Appeared in:
International Conference on Artificial Neural Network,
pages 1133-1138, Skovde, Sweden, September 2-4, 1998.

Embedding Knowledge in
Reinforcement Learning

G. Hailu, G. Sommer

Christian Albrechts University, Department of Cognitive Systems
Preusserstrasse 1-9, D-24105 Kiel, Germany
gha@informatik.uni-kiel.de

Abstract. In almost all real systems where reinforcement learning is ap-
plied, it 1s found that a knowledge free approach doesn’t work. The basic RL
algorithms must sufficiently be biased to achieve a satisfactory performance
within a bounded time. This bias takes different forms. In this paper, in ad-
dition to reflex rules [6], environment (domain) knowledge is embedded into
the learner. Environment knowledge gives leverage to the adaptive state space
construction algorithm by splitting key states quickly. The learner is tested on
a B21 robot for a goal reaching task. Experimental results show that after few
trials the robot has indeed learned the right situation action rules that unfold
its path.

1 Introduction

For more than a decade reinforcement learning (RL) has been studied exten-
sively and its properties are well understood. One of its nice property is that it
allows agents to be programmed by reward and punishment, without the need
to specify how the task is achieved. Unfortunately, it has an inherent problem
- its learning time increases exponentially with the size of the state space. Con-
sequently, RL has remained difficult to implement in realistic domains that are
characterized by large state and action spaces - typically robot domains. Yet,
despite this inherent problem, there is still a surge of interest in putting RL
onto a real robot.

Researchers have tried to overcome the inability of RL to scale well to
learning tasks with large state and action spaces. Mahadevan et al. [4] have
decomposed the task into sets of simple sub-tasks each with its own prewired
applicability predicate. Matarié¢ [5] has minimized the state space by trans-
forming state-action pairs to condition-behavior pairs and maximized learning
by designing reward rich heterogeneous reinforcement. Recently, Millan [6] has
tremendously accelerated RL by integrating it with reflex rules that focus ex-
ploration where it is mostly needed. The common characteristic of the above
examples is that the basic RL algorithm has been endowed with some built-in

knowledge. In each case, however, the built-in knowledge has different forms
and is used for different purposes: in [4] to break down and to arbiter tasks,
in[5] to design rich reward, and in [6] to focus exploration.

This paper is concerned with using environment knowledge to pre-structure
the state space. There is a conflict between the required number of states and
the actual states constructed by the adaptive state space construction algorithm
[6]. This is not because of the algorithm, but because of the particular plat-
form we are working with. To resolve this conflict, the controller is shaped to
accommodate implicit environment knowledge that enables the algorithm to
construct appropriate state space during the course of learning.

2 The robot task

The B21 robot from RWI has been used as our experimental platform. The
robot is a four-wheeled cylindrical synchro-drive with two parts: a base and an
enclosure. The base carries 32 infra-red (IR) and 32 tactile sensors. Whereas
the enclosure carries 24 tactile, 24 IR, and 24 sonar sensors.

The task of the robot is to reach a specified goal p, through a (sub)-optimal
path. Optimality is defined on a certain payoff function. For every action
the robot has chosen, it receives an immediate reinforcement r; that has two
components. The first component penalizes the robot when it either collides
with or approaches an obstacle. Whereas the second component penalizes the
robot in proportion to the angle between the robot heading and the vector
connecting the current robot and goal locations. The immediate reinforcement
value is the sum of these two components and the payoff function is defined
as the sum of immediate reinforcements the robot receives until it reaches the
goal ie, R=>,r.

In any mobile robot control, determining the robot position is one of the
crucial issue. In the presented learning system the robot position has been used
in two ways. First to decode the relative distance between the robot and the
goal (section 3) and second to provide a part of the reinforce function from
which the robot learns. From the two, the latter one is more sensitive to the
inaccuracy of robot position. Because it leads to inconsistent reinforce function
that makes learning difficult or even impossiblef. In this work, dead reckoning
method has been used to obtain the robot position, p, (t). However, to get a
satisfactory reading, we have exploited the crucial property of the robots’ dead
reckoning system. Dead reckoning system performs satisfactory provided that
the robot does not move for prolonged periods of time with out reaching the
goal. This characteristic puts directly a limit on how far and how hidden the
goal should be placed from the robot.

tNoting this, Milldn [7] has eliminated the dependence of the reinforcement value on the
odometry reading by building other types of sensors that are capable of detecting the goal
directly.

3 Embedding

The input @#=[s,d] to the controller is a vector of 32 elements, each between
[0,1]. The first 24 elements are normalized depth readings of the sonar sensors?,
while the remaining eight inputs are codified distance between the robot and
the goal. In the work of [6], where sensor values are made independent of the
robot heading, the input to the controller turns out to be a function of the
robot position (if sensors noise is neglected), i.e., ® = [s(p,(t)), d(p, (1), p,)]-
In this case, key states that require different actions are easily split.

For most platforms, however, the sensors can not be aligned independently
of the base. Consequently, the perceived sensory data would be different ev-
ery time the robot visits a given location at different headings, i.e., # =
[s(p,(t),0-(t)),d(p,(t),p,)]. This results in huge states which the adaptive
state space constructor could not cope with identifying and splitting key states
quickly. In order to overcome this problem, we have embedded environment
knowledge [3] [8] into the learning architecture. The environment in which the
robot operates is first partitioned into four regions that are considered to be the
same for the purpose of learning and generating actions. These are: a concave
region that misleads and fold the robot path, a door region through which the
robot has to carefully pass, a corridor where the goal is located, and a vast
space inside the room from where the robot starts off. These partitions together
with their corresponding metric data are supplied to the controller as built-in
knowledge. From the metric data and the robot position p,(t), disjointed rules
have been written to single out a particular partition where the robot is found.
This early splitting of the state space based on prior environment knowledge
can be viewed as one way of giving leverage to the adaptive state space con-
structor so that during the course of learning it can construct appropriate states
for each partitions.

Apart from environment knowledge, two fuzzy behaviors [9] obstacle avoid-
ance and goal following are used as reflex that enable the controller to act
initially in some reasonable way. The reflex delivers the next robot heading
a, whenever it 1s requested. The fuzzy reflex works as follows. First, the
range of possible robot heading has been fuzzified into three fuzzy sets: left,
straight and, right. The obstacle avoidance behavior receives the range data
of the sonars and outputs a vector a, - whose elements indicate the activation
levels of the above fuzzy sets. Likewise, the goal following behavior inputs
the acute angle § between the robot heading and the vector connecting the
current robot and goal locations and outputs a similar vector a,. A simple
behavior blender with constant desirability functions d, and dy (dg < dq) is
used to combine the output of the two behaviors, ie., ay = dgoy + dyaug.
Subsequently, a defuzzifier decodes the fused vector arf to a crisp value « using
centroid technique.

Since IRs are short range (~ 0.3m) proximity sensors, they are used here in emergency
routine only.

4 Controller

The architecture of the controller is an actor critic type that is proposed by [6].
In most actor critic systems, two networks are adapted over time - an action
and a critic network. In the proposed architecture, however, these networks
are integrated into one network. Besides, unlike the former ones where the
training rules adjust certain weights of the action or critic networks, the latter
one adapts directly the critic and action values. The controller consists of a
gradually growing RBF neurons in the input layer and a stochastic neuron in
the output layer. Whenever a new situation is perceived, the controller uses the
built in knowledge to associate the situation to one of the partitions discussed
in section 3. Within the partition existing neurons (if any) compete to win the
situation. If a winning neuron exists, it will be connected to the output layer
to generate action. Action is generated by exploring a restricted area around
a prototypical action. To enforce exploration a Gaussian stochastic unit with
parameters (u, o) is introduced at the output layer [2]. The extent of the
exploration is determined by the critic (utility) value u; and the temperature
factor T'(n), i.e., ¢ = T'(n)f(u). At the end of every trial the temperature is
cooled down so that the stochastic unit produces a progressively deterministic
output [1].

The adaptive state construction algorithm introduces a new neuron into the
selected subspace when existing neurons can not generalize the current situation
or if a selected neuron has performed poorly for the previous situation. When a
new neuron is created four learning parameters (p;, u;, w; and, ¢;) are attached
to it [6]. Each of the parameters are adapted by different adaptation algorithm
and error sources. The utility value of the winning neuron w;(#) is updated
by temporal difference (TD) method [10]. Williams” REINFORCE algorithm
[11] is employed to adapt the weight w;. Depending on the performance of
the winning neuron, its center position ¢; is either shifted toward the previous
sensation or left untouched. The prototypical action p; is overridden by a more
accurate learned action when the robot reaches the goal through a trajectory
whose total payoff is greater than the maximum payoff so far obtained.

5 Experimental results

Figure 1 depicts the trajectories of the robot in the first and the last trials
and figure 2 shows the learning curves of the controller against the number of
trials. Ten sets of experiments, each consisting of 20 trials were carried out.
The vertical error bars in figure 2 indicate the variations of the learning curves.
During the first few trials, the robot has taken many steps, figure 2 top-right,
to reach the goal, there by incurring a high payoff figure 2 bottom-left, and the
number of neurons added to the network has grown sharply figure 2 top-left.
As trials goes on, however, the robot has started to unfold its path and neurons
are added to the network at a reduced slope than earlier trials. On the sixth
trial and afterwards the robot has straighten its path, except at the eighth trial

where the robot left the optimum path in search for a better one. In subsequent
trials, however, the robot has returned to its previous performance and followed
the same path without significant divergence through out the remaining trial.
A similar phenomena is also observed in the work of [6].

Comparing the final network performance, figure 2 bottom-right, with that
of [6] the following observation can be made. First, since neurons are not shared
across partitions, the total number of neurons in this small environment 1s al-
most equal to that obtained in the large environment of [6]. Second, due to
sensory alignment scheme of [6], the network size has already ceased to grow
during the last few trials and hence, the variances of the final network perfor-
mance are smaller than the one reported here. To obtain a similar performance
on B21, we are emulating the turret motor in our subsequent work. Instead of
using the sensory sequence that point in the direction of the robot heading, the
controller can mentally rotate (in the reverse direction of the base rotation) the
sensors in such a way that the new sensory sequence points always towards the
goal.

/,,-—»4""@

'y

6—»—»—»—»—»—»—»-»_,.,»_7—-»—?—'

=

Figure 1: Trajectories of the robot during the first (a) and final (b) trials. The
robot has learned 1) to skip the concave region that causes the robot to fold
its path, 2) to pass in the middle of the door, and 3) to head directly to the
goal after it has passed the door.

6 Conclusions

Two kinds of built-in knowledge have been used to support RL on B21 robot.
The first one is a prior: environment knowledge to pre-structure the state space
rapidly. Whereas the second one is two fuzzy behaviors combined with fixed
desirability values to focus exploration. Experimental results have shown that

of neurons
of steps

10 -
0 1 1 1 1 0 1 1 1 1
0 5 10 15 20 0 5 10 15 20
trials trials
0 T T T T
2 Quantities || Mean | Variance
g 7t neurons 82.5 4.7286
(0]
g 7t of steps 27.9 1.9000
= R=75%",r || -6.24 0.8752
(0]

trials

Figure 2: Learning curves of the robot. Top-Left: The size of the network vs.
the number of trials. Top-Right: Number of actions the robot has required at
each trial to reach the goal. Bottom-Left: The total reinforcement (penalty) the
robot has incurred at each trial. Bottom-right: The final network performance.

the robot has indeed learned to unfold its path and to consistently follow a

trajectory that has a minimum payoff value.

7

Acknowledgment

We would like to extend our thanks to J. R. Millan for a useful discussion
on TESEO’s architecture that helped us greatly in this work. The support
given to the first author by DAAD under grant code 413/ETH-4-BOA is also
acknowledged.

References

(1]

[10]

[11]

Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to
act using real time dynamic programming. Artificial Intelligence, 72(1):81—

138, 1995.

Vijaykumar Gullapalli. A stochastic reinforcement learning algorithm for
learning real valued function. Neural Networks, 3:671-692, 1990.

Leslie P. Kaelbling. Learning in Embedded Systems. The MIT Press,
Cambridge, 1993.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of
behavior-based robots using reinforcement learning. Artificial Intelligence,

55:311-365, 1992.

Maja J. Mataric. Reward functions for accelerated learning. In Proceedings
of the Eleventh International Conference on Machine Learining, 1994.

José R. Millan. Rapid, safe and incremental learning of navigation strata-
gies. IEEE Transactions on Systems, Man, and Cybernetics, 26(3):408—
420, 1996.

José R. Millan. Incremental acquisition of local networks for the control of
autonomous robots. In 7th International Conference on Artificial Neural
Networks, pages 739-744, Lausanne, Switzerland, 1997.

Ulrich Nehmzow, Tim Smithers, and John Hallam. Steps towards intelli-
gent robots. Technical Report 502, Universty of Edinburgh, 1990.

D. W. Payton, J. K. Rosenblatt, and D. M. Keirsey. Plan guided reaction.
IEEE Transaction on Systems, Man, and Cybernetics, 20(6):1370-1382,
1990.

Richard S. Sutton. Learning to predict by the methods of temporal differ-
ences. Machine Learning, 3(1):9-44, 1988.

Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229-256, 1992.

