
15. 3D-Reconstruction from Vanishing

Points

Christian B.U. Perwass1 and Joan Lasenby2

1 Cavendish Laboratory, Cambridge
2 C. U. Engineering Department, Cambridge

15.1 Introduction

3D-reconstruction is currently an active field in Computer Vision, not least
because of its many applications. It is applicable wherever the “real world”
has to be understood by a computer. This may be with regard to control
movement (robots), to survey a scene for later interpretation (medicine), or
to create and mix artificial with real environments (special effects).

Research on 3D-reconstruction can roughly be separated into three areas:

1. Reconstruction with calibrated cameras, [148, 146, 119, 79, 157]. In this
case, a set of images is taken of a scene with one or more calibrated
cameras. However, the camera positions are unknown. To perform a 3D-
reconstruction we therefore first have to reconstruct the camera positions.
To do this it is assumed that image point matches are known.

2. Reconstruction from sequences of images, [235, 237, 236, 246, 71, 62, 164].
Here a series of monocular, binocular or trinocular images is taken. To
perform a reconstruction it is then assumed that point matches between
the views in space and over time are known, and that the relative camera
geometry and their internal parameters do not change. A popular method
in this area is the use of the Kruppa equations [138, 78].

3. Reconstruction from static views, [38, 44]. A set of images of a scene
taken with unknown cameras, from unknown positions is given. We still

372 Christian B.U. Perwass, Joan Lasenby

assume that we have point matches over the images. However, note that
we cannot assume anymore that the internal parameters of the cameras
that took the images are the same.

The least information about a scene is given in point 3. In fact, there is so
little information that a correct 3D-reconstruction is impossible, as we have
shown in chapter 14. Therefore, some additional information is needed. Such
information could be the knowledge of lengths, angles or parallel lines.

Our approach to 3D-reconstruction falls into the area of Reconstruction

from static views. We have two images taken with unknown cameras from
unknown positions and assume that apart from the point matches we also
know the projections of a number of sets of parallel world lines. The latter
are used to find vanishing points but also to constrain the reconstruction.
This information allows us to perform an affine reconstruction of the scene.
That is, we find the rotation, translation and the internal parameters of the
second camera relative to the first. If we assume furthermore, that we have
three mutually orthogonal sets of parallel lines, we can also find the internal
calibration of the first camera and thus obtain a Euclidean 3D-reconstruction.

In the following discussion of our reconstruction algorithm we use the
same notation as in chapter 14. We will also assume that the reader is familiar
with our description of reciprocal frames, pinhole cameras, camera matrices
and the basic form of the fundamental matrix. Of course, all this assumes
some familiarity with Geometric Algebra (GA).

15.2 Image Plane Bases

We will be working in projective space (P3) with basis {e1, e2, e3, e4} which
has signature {−−−+}. We can project down to the corresponding Euclidean
space (E3) via the projective split. Our general setup is that we have two
pinhole cameras described by frames {Aµ} and {Bµ}, respectively. The frame
{Aµ} is also regarded as the world frame which we use for our reconstruction.

The basic form of our calculation is as follows. We start with the image
points obtained from real cameras, i.e. in E

3. These image points are embed-
ded in P

3. All our calculations are then performed in P
3 and the resultant

reconstruction is projected back into E
3. This method forces us to take note

of two important concepts.

1. Correct Basis. The power of GA in this field derives from the fact that
we are not working purely with coordinates, but with the underlying

geometric basis. Therefore, we have to make sure that the basis we are
working with is actually appropriate for our problem.

2. Scale Invariance. The projection of homogeneous vectors into E
3 is

independent of the overall scale of the homogeneous vector. Calculations
in P

3 may depend on such an overall scale, though. We have to make sure
that all our calculations are invariant under a scaling of the homogeneous

15. 3D-Reconstruction from Vanishing Points 373

vectors, because such a scaling cannot and should not have any influence
on our final result. Furthermore, since we are initially embedding vectors
from E

3 in P
3 we are not given any particular scale. Any expression that

is invariant under a scaling of its component homogeneous vectors will
be called scale invariant.

As mentioned above, the frames {Aµ} and {Bµ} define two pinhole cam-
eras. Since {Aµ} also serves as our world frame in P

3 we can choose that
A4, the optical centre of camera A, sits at the origin. A1, A2 and A3 define
the image plane of camera A. If we want to be true to our previously stated
concepts, we need to give some thought as to how we should choose the {Ai}.

Note here that we use latin indices to count from 1 to 3 and greek indices to
count from 1 to 4. We also make use of the Einstein summation convention,
i.e. if a superscript index is repeated as a subscript within a product, a
summation over the range of the index is implied. Hence, αiAi ≡

∑

3

i=1
αiAi.

The images we obtain from real cameras are 2-dimensional. Therefore,
the image point coordinates we get are of the form {x, y}, which give the
displacement in a horizontal and vertical direction1 in the image coordinate
frame. However, in P

3 an image plane is defined by three vectors. Therefore,
a point on a plane in P

3 is defined by three coordinates. A standard way given
in the literature to extend the 2D image point coordinates obtained from a
real camera to P

3 is by writing the vector {x, y} as {x, y, 1}. This is a well
founded and very practical choice, and if we just worked with matrices and
tensors we would not need to do anything else. However, since we want to tap
into the power of GA, we need to understand what kind of basis is implicitly

assumed when we write our image point coordinates in the form {x, y, 1}.
The best way to proceed is first to describe a 2D-image point in a 3D

basis and then to embed this point in P
3. An image point {x, y} gives the

horizontal and vertical displacement in the 2D-image plane coordinate frame.
Let the basis corresponding to this 2D frame in E

3 be {a1, a2}. If we define
a third vecor a3 to point to the origin of the 2D frame in E

3, then an image
point with coordinates {x, y} can be expressed as follows in E

3.

xa = xa1 + y a2 + 1 a3 = α̂i
ai, (15.1)

with {α̂i} ≡ {x, y, 1}. The {α̂i} are the image point coordinates correspond-
ing to image point {x, y} in E

3. Now we embed the point xa in P
3.

Xa = (xa ·e4) + e4 = α̂iAi, (15.2)

where we defined A1 ≡ a1 ·e4, A2 ≡ a2 ·e4 and A3 ≡ (a3 ·e4) + e4. That is,
A1 and A2 are direction vectors, or points at infinity, because they have no
e4 component. However, they still lie on image plane A. More precisely, they
lie on the intersection line of image plane A with the plane at infinity. Note

1 Note that although we call these directions horizontal and vertical, they may not
be at a 90 degree angle to each other in general.

374 Christian B.U. Perwass, Joan Lasenby

that A1 and A2 do not project to a1 and a2, respectively, when projected
back to Euclidean space. For example,

A1∧e4

A1 ·e4

=
a1

0
−→ ∞. (15.3)

Nevertheless, {Ai} is still the projective image plane basis we are looking for,
as can be seen when we project Xa down to Euclidean space.

xa =
Xa∧ e4

Xa · e4

=
α̂i

ai

α̂3
= xa1 + y a2 + 1 a3 ; α̂3 ≡ 1. (15.4)

What is important here is that neither α̂1 nor α̂2 appear in the denomi-
nator. This shows that by writing our image point coordinates in the form
{x, y, 1} we have implicitly assumed this type of frame, which we will call a
normalised homogeneous camera frame. The camera frames we will use
in the following are all normalised homogeneous camera frames.

A 1́

A 2́

A 3́

O

A 3 A 1

A 2

O
Fig. 15.1. Transformation from general basis to nor-
malised homogeneous camera frame, in which image
points have coordinates of the type {x, y, 1}

Figure 15.1 shows the difference between a general image plane basis in
P

3, denoted by {A′

i}, and a normalised homogeneous camera frame {Ai}.
Note that homogeneous vectors A1 and A2 are drawn as lying in the image
plane to indicate that they are direction vectors.

It might seem a bit odd that we have devoted so much space to the de-
velopment of normalised homogeneous camera frames. However, this has far
reaching implications later on and is essential to understand our derivation.

In P
3 a point on the image plane of camera A can be written as Xa = αi Ai

in general. We can normalise the coordinates without changing the projection
of Xa into E

3. That is, Xa ' ᾱi Ai with ᾱi ≡ αi/α3. The symbol ' means
equality up to a scalar factor. In this case we clearly have {ᾱi} = {α̂i}.

A general point in P
3 can be written as X = αµ Aµ in the A-frame. We

can normalise the coordinates of Xa in the same way as before to obtain
X ' ᾱµ Aµ with ᾱµ ≡ αµ/α3. If we project this point down to E

3 we get2

15. 3D-Reconstruction from Vanishing Points 375

x =
X ∧ e4

X · e4

=
ᾱi

1 + ᾱ4
ai = α̂i

ai, (15.5)

with α̂i ≡ ᾱi/(1 + ᾱ4). That is, if ᾱ4 = 0, then X is a point on the image
plane of camera A. Also, if ᾱ4 = −1 then X is a point at infinity. We will
call ᾱ4 the projective depth of a point in P

3.

15.3 Plane Collineation

A4
B4

X p

X 4
b

X 4
a

P

L

Fig. 15.2. Schematic representation of a
plane collineation. Image point Xa

4 is pro-
jected to Xb

4 under the P -collineation

Before we can get started on the actual reconstruction algorithm, we need
to derive some more mathematical objects which we will need as tools. The
problem we want to solve first is the following. Let us assume we have three
image point matches in cameras A and B. That is, if three points in space,
{Xi}, are projected onto image planes A and B to give images {Xa

i } and
{Xb

i } respectively, then we know that the pairs {Xa
i , Xb

i } are images of the
same point in space. If the three points in space do not lie along a line,
they define a plane. This plane induces a collineation, which means that we
can transfer image points from camera A to camera B through that plane.
For example, let Xa

4 be the image point on image plane A which we want to
transfer to camera B through the plane. First we have to find the intersection
point of line A4∧Xa

4
with the plane3, and then we project this intersection

point onto image plane B (see figure 15.2). This transformation can also be

2 Recall that A4 = e4 (the origin of
�

3) and that the {Ai} are a normalised
homogeneous camera frame.

3 Recall that A4 is the optical centre of camera A.

376 Christian B.U. Perwass, Joan Lasenby

represented by a 3 × 3 matrix, which is called a collineation matrix. Our
goal is to find the collineation induced by the plane P ≡ X1∧X2∧X3 by
knowing the projections of the points {Xi} onto image planes A and B, and
the fundamental matrix for the two cameras. Since we know the fundamental
matrix we can also calculate the epipoles. The epipoles on the two image
planes are always projections of a single point in space and thus give us the
projections of a fourth point on any plane in space. That is, we have in fact
the projections of four points that lie on some plane P . Hence, we can find
the collineation matrix directly through a matrix diagonalisation.

However, it is interesting to see what this means geometrically. Faugeras
gives a geometrical interpretation4 in [78]. We will follow his construction
method to obtain a 3 × 3 × 3 collineation tensor.

We start by defining three points Xi = αµ
i Aµ. The projections of these

three points onto image planes A and B are Xa
i = ᾱj

iAj and Xb
i = β̄j

i Bj ,

respectively. We know the coordinates {ᾱj
i} and {β̄j

i }, and we know that the

pairs {ᾱj
i , β̄

k
i } are images of the same point in space. Furthermore, we have

the fundamental matrix for the two cameras. We find the collineation induced
by the plane P = X1∧X2∧X3 geometrically through a two step construction.

Step 1:

X 1
a

X 1
b

a
X 4

X p
a

b
X p

4BA 4X p
a

^ ^

E ba

X 3
a

X 2
a

X 2
b

X 3
b

A 4
4B

L
b
p

Lp

Let Xa
4 = αi

4Ai be the image point we want to project
onto image plane B under the P -collineation. Now
consider the intersection point Xa

p of lines Xa
3 ∧Xp

4

and Xa
1 ∧Xa

2 . The intersection point of line Lp ≡
A4∧Xa

p with an arbitrary plane in P
3 obviously lies on

Lp. Denote the projection of Lp onto image plane B
by Lb

p. Obviously Xa
p can only be projected to some

point on Lb
p, independent of the collineation. We also

know that Xa
p has to project to some point on the

line Xb
1
∧Xb

2
under the specific P -collineation. Hence,

Xb
p is the intersection point of lines Lb

p and Xb
1∧Xb

2 .
We can also write this as

Xb
p = (Xa

p ∧A4∧B4) ∨ (Xb
1
∧Xb

2
) (15.6)

4 In [78] this method is called the Point-Plane procedure.

15. 3D-Reconstruction from Vanishing Points 377

Step 2:

4B

X 1
a

X 1
b

A 4

a
X 4

X p
a

b
X p

E ba

b
X 4

4BA 4
a

X 4 ^ ^

L4
b

L4

X 3
a

X 2
a

X 3
b

X 2
b

Now that we have calculated the point Xb
p, we can

project Xa
4

under the P -collineation in an analogue
way. We form a line L4 = A4∧Xa

4 which we project
onto image plane B. Xb

4
, the projection of Xa

4
under

the P -collineation, is then the intersection point of
Lb

4 and line Xb
3∧Xb

p. This can also be expressed as

Xb
4

= (Xa
4
∧A4∧B4) ∨ (Xb

3
∧Xb

p) (15.7)

By substituting equation (15.6) into equation (15.7) we can find a col-
lineation tensor Mk

ij . Details of this calculation can be found in [191]. The

resultant expression for Mk
ij is

Mk
ij ≡

[(

F (1, 2) λ̄1

a i β̄k
1 − F (2, 1) λ̄2

a i β̄k
2

)

f b
j3

−
(

F (1, 2) λ̄1

a i f b
j1 − F (2, 1) λ̄2

a i f b
j2

)

β̄k
3

]

,

(15.8)

with

F (r, s) ≡ ᾱi
rβ̄

j
s Fij ; f b

ir ≡ β̄j
r Fij ; λ̄j1

a k1
≡ (ᾱk2

j2
ᾱk3

j3
− ᾱk3

j2
ᾱk2

j3
), (15.9)

where Fij is the fundamental matrix for the two cameras. Here, and through-
out the rest of this chapter, indices of the type {i1, i2, i3} are taken to be an
even permutation of {1, 2, 3}. Also indices of the type {µ1, µ2, µ3, µ4} are an
even permutation of {1, 2, 3, 4}.

To project a point Xa
4

= ᾱi
4
Ai on image plane A, onto image plane B

under the collineation described by points {X1, X2, X3}, we can now simply
write

βk
4
' ᾱi

4
ᾱj

4
Mk

ij , (15.10)

where the {β̄j
4
} are the coordinates of the projected point Xb

4 = β̄j Bj on
image plane B. It can be shown that Mk

ij is scale invariant [191].
Equation (15.10) seems to indicate that a collineation is a quadratic rela-

tion. However, we know that βk
4

= αi
4
Hk

i where Hk
i is the collineation matrix.

If we take a closer look at the components of equation (15.8) we find that
λ̄r

a 3 is linearly dependent on λ̄r
a 1 and λ̄r

a 2. Therefore, the three matrices in
indices i, j of Mk

ij are of rank 2. We can write equation (15.10) as

378 Christian B.U. Perwass, Joan Lasenby

βk
4
' ᾱ1ᾱ1 Mk

11
+ ᾱ2ᾱ2 Mk

22
+ ᾱ1ᾱ2 (Mk

12
+ Mk

21
)

+ᾱ1 (Mk
13

+ Mk
31

) + ᾱ2 (Mk
23

+ Mk
32

) + ᾱ3 Mk
33

(15.11)

since ᾱ3 = 1 by definition. Thus, if we perform a set of similarity transforms
on Mk

ij such that the components Mk
11

, Mk
22

, Mk
12

, Mk
21

are zero, we can read

off the components of the collineation matrix from the transformed M k
ij . Such

a similarity transformation on Mk
ij is possible because the matrices in indices

i, j of Mk
ij are of rank 2.

15.4 The Plane at Infinity and Its Collineation

It will be very useful for us to see what the collineation of the plane at infinity
looks like. Recall that A4 = e4 and that the {Ai} form a normalised homo-
geneous camera frame. That is, A1 and A2 are direction vectors. Therefore,
the plane at infinity P∞ may be given by

P∞ = A1∧A2∧(A3 − A4) (15.12)

Now that we have the plane at infinity we can also find an expression for the
collineation matrix associated with it. More details of the following calcula-
tion can be found in [191].

We want to project a point Xa = αiAi on image plane A to image plane
B under the P∞-collineation. First we have to find the intersection point Xp

of line L = A4∧Xa with P∞.

Xp = (A4∧Xa) ∨ P∞ ' αiAi − α3A4 (15.13)

Now we need to find the projection Xb
p of Xp onto image plane B.

Xb
p = Xp ·B

j Bj =
(

αiKb
j
i
− α3εj

ba

)

Bj (15.14)

where Kb
j
i
≡ Ai ·B

j is the 3 × 3 camera matrix minor of camera B, and

εj
ba ≡ A4 ·B

j is the epipole of camera B and also the fourth column of the
full camera matrix5. Note that we use here a notation of relative super- and
subscripts to keep the absolute superscript position free for other uses. From
equation (15.14) it follows that we can write the collineation matrix of P∞

as

Ψ∞

j
i
≡ [Kb

j
1

, Kb
j
2

, Kb
j
3

− εj
ba] (15.15)

5 The full camera matrix is given by Kb
j
µ

= Aµ ·B
j . See chapter 14for details on

camera matrices and epipoles.

15. 3D-Reconstruction from Vanishing Points 379

where i counts the columns. Therefore, if we want to project a point Xa =
αi Ai on image plane A, onto image plane B under the P∞-collineation we
can write

βj
∞

' αiΨ∞

j
i
. (15.16)

What does the P∞-collineation describe geometrically? If Xa is an image
point in camera A and X∞

b is its projection under the P∞-collineation, then
from the construction of the collineation it follows that the lines La = A4∧Xa

and Lb = B4∧X∞

b meet in a point on P∞. If two lines meet in a point on
the plane at infinity, they are parallel. Therefore, the P∞-collineation tells us
which two image points Xa and X∞

b on image planes A and B, repectively,
correspond such that the lines A4∧Xa and B4∧X∞

b are parallel. Obviously,
this tells us something about the relative orientation of the two cameras.

We can use our knowledge of the relation between Ψ∞ and the camera
matrix to find the depths of a set of world points whose projections are
known in both cameras, if we also know the projections of at least three
pairs of parallel lines. We will assume for the moment that for each point
pair {ᾱi, β̄j} we also know β̄j

∞
, which is the projection of ᾱi under the P∞-

collineation. From the definition of the camera matrix we know that

βj = αiKb
j
i
+ α4εj

ba. (15.17)

Furthermore, equation (15.16) may be rewritten as

βj
∞

' αiKb
j
i
− α3εj

ba (15.18)

We can now combine equations (15.17) and (15.18) to obtain the following
expression (see [191] for details).

ᾱ4 = ᾱiK̄b
3
i
ζj
1
− ζj

2
; j ∈ {1, 2}. (15.19)

with

ζj
1
≡

β̄j
∞

− β̄j

β̄j − ε̄j
ba

; ζj
2
≡

β̄j
∞

− ε̄j
ba

β̄j − ε̄j
ba

(15.20)

Since equation (15.19) has to give the same result for both j = 1 and j = 2
independent of K̄b

3
i
, it follows that ζ1

1
= ζ2

1
and ζ1

2
= ζ2

2
. Therefore, we will

discard the superscript of the ζs in the following.
Equation 15.19 by itself is still not useful, since we neither know ᾱ4 nor

K̄b
3
i
. However, if we had some constraints on the projective depths (ᾱ4) for

a number of points we could find K̄b
3
i
. Once K̄b

3
i

is known for a particular

camera setup, we can use it to calculate the depths for any point matches.
Before we show how K̄b

3
i
can be evaluated, we will take a closer look at how

to find the {β̄j
∞
}.

380 Christian B.U. Perwass, Joan Lasenby

15.5 Vanishing Points and P �

We mentioned earlier that the {βj
∞
} are the projections of the {αi} onto

image plane B under the P∞-collineation. We can find the P∞-collineation
Ψ∞ from the projection pairs of three points on P∞ and the fundamental
matrix.

If two parallel world lines are projected onto an image plane, their pro-
jections are only parallel if the image plane is parallel to the world lines. The
intersection point of the projections of two parallel world lines is called a
vanishing point.

Two parallel world lines meet at infinity. In projective space P
3 this may

be expressed by saying that the intersection point of two parallel world lines
lies on P∞. Points on P∞ may also be interpreted as directions. Therefore,
intersecting a line with P∞ gives its direction. In this light, a vanishing point
is the projection of the intersection point of two parallel lines. Or, in other
words, it is the projection of a direction.

If we knew three vanishing points which are projections of three mutu-
ally orthogonal directions, we would know how a basis for the underlying
Euclidean space E

3 projects onto the camera used. This information can be
used to find the internal camera calibration [44]. Here our initial goal is to
find the relative camera calibration of the two cameras. We can then find an
affine reconstruction. To achieve this, we do not require the vanishing points
to relate to orthogonal directions. However, the more mutually orthogonal the
directions related to the vanishing points are, the better the reconstruction
will work.

15.5.1 Calculating Vanishing Points

Before we go any further with the actual reconstruction algorithm, let us take
a look at how to calculate the vanishing points. Suppose we have two image
point pairs {ᾱi

u1, ᾱ
i
u2} and {ᾱi

v1, ᾱ
i
v2}, defining two lines on image plane A,

which are projections of two parallel world lines. The vanishing point is the
intersection of lines Lu and Lv where

Lu = λu
i Li

a ; Lv = λv
i Li

a, (15.21)

and

λu
i1
≡ ᾱi2

u1
ᾱi3

u2
− ᾱi3

u1
ᾱi2

u2
; λv

i1
≡ ᾱi2

v1
ᾱi3

v2
− ᾱi3

v1
ᾱi2

v2
, (15.22)

are the homogeneous line coordinates. Also note that Li1
a ≡ Ai2 ∧ Ai3 (see

chapter 14). The intersection point Xa
uv of lines Lu and Lv is then given by

Xa
uv = Lu ∨ Lv = αi

uvAi, (15.23)

where

15. 3D-Reconstruction from Vanishing Points 381

αi1
uv ≡ (λv

i2
λu

i3
− λv

i3
λu

i2
). (15.24)

First of all note that the {αi
uv} define a point in P

2. Since we defined A1 and
A2 to be directions, the image point coordinates {x, y} in E

2 corresponding
to the {αi

uv}, are found to be {ᾱ1

uv, ᾱ
2

uv} through the projective split, where
ᾱi

uv ≡ αi
uv/α3

uv. Note that points which lie at infinity in E
2 can be expressed

in P
2 by points which have a zero third component. Such points will also be

called directions.
The fact that points at infinity in E

2 are nothing special in P
2 shows an

immediate advantage of using homogeneous coordinates for the intersection
points over using 2D-coordinates. Since we are looking for the intersection
point of the projections of two parallel world lines, it may so happen, that
the projections are also parallel, or nearly parallel. In that case, the 2D im-
age point coordinates of the vanishing point would be very large or tend to
infinity. This, however, makes them badly suited for numerical calculations.
When using homogeneous coordinates, on the other hand, we do not run into
any such problems.

15.5.2 Vanishing Points from Multiple Parallel Lines

Above we described how to find a vanishing point from the projections of two
parallel world lines. In practical applications the lines will only be known with
a finite precision and will also be subject to a measurment error. Therefore,
we could improve on the quality of a vanishing point if sets of more than two
parallel lines are known. In particular, the vanishing point quality is improved
if these parallel lines are taken from varying depths within in world scene. In
[191] we discuss a standard method, which consists of finding the null space
of a matrix of the homogeneous line coordinates. This method gives us the
best fitting vanishing point in homogeneous coordinates, in the least squares
sense.

Note that in [38] vanishing points are found as 2D-image point coordi-
nates, which means that only parallel world lines can be used that are not
parallel in the image. In [44] the projections of at least three parallel world
lines have to be known to calculate a vanishing point. The implementation of
our algorithm switches automatically between finding a vanishing point from
two parallel lines, and calculating it from multiple parallel lines, depending
on how much information is available.

15.5.3 Ψ
∞ from Vanishing Points

Now we return to our reconstruction algorithm. We discussed vanishing points
since they are projections of points on P∞. If we know three vanishing point
matches over cameras A and B and the epipoles, we can calculate the P∞-
collineation matrix Ψ∞. Once we have Ψ∞ we can find the projections of

382 Christian B.U. Perwass, Joan Lasenby

some image points {ᾱi
n} on image plane A, onto image plane B under the

P∞-collineation. That is,

β̄k
n∞

' ᾱi
n Ψ∞

i (15.25)

We can now use the {β̄j
n∞

} to find the {ζj
n} for equation (15.19).

15.6 3D-Reconstruction of Image Points

Now that we have found Ψ∞ and thus can calculate the {ζn} from equation
(15.20), we can think about how to find the correct depth values for the image
point matches {ᾱi

n, β̄j
n}.

We will perform an affine reconstruction. That is, we reconstruct in the
frame of camera A. When we plot our final reconstructed points we will
assume that the A-frame forms an orthonormal frame of E

3, though. However,
we do not need to assume anything about the frame of camera B, since
we will find the translation, rotation and internal calibration of camera B
relative to camera A. To find the internal calibration of camera A relative to
an orthonormal frame of E

3, we would need to know the projection of this
orthonormal set of directions onto camera A [44].

We have already found sets of parallel lines to calculate vanishing points.
We can reuse these sets of lines to constrain the depth values found with
equation (15.19). In particular, we will regard the {K̄b

3
i
} as free parameters.

If we now take the image point matches that define the projections of two
parallel world lines, we can use this extra information to constrain the {K̄b

3
i
}.

That is, we vary the free parameters until the reconstructed points define a
pair of parallel world lines again.

15.6.1 The Geometry

Before we start developing an algorithm to find the best {K̄b
3
i
} we will take

a quick look at the relevant geometry. In figure 15.3 we have drawn the
geometry underlying our reconstruction algorithm.

A4 and B4 are the optical centres of cameras A and B, respectively. We
have also chosen A4 to lie at the origin of E

3. Recall that A1, A2 and B1, B2

are direction vectors in P
3. We have drawn these vectors here as lying on the

image planes to indicate this.
A world point X is projected onto image planes A and B giving projec-

tions Xa and Xb, respectively. X∞

b is the projection of Xa onto image plane
B under the P∞-collineation. Also, Eba is the epipole of camera B.

Now we can see what the {ζ1n, ζ2n} components from equation (15.19)
express.

ζ1n ≡
β̄j

n∞
− β̄j

n

β̄j
n − ε̄j

ba

gives the ratio of the distance (in x or
y direction) between X∞

b and Xb, and
Xb and Eba.

15. 3D-Reconstruction from Vanishing Points 383

A 4

B4

B2

B
1

Xb
A 3

A 2

A 1

Eab

B3

Eba

Xb

8

Xa

X

Fig. 15.3. This figure shows the geometry behind equation (15.19). A point
X is projected onto cameras A and B, giving images Xa and Xb, respectively.
Projecting Xa onto image plane B under the P∞-collineation gives X∞

b . We
choose A4 to be the origin of

�
3 . Kb

3
i
gives the components of A1, A2 and A3

along B3

ζ2n ≡
β̄j

n∞
− ε̄j

ba

β̄j
n − ε̄j

ba

gives the ratio of the distance (in x or
y direction) between X∞

b and Eba, and
Xb and Eba.

Recall that Kb
3
i

= Ai ·B
3, that is, it gives the components of the {Ai}

along B3. Therefore, varying the {Kb
3
i
} means that we are moving B3, which

is the principal point on image plane B. Since X∞

b cannot change when we
vary Kb

3
i
the relation between B3 and B4 is fixed. Thus, changing B3 means

changing B4. In this respect, finding the correct {Kb
3
i
} means finding the

correct translation of camera B relative to camera A. The relative rotation
has already been fixed through finding P∞.

However, it is only the relative sizes of the {K̄b
3
i
} that are really important.

An overall scale factor will only change the depths of all reconstructed points
simultaneously. Therefore, we can fix the depth of one image point, to fix the
scale of K̄b

3
i
.

15.6.2 The Minimization Function

We mentioned before that we will use our knowledge of parallel lines once
again to constrain the {K̄b

3
i
} from equation (15.19). Let La

u = Xa
u1
∧Xa

u2
and

La
v = Xa

v1∧Xa
v2 be the projections of two parallel world lines onto image plane

A. In general we define world points and image points as

Xur ≡ ᾱµ
ur Aµ ; Xa

ur ≡ ᾱi
ur Ai

Xvr ≡ ᾱµ
vr Aµ ; Xa

vr ≡ ᾱi
vr Ai











r ∈ {1, . . . , n}. (15.26)

384 Christian B.U. Perwass, Joan Lasenby

Furthermore, if we know the image points on image plane B corresponding
to Xa

u1
, Xa

u2
, Xa

v1
and Xa

v2
, and we have found Ψ∞, then we can calculate

the corresponding ζs from equation (15.20). Equation (15.19) will now allow
us to find the projective depths for Xa

u1, Xa
u2, Xa

v1 and Xa
v2. Therefore, we

can calculate the world lines Lu = Xu1∧Xu2 and Lv = Xv1∧Xv2.
Now, we know that Lu and Lv are supposed to be parallel, which means

that they have to intersect P∞ in the same point. This will be the constraint
which we will use to find the correct {K̄b

3
i
}. Let X∞

u and X∞

v be defined as

X∞

u ≡ Lu ∨ P∞ ; X∞

v ≡ Lv ∨ P∞. (15.27)

Lines Lu and Lv are parallel iff

X∞

u ∧X∞

v = 0 (15.28)

Instead of using this condition we could also project Lu and Lv into E
3,

and then check that they are parallel. However, projecting into E
3 means

dividing through the projective depth, which means that our free parameters
are now in the denominator of a minimisation function. Apart from creating a
minimisation surface with singularities, the derivatives of such a minimisation
function will be more complicated and thus cost more computing time.

Finding the Minimisation Parameters. The following expression for
X∞

u is derived in more detail in [191].

X∞

u = Lu ∨ P∞ = χi
u A∞

i (15.29)

where

χi
u ≡ (λ̄u

i3 + λ̄u
i4) ; λ̄u

µ1µ2
≡ ᾱµ1

u1
ᾱµ2

u2
− ᾱµ2

u1
ᾱµ1

u2

A∞

1
≡ A1 ; A∞

2
≡ A2 ; A∞

3
≡ A3 − A4

(15.30)

The free parameters we have are the {K̄b
3
i
}. To make future equations

somewhat clearer we will define ϕi ≡ K̄b
3
i
. Hence, equation (15.19) will be

written as

ᾱ4

n = ᾱi
n ζ1n ϕi − ζ2n. (15.31)

Recall that lines Lu and Lv are parallel iff X∞

u ∧X∞

v = 0. We can now write
this expression in terms of the {χi}.

X∞

u ∧X∞

v = Λuv
i Li

∞
; Λuv

i1
≡ χi2

u χi3
v − χi3

u χi2
v (15.32)

with Li1
∞

≡ A∞

i2
∧A∞

i3
. Each of the {Λuv

i } has to be zero if X∞

u ∧X∞

v = 0.
Therefore, from an analytical point of view, the expression we should try to
minimise for each parallel line pair {Lu, Lv} is

∆uv : ϕj −→

3
∑

i=1

(Λuv
i)2. (15.33)

15. 3D-Reconstruction from Vanishing Points 385

Improving Computational Accuracy. However, for a computer with fi-
nite floating point precision, this equation poses a problem. The culprits in
this case are the {χi}. Recall that they give the direction of a line in homo-
geneous coordinates. Before they are used in equation (15.32) they should be
normalised to improve the precision of the equation on a computer.

χ̂i
u ≡

χi
u

√

∑

i (χi
u)2

(15.34)

Therefore, the minimisation function we will use is

∆uv : ϕj −→

3
∑

i=1

(Λ̂uv
i)2 ; Λ̂uv

i1
≡ χ̂i2

u χ̂i3
v − χ̂i3

u χ̂i2
v (15.35)

The Derivatives. The derivative of ∆uv is computationally not a particu-
larly expensive expression. Therefore, we can use a minimisation routine that
also uses the derivatives of the minimisation function. This will make the min-
imisation process more efficient and robust. Details about the derivatives can
be found in [191].

Implementing the Depth Constraint. At the moment the minimisation
function ∆uv depends on three parameters: the {ϕj}. However, we mentioned
earlier that we can fix, the depth of one point. This will reduce the number
of free parameters to two. How this is done best is described in [191]. It
turns out that constraining the depth of one point is necessary. Otherwise
the minimisation routine tries to push the whole scene to infinity.

The Minimisation Routine. We use a modified version of the conjugate

gradient method to perform the minimisation. This modified version is called
MacOpt and was developed by David MacKay [165]. It makes a number of
improvements over the conjugate gradient method as given in [195]. MacOpt
assumes that the minimisation surface is fundamentally convex with no local
minima. However, our surface is only of that shape near the absolute min-
imum6. It turns out that the success rate of finding the absolute minimum
can be improved if we first use the unnormalised χs to step towards the
minimum, and then use the normalised χs to find the minimum with high
accuracy. This is because the minimisation surface for the unnormalised χs
is of a convex shape, whereas the minimisation surface for the normalised χs
has a number of local minima.

6 A number of examples of minimisation surfaces and their corresponding recon-
structions are demonstrated by the program MVT, which can be downloaded
from C.Perwass’ home page. This program runs under Windows 95/98 and
NT4/5.

386 Christian B.U. Perwass, Joan Lasenby

Image Point Normalisation. Before we can calculate the collineation ten-
sor for the P∞-collineation we have to find the fundamental matrix (F) for
the two views (see equation (15.8)). For the calculation of the fundamental
matrix we cannot use the pixel coordinates directly, because they are typi-
cally too large to obtain good accuracy in our numerical calculations. This
is also true for all other calculations performed here. Therefore, we need to
scale the image point coordinates so that they are of order 1.

In [106] Hartley suggests that the scales and skews applied to the image
point coordinates are found in the following way. The skew is given by the
coordinates of the centroid of all image points. Then the average distance of
the skewed image points from the origin is calculated. The inverse of that
distance gives the scale.

This is a good method if we just wanted to calculate F . However, it turns
out that for our purposes such a scaling is not suitable. In fact, we found
that it is important to conserve the aspect ratio of the images (separately),
and to ensure that the origin of the image plane is chosen in the same way
in both images.

We choose the image plane origin to be in the centre of each image plane
and then scale the image points by dividing their x and y coordinate by the
image resolution in the x-direction. This preserves the aspect ratio.

15.7 Experimental Results

We can now outline the structure of our reconstruction algorithm.

Step 1: We find point matches and sets of projections of par-
allel lines over the two images.

Step 2: We calculate three vanishing points and the fun-
damental matrix. This allows us to find the P∞-
collineation matrix Ψ∞.

Step 3: We select a set of parallel lines that we want to use
to constrain our minimisation. Note that one pair of
parallel lines may be enough. More pairs do not nec-
essarily improve the result, since they may not be
consistent due to errors.

Step 4: The image points on image plane A which define the
chosen parallel lines are projected onto image plane
B under the P∞-collineation with Ψ∞.

Step 5: We can now find the {Kb
3
i
} by minimising equation

(15.33) or equation (15.35).

Step 6: Once we have found Kb
3
i
we can use it in conjunction

with Ψ∞ in equation (15.31) to reconstruct any other
image point matches for this camera setup.

15. 3D-Reconstruction from Vanishing Points 387

15.7.1 Synthetic Data

To test the quality of the reconstructions we created synthetic data. The
advantage of using synthetic data is that we can get a geometric quality
measure of the reconstruction. Also if an algorithm fails with synthetic data
it is clearly unlikely to work with real data.

Fig. 15.4. The synthetic data was created from pro-
jecitons of the house onto the cameras

The lower picture in figure 15.4 shows a house with three cameras. The
three smaller pictures on top show the projections of the house onto the
three image planes. The house consists of 18 vertices, which were all used in
our calculations. We performed two trials: trial 1 uses an orthogonal set of
vanishing points. Trial 2 uses two orthogonal vanishing points but the third
vanishing point is found from the two lines on the roof which are vertically
sloping and closest to the camera. In each trial we also tested two camera
configurations: the camera to the very left and the very right, and the two
cameras which are close together. The former will be called the far cameras

and the latter the close cameras configuration.
Recall that we can and, in fact, have to fix the depth of one point. Since we

know the true points we can set this depth to its true value. Also remember
that we perform our reconstruction in the frame of one of the cameras. But

388 Christian B.U. Perwass, Joan Lasenby

we also know this frame and can therefore transform our reconstructed points
to lie in the appropriate frame. The reconstruction obtained in this way can
then be compared directly with the true object.

In our experiments we added a Gaussian error with a mean deviation
between 0 and 12 pixels to the image points. The camera resolutions were
600× 600 pixels. For each setting of the mean deviation of the induced error
we calculated the {Kb

3
i
} 100 times, each time with different errors, to obtain

a statistically meaningful result. Each calculation of the {Kb
3
i
} can be used to

reconstruct any image point matches in the two images. Therefore, we pro-
jected the house again onto the two image planes, again introducing an error
of the same mean deviation. These image points are then reconstructed and
compared with the true points. This was done 20 times for each calculation
of the {Kb

3
i
}. This way we obtained a separation of the calibration and the

reconstruction.
The quality measure of a reconstruction is given by the root mean squared

error between the locations of the reconstructed points and the true points.
That is, we take the root of the mean of the sum of the distances squared
between the true and the reconstructed points. We evaluated the RMS error
over the 20 reconstructions for each calibration (i.e. calculation of the {K b

3
i
}),

and also over all calculations of the {Kb
3
i
} for each mean deviation of the

induced error. The former will be called the “RMS/Trial” and the latter the
“Total RMS”.

Reconstruction Quality
(Trial 1)

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

0 1 2 3 4 5 6 7 8 9 10 11 12

Mean Deviation of Induced Error in Pixels

G
e
o

m
e
tr

ic
 R

M
S

 E
rr

o
r

RMS/Trial (close cameras)

Total RMS (close cameras)

RMS/Trial (far cameras)

Total RMS (far cameras)

Fig. 15.5. Comparison of reconstruction quality for first trial

15. 3D-Reconstruction from Vanishing Points 389

Reconstruction Quality
(Trial 2)

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

0 1 2 3 4 5 6 7 8 9 10 11 12

Mean Deviation of Induced Error in Pixels

G
e
o

m
e
tr

ic
 R

M
S

 E
rr

o
r

RMS/Trial (close cameras)

Total RMS (close cameras)

RMS/Trial (far cameras)

Total RMS (far cameras)

Fig. 15.6. Comparison of reconstruction quality for second trial

Figure 15.5 shows the results when using an orthogonal set of vanishing
points and figure 15.6 when using a non-orthogonal set, as described above.
Note that the y-axis has a log

10
scale. The length of the house is 2 units, its

total height 1.5 units and its depth 1 unit. The results for the close camera
configuration are slighty displaced to the right, so that they can be distin-
guished from the far cameras setup.

The first thing we can see from the graphs is that as the induced error
increases over 6 pixels we start to get error configurations where the algorithm
breaks down. This can be either due to the minimisation getting stuck in local
minima or because the absolute minimum is at a wrong position. The latter
is possible since the minimisation surface depends on Ψ∞ and F.

Furthermore, it can be seen that the far cameras configuration is more
immune to induced errors than the close cameras configuration. Also the
non-orthogonal set of vanishing points fares worse than the orthogonal one.
Curiously, in trial 2 the far cameras configuration is worse than the close
cameras configuration.

In general it can be seen, though, that an error with a mean deviation
of up to 5 pixels still gives acceptable reconstructions. It might seem odd,
though, that if some error is introduced into the image points, the reconstruc-
tion can actually be better than with no noise at all. This is because even if
no additional error is applied, there is still an error due to the digitisation

390 Christian B.U. Perwass, Joan Lasenby

in the cameras. Particular configurations of induced error can compensate
for that by chance. However, the figures also show that the probability of
the added error improving the reconstruction is about as high as making
the reconstruction worse (relative to the total RMS). Nevertheless, this fact
supplies us with an interesting idea: we might be able to improve our recon-
structions from real data by adding noise to the image points. To be more
precise, we could vary the image point coordinates slightly until we obtain
an improved reconstruction. Since our calibration algorithm is quite fast it
seems feasible to employ maximum entropy methods. We will discuss this in
future work.

Note that we have calculated F with a simple method which does not
enforce the rank 2 constraint on F . Nevertheless, the reconstruction qual-
ity is quite good, which seems to indicate that a highly accurate F is not
very important for our algorithm. Therefore, it appears that in certain cases
fully constraint evaluations of F are not necessary to obtain good results.
Of course, using a fully contraint F might improve the results. Research on
calculating F or the trifocal tensor (which is a related problem) optimally
can be found in [106, 108, 147, 189, 80, 84, 120].

15.7.2 Real Data

Fig. 15.7. Initial images with parallel lines used for the calculation of the vanishing
points and minimisation function indicated

The real test for any reconstruction algorithm is the reconstruction of
a real world scene, though. Figure 15.7 shows two views of a chessboard
which we used for reconstruction7. The original images had a resolution of

7 These pictures were actually taken by C.Perwass’ father, in a different country,
with equipment unknown to the authors. They were then sent via email to the
authors. That is, the only thing known about the pictures to the authors, are
the pictures themselves.

15. 3D-Reconstruction from Vanishing Points 391

Fig. 15.8. Reconstruction of the chessboard (Schachbrett)

1280 × 960 pixels. The lines indicate the parallel lines used to calculate the
vanishing points. The two sets of parallel lines on the front of the chessbox
were used in the minimisation routine. The fundamental matrix used was
calculated from 13 point matches. The resultant reconstruction8 can be seen
in figure 15.8.

The different views of the reconstruction show that the chessbox was
reconstructed quite well. However, the chessboard is not really square. Re-
member, though, that this is only an affine reconstruction drawn in an or-
thonormal frame. That is, we assume that the camera frame is orthonormal.
Furthermore, we have only used two line pairs and one line triplet to find

8 This and other reconstructions, as well as some more analysis of the reconstruc-
tion algorithm are demonstrated by the program MVT, which can be downloaded
from C.Perwass’ home page.

392 Christian B.U. Perwass, Joan Lasenby

three vanishing points, of which only two relate to orthogonal directions in
E

3. The reconstruction might be improved by exploiting all the parallel lines
available, of which there are many on a chessboard.

Also note that the front side of the chessboard is reconstructed very nicely,
at a proper right angle to its top side. The chess figure, which can be seen best
in the bottom left hand view of figure 15.8, is not reconstructed particularly
well, though. This is because it is very difficult to find matching point sets
for round objects.

15.8 Conclusions

We have presented here an algorithm for the affine reconstruction of 3D scenes
from two static images. The information we need is firstly point matches over
the two images, and secondly at least three sets of parallel lines. From this
information alone we implicitly9 find the internal calibration, rotation and
translation of the second camera relative to the first one. This allows us
to perform an affine reconstruction of the scene. Assuming that the three
sets of parallel lines are mutually orthogonal we could also find the internal
calibration of the first camera.

Our algorithm is clearly not automatic. This is because apart from the
point matches, combinations of vanishing points and parallel lines can be
chosen freely. Also the information that certain lines in an image are actually
parallel in the world, is a knowledge-based decision that humans are easily
capable of, but not computers.

Advantages of our algorithm are that it is fast and that the reconstruction
is robust for a particular calibration. On a PentiumII/233MHz under Win-
dows 98 it took on average 160ms for a calibration (10000 trials). This time
includes updating of dialog boxes. In an optimised program this time could
probably be reduced to less than half. Robustness of the calibration depends
mostly on the set of vanishing points used. The more similar the directions
the vanishing points describe are, the less robust the calibration is.

We believe that apart from presenting an interesting affine reconstruction
algorithm we have also shown that GA is a useful tool which allows us to
gain geometric insight into a problem.

9 Future work will look at how these entities can be found explicitly.

