the stochastic unit produces a progressively deterministicoutput [1].The adaptive state construction algorithm introduces a new neuron into theselected subspace when existing neurons can not generalize the current situationor if a selected neuron has performed poorly for the previous situation. When anew neuron is created four learning parameters (pj; uj; wj and, cj) are attachedto it [6]. Each of the parameters are adapted by di�erent adaptation algorithmand error sources. The utility value of the winning neuron uj(t) is updatedby temporal di�erence (TD) method [10]. Williams' REINFORCE algorithm[11] is employed to adapt the weight wj. Depending on the performance ofthe winning neuron, its center position cj is either shifted toward the previoussensation or left untouched. The prototypical action pj is overridden by a moreaccurate learned action when the robot reaches the goal through a trajectorywhose total payo� is greater than the maximum payo� so far obtained.5 Experimental resultsFigure 1 depicts the trajectories of the robot in the �rst and the last trialsand �gure 2 shows the learning curves of the controller against the number oftrials. Ten sets of experiments, each consisting of 20 trials were carried out.The vertical error bars in �gure 2 indicate the variations of the learning curves.During the �rst few trials, the robot has taken many steps, �gure 2 top-right,to reach the goal, there by incurring a high payo� �gure 2 bottom-left, and thenumber of neurons added to the network has grown sharply �gure 2 top-left.As trials goes on, however, the robot has started to unfold its path and neuronsare added to the network at a reduced slope than earlier trials. On the sixthtrial and afterwards the robot has straighten its path, except at the eighth trial



where the robot left the optimumpath in search for a better one. In subsequenttrials, however, the robot has returned to its previous performance and followedthe same path without signi�cant divergence through out the remaining trial.A similar phenomena is also observed in the work of [6].Comparing the �nal network performance, �gure 2 bottom-right, with thatof [6] the following observation can be made. First, since neurons are not sharedacross partitions, the total number of neurons in this small environment is al-most equal to that obtained in the large environment of [6]. Second, due tosensory alignment scheme of [6], the network size has already ceased to growduring the last few trials and hence, the variances of the �nal network perfor-mance are smaller than the one reported here. To obtain a similar performanceon B21, we are emulating the turret motor in our subsequent work. Instead ofusing the sensory sequence that point in the direction of the robot heading, thecontroller can mentally rotate (in the reverse direction of the base rotation) thesensors in such a way that the new sensory sequence points always towards thegoal.
(a) (b)Figure 1: Trajectories of the robot during the �rst (a) and �nal (b) trials. Therobot has learned 1) to skip the concave region that causes the robot to foldits path, 2) to pass in the middle of the door, and 3) to head directly to thegoal after it has passed the door.6 ConclusionsTwo kinds of built-in knowledge have been used to support RL on B21 robot.The �rst one is a priori environment knowledge to pre-structure the state spacerapidly. Whereas the second one is two fuzzy behaviors combined with �xeddesirability values to focus exploration. Experimental results have shown that



0102030405060708090 0 5 10 15 20#ofneurons trials33333333333333333333 01020304050 0 5 10 15 20#ofsteps trials
33333333333333333333

-30-25-20-15-10-50 0 5 10 15 20reinforcements trials33333333333333333333 Quantities Mean Variance# neurons 82.5 4.7286# of steps 27.7 1.9000R =Pi ri -6.24 0.8752Figure 2: Learning curves of the robot. Top-Left: The size of the network vs.the number of trials. Top-Right: Number of actions the robot has required ateach trial to reach the goal. Bottom-Left: The total reinforcement (penalty) therobot has incurred at each trial. Bottom-right: The �nal network performance.the robot has indeed learned to unfold its path and to consistently follow atrajectory that has a minimum payo� value.



7 AcknowledgmentWe would like to extend our thanks to J. R. Mill�an for a useful discussionon TESEO's architecture that helped us greatly in this work. The supportgiven to the �rst author by DAAD under grant code 413/ETH-4-BOA is alsoacknowledged.References[1] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning toact using real time dynamic programming.Arti�cial Intelligence, 72(1):81{138, 1995.[2] Vijaykumar Gullapalli. A stochastic reinforcement learning algorithm forlearning real valued function. Neural Networks, 3:671{692, 1990.[3] Leslie P. Kaelbling. Learning in Embedded Systems. The MIT Press,Cambridge, 1993.[4] Sridhar Mahadevan and Jonathan Connell. Automatic programming ofbehavior-based robots using reinforcement learning. Arti�cial Intelligence,55:311{365, 1992.[5] Maja J. Mat�aric. Reward functions for accelerated learning. In Proceedingsof the Eleventh International Conference on Machine Learining, 1994.[6] Jos�e R. Mill�an. Rapid, safe and incremental learning of navigation strata-gies. IEEE Transactions on Systems, Man, and Cybernetics, 26(3):408{420, 1996.[7] Jos�e R. Mill�an. Incremental acquisition of local networks for the control ofautonomous robots. In 7th International Conference on Arti�cial NeuralNetworks, pages 739{744, Lausanne, Switzerland, 1997.[8] Ulrich Nehmzow, Tim Smithers, and John Hallam. Steps towards intelli-gent robots. Technical Report 502, Universty of Edinburgh, 1990.[9] D. W. Payton, J. K. Rosenblatt, and D. M. Keirsey. Plan guided reaction.IEEE Transaction on Systems, Man, and Cybernetics, 20(6):1370{1382,1990.[10] Richard S. Sutton. Learning to predict by the methods of temporal di�er-ences. Machine Learning, 3(1):9{44, 1988.[11] Ronald J. Williams. Simple statistical gradient-following algorithms forconnectionist reinforcement learning. Machine Learning, 8:229{256, 1992.


