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21.1 Introduction

The motion estimation of a moving object in front of an observer is fun-
damental for various tasks in visual robotics like tracking, object collision
avoidance, surveillance and visual navigation.

The issue we are here interested in is the estimation of the rigid motion
of an object in observer frame or equivalently, the motion of an observer in a
world frame. Fig. 21.1 gives a more detailed illustration. The 3-D coordinate
frame A is supposed as observer frame, the coordinate frame B is fixed on a
moving rigid body. The position and orientation of the rigid body in frame
A are sampled by the observer at discrete time ti, i = 0, 1, · · · . At time t0,
frame A and frame B are duplicate. At time ti, frame B goes to Bi, and an
observed feature L on the surface of the rigid body goes to Li with respect
to frame A. We use state vector Xi to describe the position and orientation
of the coordinate frame Bi relative to the frame A. Xi satisfies the dynamic
model (which is also known as the plant model)
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Graduiertenkolleg No. 357.
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Xi = Φi/i−1(X i−1, W i), (21.1)

where W i is independent normally distributed noise with zero mean and
known statistics. We will assume that the measurement of the feature Li is
also corrupted by independent normally distributed noise V i, which is also
zero mean and with known statistics, and it is uncorrelated with W i. The
real observed measurement Li is expressed as

Li = L′

i + V i. (21.2)

where L′

i are the accurate data. The relationship between the measurements
and the state is given by the measurement model as

f(L0, Li, Xi, V 0, V i) = 0. (21.3)
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Fig. 21.1. Coordinate frames for observation of rigid motions

In such a noisy scenario we urgently require a method able to estimate a
“best” state variable vector X̂i.

The basic 3-D geometric primitives of the visual space for the motion
registration are points (corners) or lines (edges). These local features are
sensitive to noise and quantization errors which jeopardize to some extent
the motion estimation. Alternatively the use of global features such as planes
or surfaces makes the motion estimation process more robust, however with
higher computational complexity.
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In the literature we distinguish basically two main groups of estimation
methods: batch and sequential processing.

The batch approaches include SVD and the analytical solutions by mini-
mization techniques in terms of least square error. They use all the features’
measurements observed at time ti and tj to estimate the optimal motion pa-
rameters Xj/i (so called two-view motion parameters) [123] [8] [201]. These
batch methods do not use a priori information given by (21.1).

The sequential processing scheme is also called Kalman filtering [126]
[170] [225]. The state X i is estimated from the current predicted a priori
state (using (21.1)) and the current measurements. The Kalman filter is a
recursive algorithm: the new solution is based on the new measurements and
the old solution. If the model equations (21.1) and (21.3) are nonlinear, the
extended Kalman filter (EKF) can be used. In computer vision the measure-
ment models are usually nonlinear. For applying the extended Kalman filter,
such nonlinear models must be linearized about the current observations and
current predicted state.

Former research shows that when we use both the batch and EKF algo-
rithms to estimate the motion parameters with the same given measurements,
the later gains better estimates [247].This results from the use of additional a
priori information of the dynamic model (21.1) in case of Kalman filter pro-
cessing. In other words, Kalman filtering is the best solution to our problem
stated above.

The application of the Kalman filter as a recursive minimum variance es-
timator has become popular since the sixties. In order to estimate dynamic
motion parameters, authors used the Kalman filter together with different
types of state variable representations. For instance, Bar-Itzhack et al. used
point sets for the quaternion EKF to estimate dynamic rotation [13] and
Zhang and Faugeras used line segments with their midpoints to estimate all
dynamic motion parameters with a standard EKF [247]. Recently Azarbaye-
jani and Pentland [11] applied the EKF for estimation of motion and structure
using relative orientation constraints in terms of quaternions. These meth-
ods are all based on point measurements (a line segment is defined by its
midpoint and direction). We have not yet seen a method using straight line
measurements.

With recently developed Hough transformation techniques [149], [186] one
can extract a 2-D straight line from the image of the object boundary and
then reconstruct a 3-D straight line by calibrated images. The coordinates
of 3-D reconstructed straight lines are more reliable than 3-D reconstructed
points. This motivated us to develop a Kalman filter from straight lines ob-
servations.

In this paper, we present the development of a novel EKF in the geometric
algebra framework. The key for the filter design is that the measurement
model of straight lines is established in the geometric algebra G+

3,0,1 called
motor algebra, which is of the homogeneously extended Euclidean space E3.
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This aims at the useful property that the nonlinear motion model of a straight
line in space E3 can be written linearly in motor algebra. The modeling of
the problem at hand in algebra G+

3,0,1 corresponds to the implicit assumption
of a line geometry. That means that lines are the basic primitive entities
(instead of points in E3) and the known approaches of Kalman filter can be
used in this algebraic framework. The real experiments show that the motor
extended Kalman filter (MEKF) is indeed an attractive estimation approach.
Compared with a batch method, the MEKF gives more accurate results in
the dynamic motion estimation problem.

This paper is organized as follows. Section 21.2 reviews the basic knowl-
edge of Kalman filter techniques. Section 21.3 represents the 3-D line motion
model in geometric algebra G+

3,0,1 and gives an outline of the geometric al-
gebra of rotors and motors. In section 21.4 we present the motor extended
Kalman filter algorithm. Section 21.5 provides the experimental results of our
MEKF, and finally, the conclusions are presented in section 21.6.

21.2 Kalman Filter Techniques

We will review in this section the principal equations for both the Kalman
filter and the extended Kalman filter [126], [170] in order to introduce the
necessary notations for the following sections.

21.2.1 The Kalman Filter

Consider a dynamical system whose state is described by a linear, vector
difference equation. The system dynamic model is given by

Xi = Φi/i−1Xi + W i. (21.4)

The state of the system at ti is given by the n-dimensional vector X i. Φi/i−1

is an n×n matrix and W i is a vector random sequence with known statistics

E[W i] = 0, i = 0, 1, ... (21.5)

E[W iW
T
j ] = Qiδij (21.6)

where δij is the Kronecker delta function. The matrix Qi is assumed to be
nonnegative-definite.

Suppose that at each time ti there is available an m-dimensional vector of
measurement Zi that is linearly related to the state and which is corrupted
by additive noise V i.

Zi = HiXi + V i (21.7)

Hi is a known m × n observation matrix. The vector V i is an additive,
random sequence with known statistics
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E[V i] = 0, i = 0, 1, ... (21.8)

E[V iV
T
j ] = Ciδij . (21.9)

The matrix Ci is assumed to be nonnegative-definite.
Further, assume that the random processes W i and V i are mutually

uncorrelated. These processes will also be called white noise sequence. That
means

E[W iV
T
j ] = O i = 0, 1, ... (21.10)

matrix O is null matrix.
Given the preceding models ((21.4) and (21.7)), we shall determine an

estimate X̂i of the state at ti that is a linear combination of an estimate
X̂i−1 at ti−1 and the measurement data Zi at ti. By defining an unknown
gain matrix Ki (n × m), the estimate X̂i is given by

X̂i = Φi/i−1X̂i−1 + Ki[Zi − HiΦi/i−1X̂i−1] (21.11)

The matrix Ki shall be determined so that the estimate must be “best” in
the sense that the expected value of the sum of the squares of the error in
the estimate is a minimum. That is, the X̂i is to be chosen so that

Emin = Min{E[(X̂i − Xi)
T (X̂i − X i)]}. (21.12)

Equation (21.12) is equivalent to minimization of the trace of state error
covariance matrix P i

Emin = Min{tracePi} = Min{traceE[(X̂i − Xi)(X̂ i − Xi)
T ]}.

(21.13)

By substituting (21.7) into (21.11), and then substituting (21.11) and (21.4)
into (21.13), we can see that the trace of matrix P i will be minimized by
choosing the optimal gain matrix Ki such as

Ki = Pi/i−1H
T
i (HiPi/i−1H

T
i + Ci)

−1, (21.14)

where P i/i−1 is called predicted state error covariance matrix

Pi/i−1 = Φi/i−1PiΦ
T
i/i−1 + Qi, (21.15)

which is the error covariance matrix of the predicted state X̂i/i−1

X̂i/i−1 = Φi/i−1X̂i. (21.16)

With this optimal gain matrix Ki, the matrix P i reduces to

Pi = Pi/i−1 − KiHiPi/i−1. (21.17)

Equations (21.11), (21.15), (21.14) and (21.17) constitute the Kalman fil-
ter for the model of the system (21.4) and that of the measurement (21.7),
respectively.
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Looking at (21.14), we see that as the measurement error covariance ma-
trix Ci approaches zero, the gain matrix Ki weights the residual more heavily.
Specifically,

lim
Ci→O

Ki = H−1

i . (21.18)

On the other hand, as the estimated state error covariance P i approaches
zero, the gain Ki weights the residual less heavily. Specifically,

lim
P i→O

Ki = O. (21.19)

Another way of thinking about the weighting by Ki is that as the measure-
ment error covariance matrix Ci approaches zero, the actual measurement Zi

is ”trusted” more and more, while the predicted state Φi/i−1X̂i is trusted
less and less. On the other hand, as the estimated state error covariance P i

approaches zero the actual measurement Z i is trusted less and less, while the
predicted state Φi/i−1X̂i (the dynamic model) is trusted more and more.

21.2.2 The Extended Kalman Filter

As described in section 21.2.1, the Kalman filter addresses the general prob-
lem of trying to estimate the state X i of a discrete-time controlled process
that is governed by a linear stochastic difference equation. But what hap-
pens if the process and (or) the relation between the measurement and the
state is non-linear? Some of the most interesting and successful applications
of Kalman filtering are concerned with such situations. A Kalman filter that
linearizes about the current predicated state X̂i/i−1 and measurement Zi is
referred to as an extended Kalman filter or EKF.

In computer vision the measurement model is usually found to be de-
scribed by a nonlinear observation equation f i(Z0,i, Xi) = 0. The parameter
Z0,i is the accurate measurement. In practice, such measurement is affected
by random errors. We assume that the measurement system is disturbed by
additive white noise, i.e., the real observed measurement Z i is expressed as

Zi = Z0,i + V i, (21.20)

the statistics of noise V i are given by (21.8) and (21.9).
For applying the Kalman filter technique, we must expand the nonlinear

observation equation into a first order Taylor series about (Z i, X̂i/i−1)

f i(Z0,i, Xi) = f i(Zi, X̂i/i−1) +

+
∂f i(Zi, X̂i/i−1)

∂Z0,i
(Z0,i − Zi) +

+
∂f i(Zi, X̂i/i−1)

∂Xi
(X i − X̂i/i−1) + R2 = 0. (21.21)
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By ignoring the second order term R2, the linearized measurement equation
(21.21) becomes

Y i = HiXi + N i, (21.22)

where Y i is the new measurement vector, N i is the noise vector of the new
measurement, and Hi is the linearized transformation matrix. The compo-
nents of the equation (21.22) are given by

Y i = −f i(Zi, X̂i/i−1) +
∂f i(Zi, X̂i/i−1)

∂Xi
X̂ i/i−1,

Hi =
∂f i(Zi, X̂i/i−1)

∂Xi
,

N i =
∂f i(Zi, X̂i/i−1)

∂Z0,i
(Z0,i − Zi),

E[N i] = 0,

E[N iN
T
i ] = Ci/i−1

=
∂f i(Zi, X̂i/i−1)

∂Z0,i
Ci

∂f i(Zi, X̂i/i−1)

∂Z0,i

T

,

where Ci is given by the statistics of measurement (21.9). This linearized
equation (21.22) is a general form for a nonlinear model. We will use this
form for our particular nonlinear measurement model later in section 21.4.

21.3 3-D Line Motion Model

A line is one of the basic rigid geometric entities. In Euclidean space E3, the
operation of the line rigid motion is nonlinear. Whereas using the 4-D geo-
metric algebra G+

3,0,1, also called motor algebra, the transformation becomes
linear. In this section we first introduce the structure of the geometric algebra
G+

3,0,1, and then give the Plücker line model and its motion model in G+

3,0,1.

21.3.1 Geometric Algebra G+
3,0,1 and Plücker Line Model

Given a homogeneous extension of the Euclidean space E3 by an orthonormal
set of vectors γ1, γ2, γ3, γ4, which in geometric algebra G+

3,0,1 satisfy:

γ2
i = 1 for i = 1, 2, 3, (21.23)

γ2
4 = 0, (21.24)

γiγj = −γjγi for i 6= j. (21.25)

The basis of the linear space spanned by G+

3,0,1 is composed by one scalar, six
bivectors, and one pseudoscalar, that means the basis B

G
+

3,0,1
is
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B
G

+

3,0,1
= {1, γ2γ3, γ3γ1, γ1γ2, γ4γ1, γ4γ2, γ4γ3, I = γ1γ2γ3γ4}, (21.26)

with I2 = 0.
A multivector A ∈ G+

3,0,1,

A = a0 + a1γ2γ3 + a2γ3γ1 + a3γ1γ2 +

+I(a′
0 + a′

1γ2γ3 + a′
2γ3γ1 + a′

3γ1γ2), (21.27)

can be also expressed in a condensed dual form

A = B + IB′, (21.28)

where B and B′ are equivalent to quaternions.
A line L with Plücker coordinates in G+

3,0,1 can be represented as

L = n + Im, (21.29)

where n and m are bivectors,

n = n1γ2γ3 + n2γ3γ1 + n3γ1γ2 (21.30)

m = m1γ2γ3 + m2γ3γ1 + m3γ1γ2. (21.31)

Here n is the direction of the line and m is its moment. Any point p on the
line,

p = p1γ2γ3 + p2γ3γ1 + p3γ1γ2, (21.32)

satisfies

m = p∧n. (21.33)

If n is the normal direction of the line, then the norm of the moment
calculated by (21.33) is the distance from the origin to the line (see Fig.
21.2).

L

O

γγ 2

||m||

γ 3γ 1

p

n,  ||n|| = 1γ γ2 3

1

m

Fig. 21.2. Plücker coordinates of a line
�
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21.3.2 Plücker Line Motion Model in G+
3,0,1

In general, rigid motion consists of rotation and translation. The rotation is
defined by both its rotation axis and rotation angle. A certain rigid motion has
a unique rotation angle and a unique rotation axis direction, but the rotation
axis can be placed anywhere in a 3-D coordinate system, the corresponding
translation is then dependent on the position of the rotation axis. There are
two positions of rotation axis having particular meaning. One is the axis
passing through the origin of a reference coordinate system, the translation
is applied after rotation. The other is so called screw motion, the rotation
axis is in such a place that a rigid motion consists of rotation about this axis
in space through an angle of θ, followed by translation along the same axis by
an amount d. The screw motion plays a very important role in rigid motion
study [178]. In this section, we will discuss the features of motion of lines in
Plücker coordinates.

n
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γ3γ1

γ1γ2
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Fig. 21.3. The representation of pure rotation of a line

We first discuss the case of pure rotation as depicted in Fig. 21.3. The
line is rotated by an angle θ about an axis r̄ going through the origin O, r̄

is a unit bivector. We can use a unit rotor R to represent this rotation,
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R = r0 + r1γ2γ3 + r2γ3γ1 + r3γ1γ2

= r0 + r

= cos(θ/2) + sin(θ/2)r̄ (21.34)

R̃ = r0 − r1γ2γ3 − r2γ3γ1 − r3γ1γ2 = r0 − r, (21.35)

where R̃ is the inversion of R with the constraint

RR̃ = r2
0 − r · r = 1. (21.36)

L = n+Im and L′ = n′ +Im′ are line coordinates before and after motion.
p is a point on the line L, after motion it goes to p′. Then

L′ = n′ + Im′

= RnR̃ + I(RpR̃)∧(RnR̃)

= RnR̃ + IR(p∧n)R̃

= R(n + Im)R̃

= RLR̃, (21.37)

In the case of pure translation t, where t is the bivector,

t = t1γ2γ3 + t2γ3γ1 + t3γ1γ2,

the direction n of the line L remains unchanged. A point p on the line is
moving to p′ = p + t. The translated line L′ is given by

L′ = n′ + Im′

= n + I(p + t)∧n

= n + I(m + t∧n)

= n + I(m + (tn − nt)/2)

= (1 + I
t

2
)(n + Im)(1 − I

t

2
)

= TLT̃ (21.38)

With line rotation model (21.37) and translation model (21.38), the trans-
formation of a line (see Fig. 21.4) can be modeled by, e.g., applying a rotation
R followed by a translation T

L′ = TRLR̃T̃

= MLM̃ , (21.39)

where M is a motor ,

M = TR = (1 + I
t

2
)R = R + IR′ = r0 + r + I(r′0 + r′) (21.40)

M̃ = R̃T̃ = R̃(1 − I
t

2
) = R̃ + IR̃′ (21.41)

and
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Fig. 21.4. The representation of rigid motion of a line

MM̃ = (1 + I
t

2
)RR̃(1 − I

t

2
) = 1

= (R + IR′)(R̃ + IR̃′) = 1 + I(RR̃′ + R′R̃). (21.42)

Deduced from the dual part of (21.42) we then get the following constraint

RR̃′ + R′R̃ = 2(r0r
′
0 − r · r′) = 0. (21.43)

As we mentioned above, the motion can also be seen as a screw motion.
First let us consider a line L rotating about another straight line Ls =

r̄ + Itc ∧ r̄ by an angle θ, where the rotation axis Ls is in some general
position of a 3-D coordinate system and tc is pointing to an arbitrary point
on Ls. We call such a rotation as general rotation Rs. Rs can be seen as
a combined motion, represented by a translation −tc first, then a rotation
by rotor R, finally followed by translation tc. That means, we first translate
the rotation axis Ls to pass the origin of the 3-D coordinate system, after
that we perform a rotation and finally we translate this axis Ls back to its
original position:

Rs = (1 + Itc/2)(cos(θ/2) + sin(θ/2)r̄)(1 − Itc/2)

= cos(θ/2) + sin(θ/2)(r̄ + Itc∧r̄)

= cos(θ/2) + sin(θ/2)Ls. (21.44)

A line rotated in this way can be easily given by
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L′ = n′ + Im′

= RsLR̃s. (21.45)

n

L

θp’

L’

O

γ1γ2

γ2γ3

γ3γ1

n’

tc

ts

θ

p

L s

Fig. 21.5. The representation of screw motion of a line

Now, we can describe a screw motion easily. A screw motion is the com-
bination of a general rotation, represented by Rs and a translation ts which
is parallel to the line Ls, see Fig. 21.5. The screw motion equation is

L′ = T sRsLR̃sT̃ s

= MLM̃ . (21.46)

From the above discussion we see that using motor algebra, we can deal
with rigid motion easily and efficiently. For example, if we use matrix algebra
to describe a rigid motion, we must deal with 12 parameters, 9 for rotation
and 3 for translation, using 6 constraints. In motor algebra, on the other hand,
we only deal with 8 parameters and 2 constraints given by equations (21.36)
and (21.43), respectively. Furthermore, motor algebra is algebraically isomor-
phic to dual-quaternion algebra. In reference [87], J. Funda et al. compared
several methods of line-oriented representations of general spatial displace-
ments of rigid bodies and drew the conclusion that dual-quaternion algebra
is the best for the line transformations. As pointed out by D. Hestenes et
al. in chapter 1 , “the drawback of quaternions is that they are limited to
3-D applications, and even there they fail to make the important distinction
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between vectors and bivectors”. “It should be clear that geometric algebra
retains all of the advantages and none of the drawbacks of quaternions, while
extending the range of applications enormously”. Another important advan-
tage is that motors and rotors are both spinors. In spinor representation of
Euclidean transformation, the group of several transformations corresponds
to the geometric product of the spinors representing these transformations.
We will use (21.46) for the motion estimation which will be discussed in the
following section.

21.3.3 Interpretation of the Plücker Line Motion Model in Linear

Algebra

The Plücker line motion model presented in the last section is considered in
geometric algebra G+

3,0,1. Because the EKF algorithm is computed in linear

algebra, we should interpret the line motion model L′ = MLM̃ in the frame
of linear algebra. This can be done by remembering that G+

3,0,1 spans the 8-
dimensional linear space represented by (21.26), which is the union of a real
and a dual 4-dimensional subspace, respectively. In that space the lines are
the basic geometric entities and their mutual relations correspond to linear
transformations by rotors or motors. This is just as the rotation of points in
E3 can be linearly transformed using a rotation matrix R.

First let us see some basic conversions.
The multiplication of two rotors U and V in geometric algebra G+

3,0,1

reads

W = UV = (u0 + u)(v0 + v)

= u0v0 + u · v + u0v + v0u + u∧v. (21.47)

Multiplication of these two rotors in linear algebra is

W = URlV = VRrU , (21.48)

where U = (u0 u1 u2 u3)
T , V = (v0 v1 v2 v3)

T and

URl =

















u0 −u1 −u2 −u3

u1 u0 u3 −u2

u2 −u3 u0 u1

u3 u2 −u1 u0

















,

VRr =

















v0 −v1 −v2 −v3

v1 v0 −v3 v2

v2 v3 v0 −v1

v3 −v2 v1 v0

















.
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We call URl “left-multiplication matrix of motor U” and VRr “right-
multiplication matrix of motor V ”.

Multiplication of two motors S = U +IU ′ and T = V +IV ′ in geometric
algebra G+

3,0,1 results

Q = ST = (U + IU ′)(V + IV ′)

= UV + I(UV ′ + U ′V ). (21.49)

Here U , U ′, V and V ′ are all in the form of rotors. Multiplication of these
two motors in linear algebra is given by

Q = SMlT = T MrS, (21.50)

where

S = (u0 u1 u2 u3 u′
0 u′

1 u′
2 u′

3)
T ,

T = (v0 v1 v2 v3 v′0 v′1 v′2 v′3)
T ,

SMl =





URl 04×4

U ′

Rl URl



 ,

T Mr =





VRr 04×4

V ′

Rr VRr



 ,

We call SMl “left-multiplication matrix of motor S” and T Mr “right-
multiplication matrix of motor T ”.

To convert the Plücker line motion model (21.46) to linear algebra we can
handle the real and dual components n, m, n′ and m′ of the lines L and L′

as rotors with zero scalar. By right multiplication of both sides of equation
(21.46) by M we get

L′M − ML = 0. (21.51)

This results in the following linear motion equation

(L′

Ml − LMr)M = AMM = 0. (21.52)

The constraints of equations (21.36) and (21.43), respectively, now are

RT R = 1, (21.53)

RT R′ = 0, (21.54)

with R = (r0 r1 r2 r3)
T , R′ = (r′0 r′1 r′2 r′3)

T and M = R + IR′.
These properties will be used for the implementation of the MEKF algo-

rithm in the next section.
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21.4 The Motor Extended Kalman Filter

In this section, we will formulate the motor extended Kalman filter (MEKF)
algorithm . For applying Kalman filter techniques which were introduced in
section 21.2, we know that we must be given both a dynamic model and a
measurement model. We will first present the dynamic model using motor
as state, then linearize the measurement equation (21.52) to get a linearized
measurement equation, use (21.53) and (21.54) to modify the estimation to
construct a proper motor estimation and finally, we present the MEKF algo-
rithm.

21.4.1 Discrete Dynamic Model Using Motor State

Let us assume that we have a rigid object moving in 3-D space with ap-
proximately known trajectory. The object includes a number of lines (L1,
L2, ..., Ln, n ≥ 2), we use the notation L to represent any one of these lines.
The 3-D coordinates of these lines are sampled at a number of time instants
t0, t1, ..., tN . Suppose at time ti, the rigid motion parameters with respect
to time t0 are described by the motor M i, the relationship of the Plücker
coordinates of a line at time t0 (denoted as L0) and at time ti (Li) in G+

3,0,1

is

Li = M iL0M̃ i. (21.55)

The change of motion parameters from time ti−1 to ti is described by the
motor V i/i−1, that is

Li = V i/i−1Li−1Ṽ i/i−1. (21.56)

By substituting (21.55) into (21.56), we get

Li = V i/i−1M i−1L0M̃ i−1Ṽ i/i−1

= M iL0M̃ i. (21.57)

Then we get the ideal dynamic motion model

M i = V i/i−1M i−1. (21.58)

The motor V i/i−1 encodes the velocity information. For example, suppose
the motion is a screw motion with rotation of constant angular velocity ω
about an axis of known line (Ls = r̄ + Itc∧r̄) and with constant translation
velocity vs which is parallel to the axis. The data are sampled by a constant
time interval and such a time interval is normalized to 1, then

V i/i−1 = V = (1 + Ivs/2)(cos(ω/2) + sin(ω/2)Ls). (21.59)

In real applications we can only know the relation between M i−1 and
M i approximately. That means that such a dynamic motion model has to
contain a process noise W i. Thus, the real dynamic model is given by
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M i = V i/i−1M i−1 + W i, (21.60)

where the statistics of W i is given by (21.5) and (21.6). In linear algebra,
(21.60) is expressed as

M i = Vi/i−1,MlM i−1 + W i. (21.61)

It must be noted that the motion parameters M and V should be described
in the same coordinate system of the line L, which is spanned by the algebra
G+

3,0,1.

21.4.2 Linearization of the Measurement Model

It is obvious that in (21.52) the relation between the measurement AM and
the state M is nonlinear, we must therefore first linearize it.

Suppose the measurement AM i is the true data AM 0,i contaminated by
measurement noise NAM ,i

AM i = AM 0,i + NAM ,i. (21.62)

The noise matrix NAM ,i is zero mean and we know the covariance of every
component of the noise matrix. We define a function fM,i depending on the
variables (AM 0,i, M i) as follows

fM,i(AM 0,i, M i) = AM 0,iM i = 0. (21.63)

Expanding (21.63) into a first order Taylor series about the measurement and
the predicted state (AM i, M̂ i/i−1), we get

fM,i(AM 0,i, M i)

= fM,i(AM i, M̂ i/i−1) +

+
∂fM,i(AM i, M̂ i/i−1)

∂M i
(M i − M̂ i/i−1) +

+(AM 0,i − AM i)
∂fM,i(AM i, M̂ i/i−1)

∂AM 0,i

+ R2

= 0, (21.64)

where

∂fM,i(AM i, M̂ i/i−1)

∂M i
= AM i, (21.65)

∂fM,i(AM i, M̂ i/i−1)

∂AM 0,i

= M̂ i/i−1. (21.66)

Substituting (21.65) and (21.66) into (21.64), omitting the second order terms
R2, and using (21.62), (21.64) can be written as follows
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AM iM̂ i/i−1 + AM i(M i − M̂ i/i−1) +

+(AM 0,i − AM i)M̂ i/i−1

= AM iM̂ i/i−1 + AM i(M i − M̂ i/i−1) − NAM ,iM̂ i/i−1

= 0. (21.67)

Then the linearized measurement equation for MEKF at step i is

Zi = −AM iM i + NAM ,iM̂ i/i−1

= HiM i + NZ,i

= 0, (21.68)

where Hi = −AM i and NZ,i = NAM ,iM̂ i/i−1. The covariance matrix of
NZ,i is Ci.

21.4.3 Constraints Problem

According to the Kalman filter algorithm ((21.11), (21.15), (21.14) and
(21.17)), we can compute the estimation M ∗

i as

M∗
i = Φi/i−1M̂ i−1 + Ki(Zi − HiΦi/i−1M̂ i−1)

= Vi/i−1,MlM̂ i−1 + Ki(−HiVi/i−1,MlM̂ i−1)

= (R∗T
i R′∗T

i )T (21.69)

The 4-dimensional vectors R∗
i and R′∗

i are the first 4 components and the
last 4 components of M∗

i , respectively. They must be modified to satisfy the
constraints (21.53) and (21.54). For the constraint (21.53), this can be done
simply by

R̂i =
R∗

i

‖ R∗
i ‖

. (21.70)

But to satisfy the constraint (21.54) is not so simple. Now, we rewrite (21.54)

as R′T R = 0, this equation means that the rotor R and the dual rotor R′,
in their vector form, must be orthogonal to each other. Unfortunately, the
estimated rotor R∗

i is usually not orthogonal to the estimated dual rotor R′∗

i ,
see Figure 21.6. Suppose the angle between estimates R∗

i and R′∗

i is ϕ, then

cos(ϕ) =
R′∗T

i R∗
i

‖ R′∗

i ‖ · ‖ R∗
i ‖

(21.71)

Using (21.70), (21.71) can be simplified by introducing the unit rotor R̂i as

cos(ϕ) =
R′∗T

i R̂i

‖ R′∗

i ‖
. (21.72)

It can be easily understood that the best modified dual rotor R̂′

i should be
closest to the estimated dual rotor R′∗

i . That means that the difference of
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Fig. 21.6. Constraint of ˆ� ∗T ˆ� � ∗
= 0

these two vectors, δR′∗

i , should be orthogonal to the modified dual rotor R̂′

i

and should be parallel to the rotor R̂i. In other words, the length of δR′∗

i is
‖ R′∗

i ‖ cos(ϕ) and the direction of it is equal to that of the rotor R̂i. Then,

δR′∗

i =‖ R′∗

i ‖ cos(ϕ)R̂i = (R′∗T
i R̂i)R̂i, (21.73)

so that

R̂′

i = R′∗

i − (R′∗T
i R̂i)R̂i. (21.74)

R̂i and R̂′

i are the modified estimations at i and satisfy the constraints
(21.53) and (21.54).

21.4.4 The MEKF Algorithm

The MEKF algorithm is summarized in Fig. 21.7. At time 0, it begins with
a given initial predicted state M̂1/0 and the initial predicted state error co-
variance matrix P1/0 as a prediction of time 1. If we do not know the initial
predicted state, we can simply set

M̂1/0 = [1 0 0 0 0 0 0 0]T (21.75)

P1/0 = I8×8 (21.76)

At time 1, we first compute the matrix H1 of the linearized measurement
equation and the Kalman gain matrix K1, then we can calculate the esti-
mation M∗

1. This estimation must be modified to be M̂1 which satisfies the
motor constraints. M̂1 serves as the result of the estimation and then we can
get the prediction M̂2/1 of time 2 by dynamic model. The MEKF will run
recursively till time N . The MEKF algorithm is listed in Fig. 21.7.

It must be noted that the numerical instability of Kalman filter imple-
mentation is well known. Several techniques are developed to overcome those
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Fig. 21.7. MEKF algorithm

problems, such as square-root filtering and U-D factorization. See [170] for a
thorough discussion.

21.4.5 A Batch Method of Analytical Solution

In [247], Zhang and Faugeras have presented an analytical method to recover
the motion parameters from Plücker line measurements. We will introduce
it here for the purpose of comparing it with the method of the MEKF. This
analytical solution can also be used for estimating the initial prediction in
our MEKF algorithm.

Assume that there are n lines of the rigid object, which are measured
before and after motion M i. The coordinates of these lines are Lk

0 = nk
0 +

Imk
0 and Lk

i = nk
i + Imk

i , k = 1, 2, ..., n, where the subscript numbers 0 and
i correspond to the case before and after motion, respectively. The motor M i

can also be seen as a combined motion of a rotation Ri and a translation ti,
which in G+

3,0,1 satisfies

M i = (1 + Iti/2)Ri. (21.77)

Then, the relation between a line L0 = Lk
0 and the transformed line Li = Lk

i

is given by
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Li = ni + Imi

= M iL0M̃ i

= (1 + Iti/2)Ri(n0 + Im0)R̃i(1 − Iti/2)

= Rin0R̃i + I(Rim0R̃i + (ti(Rin0R̃i) − (Rin0R̃i)ti)/2)

= Rin0R̃i + I(Rim0R̃i + ti∧(Rin0R̃i)). (21.78)

By separating the real and dual part of above equation, we get

ni = Rin0R̃i (21.79)

mi = Rim0R̃i + ti∧ni. (21.80)

Because Lk
0 and Lk

i are the noisy measurements, we use a least square method
to estimate a best solution of rotation and translation. We determine first
the rotation using (21.79) by minimizing the following criterion

Emin = Min{

n
∑

k=1

‖ nk
i − Rin

k
0R̃i ‖

2}. (21.81)

After right-multiplying both sides of (21.79) with the rotor Ri, we get

niRi − Rin0 = 0. (21.82)

In linear algebra, (21.82) is expressed as

(ni)RlRi − (n0)RrRi = ARRi = 0. (21.83)

Then, (21.81) can be further restated as

E′
min = Min{

n
∑

k=1

RT
i Ak

R

T
Ak

RRi} = Min{RT
i ARi}, (21.84)

where

Ak
R =

n
∑

k=1

((nk
i )Rl − (nk

0)Rr), (21.85)

A =

n
∑

k=1

Ak
R

T
Ak

R. (21.86)

Since A is a symmetric matrix and ‖ Ri ‖= 1, the solution to this problem is
the 4-dimensional vector R̂i corresponding to the smallest eigenvalue of A.

With the recovered rotation R̂i we can then determine the translation
using (21.80). In linear algebra, (21.80) is expressed as

mi = Rim0 − (ni)×ti, (21.87)

where

Ri = (Ri)Rl(R̃i)Rr, (21.88)
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and the matrix (ni)× is the skew-symmetric matrix of ni, which performs
the outer product of the bivector ni with another bivector. If n1,i, n2,i and
n3,i are three components of the bivector ni, then

(ni)× =











0 n3,i −n2,i

−n3,i 0 n1,i

n2,i −n1,i 0











. (21.89)

We estimate the translation t̂i by minimizing the following criterion

E′′
min = Min{

n
∑

k=1

‖ mk
i − R̂im

k
0 + (nk

i )×t̂i ‖
2}. (21.90)

By differentiating the criterion (21.90) with respect to t0 and setting the
result equal to zero, we obtain

n
∑

k=1

2
(

mk
i − R̂im

k
0 + (nk

i )×t̂i

)T

(nk
i )× = 0. (21.91)

Then, t̂i can be solved by the equation:
(

n
∑

k=1

(nk
i )T

×(nk
i )×

)

t̂i =

n
∑

k=1

(nk
i )T

×(R̂im
k
0 − mk

i ). (21.92)

It can be shown that the matrices A and B =
∑n

k=1
(nk

i )×(nk
i )T

× are always

of full rank if two of the lines Lk
i (k = 1...n) are non-parallel. In other words,

to determine a unique motion displacement there must be at least two non-
parallel lines.

21.5 Experimental Analysis of the MEKF

To further verify the analyses presented above and to demonstrate the per-
formance of the MEKF algorithm, experiments using both simulated data
and real 3-D reconstructed lines have been performed.

21.5.1 Simulation

The routine of the MEKF is programmed in MATLAB. The goal of the
simulated experiments is to test the routine of MEKF, and by filter tuning
to improve the accuracy and the converge rate of the estimate.

Let us suppose a rigid object is moving along a screw in 3-D with constant
angular velocity ω/2 = −π/15 about an axis of known line (Ls = r̄ + Itc∧r̄)
and constant translation velocity vs = 0.3r̄ which is parallel to the axis. A
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O

Ls

Fig. 21.8. The object moving in 3-D with screw trajectory

box moving in this way is shown in Fig. 21.8. The line Ls is given by

Ls = r̄ + Itc∧r̄

= 0.7071γ2γ3 + 0.3536γ3γ1 + 0.6124γ1γ2 +

+I(−0.7418γ2γ3 + 0.3813γ3γ1 + 0.6364γ1γ2).

Assume the measurements are sampled by equal time intervals which are
normalized to 1. Then the motion between times i−1 and i can be described
by the motor V , which can be calculated by (21.59).

V = (1 + Ivs0/2)(cos(ω/2) + sin(ω/2)Ls)

= (1 + I0.3r̄/2)(cos(−π/15) + sin(−π/15)Ls

= 0.9832− 0.1289γ2γ3 − 0.0645γ3γ1 − 0.1117γ1γ2 +

+I(−0.0266 + 0.2367γ2γ3 − 0.0188γ3γ1 − 0.0283γ1γ2). (21.93)

Then we get the dynamic motion equation in linear algebra

M i = VMlM i−1. (21.94)

In simulation, the real applied motion parameters V i/i−1 between times
i − 1 and i are contaminated by noise:

ωi = ω + nωi
,

vsi = vs + nvsi
,

V i/i−1 = (1 + Ivsi/2)(cos(ωi/2) + sin(ωi/2)Ls),
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Fig. 21.9. The estimation results of the motor parameters by simulation
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where the noises nωi
and nvsi

are independent normally distributed with
zero mean and known deviation σω and σvs

. Then the ground truth of motor
trajectories M0,i can be computed by

M0,i =
(

r0i r1i r2i r3i r′0i r′1i r′2i r′3i

)T

= Vi/i−1Ml
M 0,i−1, (21.95)

with initial state M0,0 = (1 0 0 0 0 0 0 0).
At i-th (i = 1, 2, ..., N) time step of MEKF algorithm we first generate two

3-D points x′
0 and y′

0 to define a line L′
0 in an observer coordinate frame A.

The points are then moved to x′
i and y′

i by the motor M i = (V i/i−1)MlM i−1

which can be decomposed to rotation Ri and translation ti, where Ri is the
real part of M i. If R′

i is the dual part of M i, from (21.41) we can get
ti = 2R′

iR̃i.
The coordinate of this line after motion is L′

i relative to the frame A. We
obtain thus a pair of noise-free coordinates of the same line in two positions
(the initial position L′

0 and the position L′
i at time i). To simulate the noisy

observation, independent Gaussian noise with zero mean and known standard
deviation σ is added to both lines L′

0 and L′
i+1 and we obtain thus the noisy

observation L0 and Li.
In Fig. 21.9, we show the eight components of motor trajectories esti-

mated by MEKF algorithm and by batch method of the analytical solution.
In MEKF algorithm we use the analytical solution to estimate the initial
prediction. Comparing with ground truth, we can see that the MEKF gives
more accurate and more stable estimates.

21.5.2 Real Experiment

Fig. 21.10 shows the physical setup of our experiment. Two grey-scale-CCD
640× 480 cameras are fastened to the last joint of the robot arm RX90. The
RX90 has six rotation joints which can be controlled by six parameters (x, y,
z,roll, pitch, and yaw). The coordinates (x, y, z) that describe the position of
the end joint are referred to the base coordinate system W which is fixed on
the base of the arm. The rotation parameters (roll, pitch, yaw) that describe
the orientation of the end joint are Z-Y-Z Euler angles [50]. The sample object
is placed below the cameras.

We want to estimate the relative motion between the end joint and the
sample object based on the cameras’ images while the arm is moving with a
given trajectory.

In practice, we use 3 cameras to reconstruct a 3-D line. In the experimental
setup, the third camera was realized by applying a certain motion to one of
the cameras.

We have no ground truth of the relative motion of the sample object.
But we can compare the estimation with the given motion trajectory of the
robot arm. A coordinate system T which is fixed on the end joint is called a
tool coordinate system.We control the robot arm by controlling the relative
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Fig. 21.10. The physical setup of the experiment
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Fig. 21.11. The relationship between the tool system T and the camera system C
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position and orientation between the tool system T and the base system W .
After camera calibration, we get a matrix P, which describes the relation-
ship between the point coordinates in the 2-D image and the correspondent
3-D world point coordinates with respect to a system C (up to a scalar λ).
The system C is fixed on the end joint and there exists a certain transfor-
mation X between the tool system T and the system C, see Fig. 21.11. The
transformation X is determined by hand-eye calibration. If the tool system
is transformed from T1 to T2 by transformation T , the system C will be
transformed from C1 to C2 by a certain transformation C, which is given by

C = XTX−1. (21.96)

Using (21.96) we can compare the relative motion C of the sample object
referring to system C with the given motion T of the robot arm.

The steps of the experiment are as follows:
1) Cameras calibration [77] to determine the P matrix;
2) Hand-eye calibration [139] to determine the unknown transformation

X; (an alternative would be [16] using motors)
3) Taking the images in discrete time steps with constant time intervals

while the robot arm is moving, see Figs. 21.12 and 21.14;
4) Extracting 2-D lines from the images using Hough transformation [149]

[186], see Figs. 21.13 and 21.15;
5) 3-D line reconstruction by 3 matched image lines [77], see Tab. 21.1 ;
6) Estimation the motion based on 3-D line observations using MEKF,

see Fig. 21.16 .
The algorithm of motion estimation will run online recursively from step

3) to 6).
In our experiment, the given relative motion of the sample object with

respect to system C is a screw motion with constant angular velocity ω =
−π/90 and constant translation velocity vs = 0.2 which is parallel to the
rotation axis. The rotation axis Ls is parallel to the z axis of the system C,
and one point on Ls is (1.5, 0, 0). In G+

3,0,1 the screw axis Ls is given by

Ls = γ1γ2 + I(1.5γ2γ3)∧(γ1γ2)

= γ1γ2 + I1.5γ3γ1. (21.97)

Just like (21.93), the motor V can be calculated as

V = (1 + Ivs0/2)(cos(ω/2) + sin(ω/2)Ls)

= 0.9994− 0.0349γ1γ2 + I(0.0035 − 0.0523γ3γ1 + 0.0999γ1γ2).

(21.98)

The motor M i+1 is in linear algebra given by

M i = VMlM i−1, (21.99)

with initial data M 0 = (1 0 0 0 0 0 0 0)T .
We use the reconstructed 3-D lines listed in Tab. 21.1 to estimate the rel-

ative motion of the sample object. The results are shown in Fig. 21.16, which
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Left view image Up view image Right view image

Fig. 21.12. A stereo triplet of a sample object at time i = 0

Left view image Up view image Right view image

Fig. 21.13. Edge images of Fig. 21.12 overlapped by extracted 2-D lines

Left view image Up view image Right view image

Fig. 21.14. A stereo triplet of a sample object at time i = 4

Left view image Up view image Right view image

Fig. 21.15. Edge images of Fig. 21.14 overlapped by extracted 2-D lines
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Table 21.1. Reconstructed 3-D lines

Time Line item A point on the line direction

0 1 (0.000 3.087 -2.327) (-0.345 0.937 -0.027)

2 (0.556 0.000 -2.250) (0.941 0.336 0.023)

1 1 (1.125 0.000 -2.027) (-0.404 0.914 0.013)

2 (0.701 0.000 -2.049) (0.915 0.401 0.029)

2 1 (1.111 0.000 -1.82) (-0.462 0.886 0.017)

2 (0.794 0.000 -1.83) (0.880 0.471 0.055)

...

14 1 (0.018 0.000 0.648) (-0.971 0.236 -0.036)

2 (1.103 0.000 0.538) (0.241 0.965 0.103)

15 1 (-0.680 0.000 0.753) (-0.986 0.159 -0.025)

2 (0.000 -6.341 0.783) (0.171 0.985 -0.003)

shows the trajectories of eight components of the estimated motor trajecto-
ries M̂ i (star-solid lines) and the given motor trajectories M i (solid lines).
Although we use an inaccurate initial predicted motor for the algorithm, after
three or four time steps the estimations approach the truth and follow the
given trajectories very well.

21.6 Conclusion

In this paper, we presented a new MEKF algorithm based on motor alge-
bra to estimate 3-D motion parameters from line observations. Using motor
algebra, we modeled in the 4-D space the motion of lines and the dynamic mo-
tion system. This kind of modeling linearizes the 3-D Euclidean rigid motion
transformation and describes the discrete dynamic system straightforwardly.

The MEKF has the virtue that it can estimate the motion parameters
from Plücker line observations. Since all recursive algorithms of the literature
estimate motion parameters from observations of points or line segments with
its middle point, we can claim that the use of Plücker lines is one of the most
important advantages of the MEKF. Additionally, using the modeling of the
lines in the motor algebra, we could linearize the nonlinear measurement
model which dose not face singularities, this was also a big problem of many
researchers who tried in some way to apply the Kalman filter using Plücker
line observations.

We first introduced the Kalman filter techniques and then presented the
measurement model based on motor algebra and its constraints. This mea-
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Fig. 21.16. The estimation results of the motor parameters by MEKF in real
experiment
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surement model was then linearized for Kalman filtering. We also described
the dynamic motion model using motors as states from which we observe
that the motor algebra is useful to effectively formulate and to compute the
screw motion of a line as minimal rigid entity. In the algorithm of MEKF, we
modified the estimation to satisfy the constraints, which made the estimation
converge to a proper motor state.

Tests with both simulated data and real experimental data showed that
the MEKF algorithm is effective to dynamically estimate the motion param-
eters from Plücker line observations. We also compared the MEKF with an
analytical solution using least squares and the results show that the MEKF
gives more accurate and more stable estimations.


