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14.1 Introduction

Multiple view tensors play a central role in many areas of Computer Vision.
The Fundamental Matrix, Trifocal Tensor and Quadfocal Tensor have been
investigated by many researchers using a number of different formalisms.
For example, standard matrix analysis has been used in [106] and [215]. An
analysis of multiple view tensors in terms of Grassmann-Cayley (GC) algebra
can be found in [82], [184], [80]. Geometric Algebra (GA) has also been applied
to the problem [189], [190], [147], [146].

In this article we will show how Geometric Algebra can be used to give a
unified geometric picture of multiple view tensors. It will be seen that with
the GA approach multiple view tensors can be derived from simple geometric
considerations. In particular, constraints on the internal structure of multiple
view tensors will all be derived from the trivial fact that the intersection
points of a line with three planes, all lie along a line. Our analysis will also
show how closely linked the numerous different expressions for multiple view
tensors are.

The structure of this article will be as follows. First we give a short intro-
duction to projective geometry, mainly to introduce our notation. We then
describe the Fundamental Matrix, the Trifocal Tensor and the Quadfocal Ten-
sor in detail, investigating their derivations, inter-relations and other prop-
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erties. Following on from these analytical investigations, we show how the
self-consistency of a trifocal tensor influences its reconstruction quality. We
end this article with some conclusions and a table summarising the main
properties of the three multiple view tensors described here.

14.2 Projective Geometry

In this section we will outline the GA framework for projective geometry. We
assume that the reader is familiar with the basic ideas of GA and is able to
manipulate GA expressions.

We define a set of 4 orthonormal basis vectors {e1, e2, e3, e4} with signa-
ture {−−−+}. The pseudoscalar of this space is defined as I = e1∧e2∧e3∧e4.
A vector in this 4D-space (P3), which will be called a homogeneous vector,
can then be regarded as a projective line which describes a point in the
corresponding 3D-space (E3). Also, a line in E

3 is represented in P
3 by the

outer product of two homogeneous vectors, and a plane in E
3 is given by the

outer product of three homogeneous vectors in P
3. In the following, homoge-

neous vectors in P
3 will be written as capital letters, and their corresponding

3D-vectors in E
3 as lower case letters in bold face.

Note that the set of points {X} that lie on a line (A∧B) are those that
satisfy X∧(A∧B) = 0. Similarly, a plane is defined through the set of points
{X} that satisfy X∧(A∧B∧C) = 0. Therefore, it is clear that if two lines,
or a line and a plane intersect, their outer product is zero.

The projection of a 4D vector A into E
3 is given by,

a =
A∧e4

A·e4

This is called the projective split. Note that a homogeneous vector with no
e4 component will be projected onto the plane at infinity.

A set {Aµ} of four homogeneous vectors forms a basis or frame of P
3

if and only if (A1∧A2 ∧A3 ∧A4) 6= 0. The characteristic pseudoscalar of
this frame for 4 such vectors is defined as Ia = A1∧A2∧A3∧A4. Note that
Ia = ρaI, where ρa is a scalar. This and results relating the inner products
of multivectors with the pseudoscalars of the space are given in [190].

Another concept which is very important in the analysis to be presented
is that of the dual of a multivector X . This is written as X∗ and is defined as
X∗ = XI−1. It will be extremely useful to introduce the dual bracket and
the inverse dual bracket. They are related to the bracket notation as used
in GC algebra and GA, [146]. The bracket of a pseudoscalar P is a scalar,
defined as the dual of P in GA. That is, [P ] = PI−1. The dual and inverse
dual brackets are defined as

[[Aµ1
· · ·Aµn

]]a ≡ (Aµ1
∧. . .∧Aµn

)I−1

a (14.1a)

[[Aµ1
· · ·Aµn

]] ≡ (Aµ1
∧. . .∧Aµn

)I−1 (14.1b)
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〈〈Aµ1
· · ·Aµn

〉〉a ≡ (Aµ1
∧. . .∧Aµn

)Ia (14.2a)

〈〈Aµ1
· · ·Aµn

〉〉 ≡ (Aµ1
∧. . .∧Aµn

)I (14.2b)

with n ∈ {0, 1, 2, 3, 4}. The range given here for n means that in P
3 none,

one, two, three or four homogeneous vectors can be bracketed with a dual or
inverse dual bracket. For example, if P = A1∧A2∧A3∧A4, then [[A1A2A3A4]] =
[[P ]] = [P ] = ρa.

Using this bracket notation the normalized reciprocal A-frame, written
{Aµ

a}, is defined as Aµ1

a = [[Aµ2
Aµ3

Aµ4
]]a. It is also useful to define a standard

reciprocal A-frame: Aµ1 = [[Aµ2
Aµ3

Aµ4
]]. Then, Aµ ·A

ν
a = δν

µ and Aµ ·A
ν =

ρaδν
µ, where δν

µ is the Kronecker delta. That is, a reciprocal frame vector is

nothing else but the dual of a plane. In the GC algebra these reciprocal vectors
would be defined as elements of a dual space, which is indeed what is done in
[80]. However, because GC algebra does not have an explicit inner product,
elements of this dual space cannot operate on elements of the “normal” space.
Hence, the concept of reciprocal frames cannot be defined in the GC algebra.

A reciprocal frame can be used to transform a vector from one frame into
another. That is, X = (X ·Aµ

a )Aµ = (X ·Aν )Aν
a. Note that in general we

will use greek indices to count from 1 to 4 and latin indices to count from 1
to 3. We also adopt the convention that if a subscript index is repeated as a
superscript, or vice versa, it is summed over its implicit range, unless stated
otherwise. That is,

∑
4

µ=1
(X ·Aµ

a )Aµ ≡ (X ·Aµ
a )Aµ.

It will be important later not only to consider vector frames but also line
frames. The A-line frame {Li

a} is defined as Li1
a = Ai2∧Ai3 . The {i1, i2, i3}

are assumed to be an even permutation of {1, 2, 3}. The normalised reciprocal

A-line frame {L̄a
i } and the standard reciprocal A-line frame {La

i } are given by
L̄a

i = [[AiA4]]a and La
i = [[AiA4]], respectively. Hence, Li

a·L̄
a
j = δi

j and Li
a·L

a
j =

ρaδi
j . Again, this shows the universality of the inner product: bivectors can

be treated in the same fashion as vectors.
The meet and join are the two operations needed to calculate intersections

between two lines, two planes or a line and a plane – these are discussed in
more detail in [190], [146] and [118]; here we will give just the most relevant
expression for the meet. If A and B represent two planes or a plane and a
line in P

3 their meet may be written as

A ∨ B = 〈〈[[A]][[B]]〉〉 = [[A]]·B ≡ (AI−1)·B (14.3)

From this equation it also follows that

〈〈A〉〉 ∨ 〈〈B〉〉 = 〈〈AB〉〉 (14.4)

Later on we will need the dual representations of points and lines. For
lines they are given by,
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Li1
a = Ai2∧Ai3 ' 〈〈Ai1

a A4

a〉〉 and Ai1∧A4 ' 〈〈Ai2
a Ai3

a 〉〉 (14.5)

The symbol ' denotes equality up to a scalar factor. This shows that a
line can either be expressed as the outer product of two vectors or by the
intersection of two planes, since 〈〈Ai1

a A4
a〉〉 = 〈〈Ai1

a 〉〉∨〈〈A4
a〉〉. Similarly, for points

we have

Aµ1
' 〈〈Aµ2

a Aµ3

a A4

a〉〉 (14.6)

That is, a point can also be described as the intersection of three planes.
A pinhole camera can be defined by 4 homogeneous vectors in P

3: one
vector gives the optical centre and the other three define the image plane
[147], [146]. Thus, the vectors needed to define a pinhole camera also define
a frame for P

3. Conventionally the fourth vector of a frame, eg. A4, defines
the optical centre, and the outer product of the other three defines the image
plane.

Suppose that X is given in some frame {Zµ} as X = ζµZµ, it can be
shown [190] that the projection of some point X onto image plane A can be
written as

Xa = (X ·Ai )Ai = (ζµ Zµ ·A
i )Ai = ζµKi

µ
Ai ; Ki

µ
≡ Zµ ·A

i (14.7)

The matrix Ki
µ

is the camera matrix of camera A, for projecting points given

in the Z-frame onto image plane1 A. In general we will write the projection

of some point X onto image plane P as X
P
−→ Xp.

In [80] the derivations begin with the camera matrices by noting that the
row vectors refer to planes. As was shown here, the row vectors of a camera
matrix are the reciprocal frame vectors {Ai}, whose dual is a plane.

With the same method as before, lines can be projected onto an image
plane. For example, let L be some line in P

3, then its projection onto image
plane A is: (L∧A4) ∨ (A1∧A2∧A3) = (L·La

i )Li
a.

An epipole is the projection of the optical centre of one camera onto the
image plane of another. Therefore epipoles contain important information
about the relative placements of cameras.

As an example consider two cameras A and B represented by frames
{Ai} and {Bi}, respectively. The projection of the optical centre of camera
B onto image plane A will be denoted Eab. That is, Eab = B4 ·A

iAi or
simply Eab = εi

abAi, with εi
ab ≡ B4 ·A

i. Note, that we adopted the general
GA convention that the inner product takes precedence over the geometric
product2.The only other epipole in this two camera set-up is Eba given by

1 Note that the indices of K are not given as super- and subscripts of K but are
raised (or lowered) relative to each other. This notation was adopted since it
leaves the superscript position of K free for other usages.

2 Also, the outer product has precedence over the inner product. That is, A·B∧C =
A · (B ∧ C).
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Eba = A4·B
iBi. This may also be written as Eba = εi

baBi, with εi
ba ≡ A4·B

i.
If there are three cameras then each image plane contains two epipoles. With
four cameras each image plane contains three epipoles. In general the total
number of epipoles is N(N − 1) where N is number of cameras present.

Let {Bµ} define a camera in P
3 and {Aµ} be some other frame of the same

projective space. Also, define A4 to be the origin of P
3. Then Eba contains

some information about the placement of camera B relative to the origin.
Therefore, A4 ·B

j may be regarded as a unifocal tensor Ub.

U i
b ≡ εi

ba = A4 ·B
i = Kb

i
4

' 〈〈A1A2A3Bi〉〉 (14.8)

Obviously the unifocal tensor is of rank 1. The definition of a unifocal tensor
is only done for completeness and is not strictly necessary since every unifocal
tensor is also an epipole vector.

Later on we will have to deal with determinants of various 3×3 matrices.
Such a determinant can be written in terms of the εijk operator, which is
defined as

εijk =







+1 if the {ijk} form an even permutation of {123}

0 if any two indices of {ijk} are equal

−1 if the {ijk} form an odd permutation of {123}

(14.9)

Let αia

1
, αib

2
and αic

3
give the three rows of a 3 × 3 matrix M . Then the

determinant of M is det(M) = εiaibic
αia

1
αib

2
αic

3
. Note that there is an implicit

summation over all indices. It will simplify the notation later on if we define

det(αia

1
, αib

2
, αic

3
)iaibic

= det(αi
j)ij ≡ εiaibic

αia

1
αib

2
αic

3
= det(M) (14.10)

Furthermore, if the rows of the matrix M are written as vectors aj = αi
jei,

then we can also adopt the notation

det(a1, a2, a3) = |a1a2a3| ≡ det(M) (14.11)

As an example, let the {Aµ} form a frame of P
3, with reciprocal frame

{Aµ}. Then from the definition of the square and angle brackets, it follows
that

εiaibic
= [[Aia

Aib
Aic

A4]]a and εiaibic = 〈〈AiaAibAicA4〉〉a (14.12)

Therefore, we may, for example, express a determinant as det(αi
j)ij =

αia

1
αib

2
αic

3
[[Aia

Aib
Aic

A4]]a.

14.3 The Fundamental Matrix

14.3.1 Derivation

Let {Aµ} and {Bµ} define two cameras in P
3. A point X in P

3 may be
transformed into the A and B frames via
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X = X ·Aµ
aAµ = X ·Bν

b Bν (14.13)

Recall that there is an implicit summation over µ and ν. From that follows
that the line A4∧X can also be written as

A4∧X = X ·Ai
a A4∧Ai

= ρ−1

a A4∧Xa

(14.14)

where Xa = X ·Ai Ai. Let Xa and Xb be the images of some point X ∈ P
3

taken by cameras A and B, respectively. Then, since the lines from A and B
to X intersect at X

0 = (A4∧X ∧ B4∧X )I−1

' (A4∧Xa ∧ B4∧Xb )I−1

= αiβj [[A4AiB4Bj ]]

(14.15)

where αi ≡ X ·Ai and βj ≡ X ·Bj are the image point coordinates of Xa

and Xb, respectively. Therefore, for a Fundamental Matrix defined as

Fij ≡ [[A4AiB4Bj ]] (14.16)

we have

αiβjFij = 0 (14.17)

if the image points given by {αi} and {βj} are images of the same point in
space. Note, however, that equation (14.17) holds as long as Xa is the image
of any point along A4∧Xa and Xb is the image of any point along B4∧Xb. In
other words, the condition in equation (14.17) only ensures that lines A4∧Xa

and B4∧Xb are co-planar.
In the following let any set of indices of the type {i1, i2, i3} be an even

permutation of {1, 2, 3}. It may be shown that

[[B4Bj1 ]] ' Bj2∧Bj3 (14.18)

Thus, equation (14.16) can also be written as

Fij1 ' (Ai∧A4)·(B
j2∧Bj3 ) (14.19)

This may be expanded to

Fij1 = (A4 ·B
j2)(Ai ·B

j3) − (A4 ·B
j3)(Ai ·B

j2)

= U j2
b Kb

j3i − U j3
b Kb

j2i

(14.20)

That is, the Fundamental Matrix is just the standard cross product between
the epipole3 U•

b and the column vectors Kb
•
i
.

Fi• ' U•
b × Kb

•
i

(14.21)

In order to have a unified naming convention the Fundamental Matrix will
be refered to as the bifocal tensor.

3 Recall that Ub ≡ Eba.
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14.3.2 Rank of F

Note that we use the term “rank” in relation to tensors in order to generalise
the notion of rank as used for matrices. That is, we would describe a rank 2
matrix as a rank 2, 2-valence tensor.

In general a tensor may be decomposed into a linear combination of rank
1 tensors. The minimum number of terms necessary for such a decomposition
gives the rank of the tensor. For example, a rank 1, 2-valence tensor M is
created by combining the components {αi}, {βi} of two vectors as M ij =
αiβj .

The rank of F can be found quite easily from geometric considerations.
Equation (14.16) can also be written as

Fij ' Ai ·[[A4B4Bj ]] (14.22)

The expression [[A4B4Bj ]] gives the normal to the plane (A4∧B4∧Bj). This
defines three planes, one for each value of j, all of which contain the line
A4∧B4. Hence, all three normals lie in a plane. Furthermore, no two nor-
mals are identical since the {Bj} are linearly independent by definition. It
follows directly that at most two columns of Fij can be linearly independent.
Therefore, F is of rank 2.

The rank of the bifocal tensor F can also be arrived at through a minimal

decomposition of F into rank 1 tensors. To achieve this we first define a new
A-image plane frame {A′

i} as

A′
i ≡ s(Ai + tiA4) (14.23)

where s and the {ti} are some scalar components. Thus we have

A4∧A′
i = sA4∧(Ai + tiA4)

= sA4∧Ai

(14.24)

Hence, F is left unchanged up to an overall scale factor under the transfor-
mation Ai −→ A′

i. In other words, the image plane bases {Ai} and {Bj} can
be changed along the projective rays {A4∧Ai} and {B4∧Bj}, respectively,
without changing the bifocal tensor relating the two cameras. This fact limits
the use of the bifocal tensor, since it cannot give any information about the
actual placement of the image planes.

Define two bifocal tensors F and F ′ as

Fij = [[A4AiB4Bj ]] (14.25a)

F ′
ij = [[A4A

′
iB4Bj ]] (14.25b)

From equation (14.24) it follows directly that Fij ' F ′
ij . Since the {A′

i} can
be chosen arbitrarily along the line A4∧Ai we may write

A′
i = (A4∧Ai) ∨ P (14.26)
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where P is some plane in P
3. P = (B4∧B1∧B2) seems a good choice, since

then the {A′
i} all lie in a plane together with B4. The effect of this is that

the projections of the {A′
i} on image plane B will all lie along a line. The

matrix A′
i ·B

j therefore only has two linearly independent columns because
the column vectors are the projections of the {A′

i} onto image plane B. That
is, A′

i ·B
j , which is the 3 × 3 minor of Kb, is of rank 2.

This matrix could only be of rank 1, if the {A′
i} were to project to a

single point on image plane B, which is only possible if they lie along a line
in P

3. However, then they could not form a basis for image plane A which
they were defined to be.

Thus A′
i·B

j can minimally be of rank 2. Such a minimal form is what we
need to find a minimal decomposition of F into rank 1 tensors using equation
(14.20). Substituting P = (B4∧B1∧B2) into equation (14.26) gives

A′
i = (A4∧Ai) ∨ (B4∧B1∧B2)

= [[A4Ai]]·(B4∧B1∧B2)

= [[A4AiB4B1]]B2 − [[A4AiB4B2]]B1 + [[A4AiB1B2]]B4

= Fi1B2 − Fi2B1 + [[A4AiB1B2]]B4

(14.27)

Expanding F ′ in the same way as F in equation (14.20) and substituting the
above expressions for the {A′

i} gives

F ′
ij1 = (A4 ·B

j2)(A′
i ·B

j3) − (A4 ·B
j3)(A′

i ·B
j2)

= (A4 ·B
j2)

[

− Fi2(B1 ·B
j3) + Fi1(B2 ·B

j3)
]

− (A4 ·B
j3)

[

− Fi2(B1 ·B
j2) + Fi1(B2 ·B

j2)
]

= εj2
ba

[

− Fi2δ
j3
1

+ Fi1δ
j3
2

]

− εj3
ba

[

− Fi2δ
j2
1

+ Fi1δ
j2
2

]

= Fi1

[

εj2
baδj3

2
− εj3

baδj2
2

]

− Fi2

[

εj2
baδj3

1
− εj3

baδj2
1

]

(14.28)

where we used the fact that B4 · Bj = 0. Clearly, Fi1, Fi2 and the expres-
sions in the square brackets all represent vectors. Therefore, equation (14.28)
expresses F ′ as a linear combination of two rank 1 tensors (matrices). This
shows again that the bifocal tensor is of rank 2.

But why should we do all this work of finding a minimal decomposition of
F if its rank can be found so much more easily from geometric considerations?
There are two good reasons:

1. for the trifocal and quadfocal tensor, a minimal decomposition will be
the easiest way to find the rank, and
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2. such a decomposition is useful for evaluating F with a non-linear al-
gorithm, since the self-consistency constraints on F are automatically
satisfied.

14.3.3 Degrees of Freedom of F

Equation (14.28) is in fact a minimal parameterisation of the bifocal tensor.
This can be seen by writing out the columns of F ′.

F ′
i1 = −ε3

baFi1 ; F ′
i2 = −ε3

baFi2 ; F ′
i3 = ε1

baFi1 + ε2

baFi2 (14.29)

As expected, the third column (Fi3) is a linear combination of the first two.
Since an overall scale is not important we can also write

F ′
i1 = Fi1 ; F ′

i2 = Fi2 ; F ′
i3 = −ε̄1

baFi1 − ε̄2

baFi2 (14.30)

where ε̄i
ba ≡ εi

ba/ε3

ba. This is the most general form of a rank 2, 3× 3 matrix.
Furthermore, since there are no more constraints on Fi1 and Fi2 this is also
a minimal parameterisation of the bifocal tensor. That is, eight parameters
are minimally necessary to form the bifocal tensor. It follows that since an
overall scale is not important the bifocal tensor has seven degrees of freedom
(DOF).

This DOF count can also be arrived at from more general considerations:
each camera matrix has 12 components. However, since an overall scale is
not important, each camera matrix adds only 11 DOF. Furthermore, the
bifocal tensor is independent of the choice of basis. Therefore, it is invariant
under a projective transformation, which has 16 components. But again, an
overall scale is not important. Thus only 15 DOF can be subtracted from the
DOF count due to the camera matrices. For two cameras we therefore have
2 × 11 − 15 = 7 DOF.

14.3.4 Transferring Points with F

The bifocal tensor can also be used to transfer a point in one image to a line
in the other. Starting again from equation (14.16) the bifocal tensor can be
written as

Fij = [[AiA4BjB4]]

= (Ai∧A4)·[[BjB4]]

= (Ai∧A4)·L
b
j

(14.31)

This shows that Fij gives the components of the projection of line (Ai∧A4)
onto image plane B. Therefore,

(Ai∧A4)
B
−→ FijL

j
b. (14.32)
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Since A4

B
−→ Eba (the epipole on image plane B), FijL

j
b defines an epipolar

line.
Thus, contracting F with the coordinates of a point on image plane A,

results in the homogeneous line coordinates of a line passing through the
corresponding point on image plane B and the epipole Eba.

αiFij = λb
j (14.33)

where the {αi} are some point coordinates and the {λb
j} are the homogeneous

line coordinates of an epipolar line.

14.3.5 Epipoles of F

Recall that if there are two cameras then two epipoles are defined;

Eab ≡ B4 ·A
iAi = εi

abAi (14.34a)

Eba ≡ A4 ·B
iBi = εi

baBi (14.34b)

Contracting Fij with εi
ab gives

εi
abFij = εi

ab[[A4AiB4Bj ]]

= ρa[[A4(B4 ·A
i
a Ai)B4Bj ]]

= ρa[[A4B4B4Bj ]] ; from equation (14.14)

= 0

(14.35)

Similarly,

εj
baFij = 0 (14.36)

Therefore, vectors {εi
ab} and {εj

ba} can be regarded respectively as the left
and right null spaces of matrix F . Given a bifocal tensor F , its epipoles can
therefore easily be found using, for example, a singular value decomposition
(SVD).

14.4 The Trifocal Tensor

14.4.1 Derivation

Let the frames {Aµ}, {Bµ} and {Cµ} define three distinct cameras. Also, let
L = X∧Y be some line in P 3. The plane L∧B4 is then the same as the plane
λb

iL
i
b∧B4, up to a scalar factor, where λb

i = L·Lb
i . But,

Li1
b ∧B4 = Bi2∧Bi3∧B4 = 〈〈Bi1〉〉

Intersecting planes L∧B4 and L∧C4 has to give L. Therefore, (λb
i 〈〈B

i〉〉) ∨
(λc

j〈〈C
j〉〉) has to give L up to a scalar factor. Now, if two lines intersect, their

outer product is zero. Thus, the outer product of lines X∧A4 (or Y ∧A4) and
L has to be zero. Note that X∧A4 defines the same line as (αiAi)∧A4, up
to a scalar factor, where αi = X ·Ai . Figure 14.1 shows this construction.
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L ^b
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Fig. 14.1. Line projected onto three image planes. Note that although the figure
is drawn in

�
3 , lines and points are denoted by their corresponding vectors in � 3

Combining all these expressions gives

0 = (X∧A4∧L)I−1

= αiλb
jλ

c
k

[[

(Ai∧A4)(〈〈B
j〉〉 ∨ 〈〈Ck〉〉)

]]

= αiλb
jλ

c
k

[[

(Ai∧A4)〈〈B
jCk〉〉

]]

(14.37)

where the identity from equation (14.4) was used. If the trifocal tensor T
i
jk

is defined as

T
i
jk =

[[

(Ai∧A4)〈〈B
jCk〉〉

]]

(14.38)

then, from equation (14.37) it follows that it has to satisfy αiλb
jλ

c
kT

i
jk =

0. This expression for the trifocal tensor can be expanded in a number of
different ways. One of them is,

T
i
jk = (Ai∧A4)·[[〈〈B

jCk〉〉]]

= (Ai∧A4)·(B
j∧Ck)

= (A4 ·B
j)(Ai ·C

k) − (A4 ·C
k)(Ai ·B

j)

= U j
b Kc

k
i
− Uk

c Kb
j
i

(14.39)
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where Kb
j
i
≡ Ai ·B

j and Kc
k
i
≡ Ai ·C

k are the camera matrix minors for

cameras B and C, respectively, relative to camera A. This is the expression
for the trifocal tensor given by Hartley in [106]. Note that the camera matrix
for camera A would be written as Ka

j
µ
≡ Aµ ·A

j ' δj
i . That is, Ka = [I|0]

in standard matrix notation. In many other derivations of the trifocal tensor
(eg. [106]) this form of the camera matrices is assumed at the beginning.
Here, however, the trifocal tensor is defined first geometrically and we then
find that it implies this particular form for the camera matrices.

14.4.2 Transferring Lines

The trifocal tensor can be used to transfer lines from two images to the third.
That is, if the image of a line in P

3 is known on two image planes, then its
image on the third image plane can be found. This can be seen by expanding
equation (14.38) in the following way,

T
i
jk = [[AiA4]]·〈〈B

jCk〉〉

= La
i ·〈〈B

jCk〉〉
(14.40)

This shows that the trifocal tensor gives the homogeneous line components
of the projection of line 〈〈BjCk〉〉 onto image plane A. That is,

〈〈BjCk〉〉
A
−→ T

i
jkLi

a (14.41)

It will be helpful later on to define the following two lines.

T jk ≡ 〈〈BjCk〉〉 (14.42a)

T jk
a ≡ T

i
jkLi

a (14.42b)

such that T jk A
−→ T jk

a . Let the {λb
j} and {λc

k} be the homogeneous line

coordinates of the projection of some line L ∈ P
3 onto image planes B and

C, respectively. Then recall that λb
jλ

c
k〈〈B

jCk〉〉 gives L up to an overall scalar
factor, i.e.

L ' λb
jλ

c
k〈〈B

jCk〉〉 ; λb
j ≡ L·Lb

j and λc
k ≡ L·Lc

k (14.43)

The image of L on image plane A, La, can therefore be found via

La = L·La
i L

i
a

' λb
jλ

c
k〈〈B

jCk〉〉·La
i L

i
a

= λb
jλ

c
kT

i
jkLi

a

(14.44)

Thus, we have

λa
i ' λb

jλ
c
kT

i
jk (14.45)
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14.4.3 Transferring Points

It is also possible to find the image of a point on one image plane if its image
is known on the other two. To see this, the expression for the trifocal tensor
needs to be expanded in yet another way. Substituting the dual representation
of line Ai1∧A4, i.e. 〈〈Ai2

a Ai3
a 〉〉 into equation (14.38) gives

T
i1

jk =
[[

(Ai1∧A4)〈〈B
jCk〉〉

]]

=
[[

〈〈Ai2
a Ai3

a 〉〉〈〈BjCk〉〉
]]

= 〈〈Ai2
a Ai3

a 〉〉·(Bj∧Ck)

= 〈〈Ai2
a Ai3

a BjCk〉〉

(14.46)

It can be shown that this form of the trifocal tensor is equivalent to the
determinant form given by Heyden in [120]. Now only one more step is needed
to see how the trifocal tensor may be used to transfer points.

T
i1

jk = 〈〈Ai2
a Ai3

a BjCk〉〉

= 〈〈Ai2
a Ai3

a Bj〉〉·Ck

= XT

i1
j ·C

k ; XT

i1
j ≡ 〈〈Ai2

a Ai3
a Bj〉〉

(14.47)

Note that the points {XT

i1
j} are defined through their dual representation as

the set of intersection points of lines {Ai1∧A4} (' {〈〈Ai2
a Ai3

a 〉〉}) and planes
{〈〈Bj〉〉} (' {Lj

b∧B4}). Let L = X∧Y be a line in P
3. Then

X
A

−→ Xa = αiAi (14.48a)

L
B
−→ LB = λb

jL
j
b (14.48b)

Hence

X ' (αi1 Ai1∧A4
︸ ︷︷ ︸

〈〈Ai2Ai3〉〉

) ∨ (λb
j Lj

b∧B4
︸ ︷︷ ︸

〈〈Bj〉〉

)

=
∑

i1
αi1λb

j〈〈A
i2Ai3Bj〉〉

= αi1λb
jX

T

i1
j

(14.49)

Now, the projection of X onto image plane C is simply

Xc = X ·CkCk

' αiλb
jX

T

i1
j ·C

kCk

= αiλb
jTi

jkCk

(14.50)
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That is,

ηk ' αiλb
jTi

jk (14.51)

with ηk ≡ X ·Ck. Similarly we also have,

βk ' αiλc
kT

i
jk (14.52)

Therefore, if the image of a point and a line through that point are known
on two image planes, respectively, then the image of the point on the third
image plane can be calculated. Note that the line defined by the {λb

j} can
be any line that passes through the image of X on image plane B. That is,
we may choose the point (0, 0, 1) as the other point the line passes through.
Then we have

λb
1 = β2 ; λb

2 = −β1 ; λb
3 = 0 (14.53)

Hence, equation (14.51) becomes

ηk ' αi(β2T
i
1k − β1T

i
2k) (14.54)

and equation (14.52) becomes

βk ' αi(η2T
i
j1 − η1T

i
j2) (14.55)

14.4.4 Rank of T

Finding the rank of T is somewhat harder than for the bifocal tensor, mainly
because there is no simple geometric construction which yields its rank. As
was mentioned before the rank of a tensor is given by the minimum number
of terms necessary for a linear decomposition of it in terms of rank 1 tensors4.
As for the bifocal tensor, the transformation Ai → A′

i = s(Ai + tiA4) leaves
the trifocal tensor unchanged up to an overall scale. A good choice for the
{A′

i} seems to be

A′
i = (Ai∧A4) ∨ (B3∧B4∧C4) (14.56)

since then all the {A′
i} lie in a plane together with B4 and C4. Therefore, the

camera matrix minors Kb
j
i
= A′

i·B
j and Kc

k
i
= A′

i·C
k are of rank 2. As was

shown before, this is the minimal rank camera matrix minors can have. To
see how this may help to find a minimal decomposition of T recall equation
(14.39);

T
i
jk = U j

b Kc
k
i
− Uk

c Kb
j
i

4 For example, a rank 1 3-valence tensor is created by combining the components
{αi}, {βi}, {ηi} of three vectors as T ijk = αiβjηk.
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This decomposition of T shows that its rank is at most 6, since Ub and Uc are
vectors, and Kc and Kb cannot be of rank higher than 3. Using the above
choice for Kb and Kc however shows that the rank of T is 4, since then the
rank of the camera matrices is minimal, and we thus have a minimal linear
decomposition of T .

14.4.5 Degrees of Freedom of T

As for the bifocal tensor we can also write down an explicit parameterisation
for the trifocal tensor. Starting with equation (14.56) we get

A′
i = (Ai∧A4) ∨ (B3∧B4∧C4)

= [[AiA4]]·(B3∧B4∧C4)

= [[AiA4B4C4]]B3 − [[AiA4B3C4]]B4 + [[AiA4B3B4]]C4

= α1

i B3 + α2

i B4 + α3

i C4

(14.57)

where α1

i , α2

i and α3

i are defined appropriately. The trifocal tensor may be
expressed in terms of the {A′

i} as follows (see equation (14.39)).

T
i
jk = (A4 ·B

j)(A′
i ·C

k) − (A4 ·C
k)(A′

i ·B
j)

= (A4 ·B
j)

[

α1

i B3 ·C
k + α2

i B4 ·C
k
]

− (A4 ·C
k)

[

α1

i B3 ·B
j + α3

i C4 ·B
j
]

= εj
ba

[

α1

i B3 ·C
k + α2

i ε
k
cb

]

− εk
ca

[

α1

i δ
j
3

+ α3

i ε
j
bc

]

(14.58)

This decomposition of T has 5 × 3 + 3 × 3 − 1 = 23 DOF. The general
formula for finding the DOF of T gives 3 × 11 − 15 = 18 DOF. Therefore,
equation (14.58) is an overdetermined parameterisation of T . However, it will
still satisfy the self-consistency constraints of T .

14.4.6 Constraints on T

To understand the structure of T further, we will derive self-consistency con-
straints for T . Heyden derives the constraints on T using the “quadratic
p-relations” [120]. In GA these relations can easily be established from geo-
metric considerations.

The simplest constraint on T may be found as follows. Recall equation
(14.47), where the trifocal tensor was expressed in terms of the projection of
points XT

i1
j = 〈〈Ai2

a Ai3
a Bj〉〉 onto image plane C, i.e.

T
i1

jk = XT

i1
j ·C

k
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Now consider the following trivector.

XT

i1
ja
∧XT

i1
jb
∧XT

i1
jc

=
(

〈〈Ai2
a Ai3

a 〉〉 ∨ 〈〈Bja〉〉
)

∧
(

〈〈Ai2
a Ai3

a 〉〉 ∨ 〈〈Bjb〉〉
)

∧
(

〈〈Ai2
a Ai3

a 〉〉 ∨ 〈〈Bjc〉〉
)

= 0

(14.59)

The first step follows from equation (14.4). It is clear that this expression
is zero because we take the outer product of the intersection points of line
〈〈Ai2

a Ai3
a 〉〉 with the planes 〈〈Bj1 〉〉, 〈〈Bj2〉〉 and 〈〈Bj3 〉〉. In other words, this equa-

tion says that the intersection points of a line with three planes all lie along
a line (see figure 14.2).

A4

A1

A2

A3

<< >>A
1

<< A
2>>

B4

B3

B1

B2

A
1
A

2>><<

B
1>><<

>><<B
2

>><<B
4

>><<B
3

X
T

3 1

X
T

3
3

X
T

3 2

Fig. 14.2. This demonstrates the constraint from equation (14.59) for i2 = 1,
i3 = 2 and ja = 1, jb = 2, jc = 3. The figure also visualises the use of the inverse
dual bracket to describe planes and lines

When projecting the three intersection points onto image plane C they
still have to lie along a line. That is,
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0 = (XT

i
ja
·Cka)(XT

i
jb
·Ckb)(XT

i
jc
·Ckc)Cka

∧Ckb
∧Ckc

⇐⇒ 0 = T
i
jaka

T
i
jbkb

T
i
jckc

[[Cka
Ckb

Ckc
C4]]c

= εkakbkc
T

i
jaka

T
i
jbkb

T
i
jckc

= det(T
i
jk)jk

(14.60)

14.4.7 Relation between T and F

We mentioned before that the quadratic p-relations can be used to find con-
straints on T [120]. The equivalent expressions in GA are of the form

〈〈B1B2〉〉∧〈〈A1A2A3〉〉∧〈〈B1B2C1〉〉 = 0 (14.61)

This expression is zero because 〈〈B1B2〉〉 ∧ 〈〈B1B2C1〉〉 = 0. This becomes
obvious immediately from a geometric point of view: the intersection point
of line 〈〈B1B2〉〉 with plane 〈〈C1〉〉 clearly lies on line 〈〈B1B2〉〉.

In the following we will write T XY Z

i1
jk to denote the trifocal tensor

T XY Z

i1
jk = 〈〈X i2X i3Y jZk〉〉

We will similarly write F XY
i1j1

to denote the bifocal tensor

FXY
i1j1

= 〈〈X i2X i3Y j2Y j3〉〉

If no superscripts are given then T
i
jk and Fij take on the same meaning as

before. That is,

T
i
jk ≡ T ABC

i
jk (14.62a)

Fij ≡ FAB
ij (14.62b)

We can obtain a constraint on T by expanding equation (14.61).

0 = 〈〈B1B2〉〉∧〈〈A1A2A3〉〉∧〈〈B1B2C1〉〉

= 〈〈A1A2B1B2〉〉〈〈B1B2A3C1〉〉

+ 〈〈A3A1B1B2〉〉〈〈B1B2A2C1〉〉

+ 〈〈A2A3B1B2〉〉〈〈B1B2A1C1〉〉

= F33T
BAC

3
31

+ F23T
BAC

3
21

+ F13T
BAC

3
11

= Fi3T
BAC

3
i1

(14.63)

Note that there is an implicit summation over i, because it is repeated as a
(relative) superscript. Of course, we could have chosen different indices for
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the reciprocal B vectors and the reciprocal C vector. Therefore, we can obtain
the following relation between the trifocal tensor and the bifocal tensor.

FijT
BAC

j
ik = 0 (14.64)

Again there is an implicit summation over the i index but not over the j
index. From this equation it follows that the three column vectors of the
bifocal tensor give the three “left” null vectors of the three matrices T

i
••,

respectively. Equation (14.64) has two main uses: it can be used to find some
epipoles of the trifocal tensor via equations (14.35) and (14.36), but it also
serves to give more constraints on T since detF = 0.

The columns of F may be found from equation (14.64) using, for example,
an SVD. However, since the columns are found separately they will not in
general be scaled consistently. Therefore, F found from equation (14.64) has
only a limited use. Nonetheless, we can still find the correct left null vector
of F , i.e. εi

ab, because each column is consistent in itself. Note also that, the
determinant of F is still zero, since the rank F cannot be changed by scaling
its columns separately. We cannot use this F , though, to find the right null
vector, i.e. εi

ba, or to check whether image points on planes A and B are
images of the same world point. Finding a consistent F is not necessary to
find the right null vector of F , as will be shown later on. Therefore, unless
we need to find a bifocal tensor from T which we can use to check image
point pair matches, a fully consistent F is not necessary. A consistent F can,
however, be found as shown in the following.

We can find the bifocal tensor row-wise in the following way.

0 = 〈〈Ai2Ai3〉〉∧〈〈B1B2B3〉〉∧〈〈Ai2Ai3Ck〉〉

= Fi1jT
i1

jk

(14.65)

Knowing F row-wise and column-wise we can find a consistently scaled bifocal
tensor. What remains is to find T BAC from T . To do so we define the following
intersection points in terms of the lines T iaja ≡ 〈〈BiaCja〉〉 (see equation
(14.42a)).

p(iaja, ibjb) ≡ (A4∧T iaja) ∨ T ibjb

=
〈〈[[

A4〈〈B
iaCja〉〉

]][[

〈〈BibCjb 〉〉
]]〉〉

=
〈〈(

A4 ·
[[

〈〈BiaCja〉〉
]])

BibCjb

〉〉

=
〈〈(

A4 ·(B
ia∧Cja)

)

BibCjb

〉〉

=
〈〈

(A4 ·B
ia)CjaBibCjb

−(A4 ·C
ja)BiaBibCjb

〉〉

= εia

ba〈〈C
jaBibCjb 〉〉 + εja

ca〈〈B
iaCjbBib 〉〉

(14.66)



14. Multiple View Geometry 355

Two useful special cases are

p(i1j, i2j) = εj
ca〈〈B

i1CjBi2〉〉 (14.67a)

p(ij1, ij2) = εi
ba〈〈C

j1BiCj2〉〉 (14.67b)

The projection of p(i1j, i2j) onto image plane A, denoted by pa(i1j, i2j) gives

pa(i2k, i3k) = εk
ca

(

Aj ·〈〈Bi2CkBi3〉〉
)

Aj

= εk
ca〈〈A

jBi2CkBi3〉〉Aj

= −εk
ca〈〈B

i2Bi3AjCk〉〉Aj

= −εk
caT

BAC

i1
jk Aj

(14.68)

We can also calculate pa(jaka, jbkb) by immediately using the projections of
the T jk onto image plane A (see equation (14.42b)). That is,

pa(jaka, jbkb) = (A4∧T iaja
a ) ∨ T ibjb

a

= T
ia

jaka
T

ib
jbkb

(A4∧Lia
a ) ∨ Lib

a

= T
ia

jaka
T

ib
jbkb

(A4∧〈〈A
ia
a A4

a〉〉) ∨ 〈〈Aib
a A4

a〉〉

= T
ia

jaka
T

ib
jbkb

〈〈(

A4 ·(A
ia
a ∧A4

a)
)

Aib
a A4

a

〉〉

' T
ia

jaka
T

ib
jbkb

〈〈Aia
a Aib

a A4
a〉〉

(14.69)

From the definition of the inverse dual bracket we have

Ai3 = 〈〈Ai1
a Ai2

a A4

a〉〉a

Therefore, from equation (14.69) we find

pa(j1k, j2k) ' (T
i1

j1kT
i2

j2k − T
i2

j1kT
i1

j2k)Ai3 (14.70)

Equating this with equation (14.68) gives

T BAC

j3
i3k ' (εk

ca)−1(T
i1

j1kT
i2

j2k − T
i2

j1kT
i1

j2k) (14.71)

Since εk
ca can be found from T (as will be shown later) we can find T BAC

from T up to an overall scale. Equation (14.71) may also be written in terms
of the standard cross product.

T BAC

j3
•k ' (εk

ca)−1(T
•
j1k × T

•
j2k) (14.72)

Had we used equation (14.67b) instead of equation (14.67a) in the previ-
ous calculation, we would have obtained the following relation.
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T CBA

k3

ji3 ' (εj
ba)−1(T

i1
jk1

T
i2

jk2
− T

i2
jk1

T
i1

jk2
) (14.73)

Or, in terms of the standard cross product

T CBA

k3

j• ' (εj
ba)−1(T

•
jk1

× T
•
jk2

) (14.74)

Hence, we can also obtain T CBA from T up to an overall scale. Note that
since

T ABC

i1
jk = 〈〈Ai2Ai3BjCk〉〉

= −〈〈Ai2Ai3CkBj〉〉

= −T ACB

i1
kj

(14.75)

we have found all possible trifocal tensors for a particular camera setup from
T .

Equations (14.72) and (14.74) simply express that the projections of the
intersection points between some lines onto image plane A are the same as
the intersection points between the projections of the same lines onto image
plane A. This implies that independent of the intersection points, i.e. the
components of T

i
jk, equations (14.72) and (14.74) will always give a self-

consistent tensor, albeit not necessarily one that expresses the correct camera
geometry.

14.4.8 Second Order Constraints

There are more constraints on T which we will call “second order” because
they are products of determinants of components of T . Their derivation is
more involved and can be found in [189] and [190]. Here we will only state
the results. These constraints may be used to check the self-consistency of T
when it is calculated via a non-linear method.

0 = |T jaka
a T jbka

a T jakb
a | |T jbkb

a T jakc
a T jbkc

a |

− |T jaka
a T jbka

a T jbkb
a | |T jakb

a T jakc
a T jbkc

a |

(14.76)

0 = |T jaka
a T jakb

a T jbka
a | |T jbkb

a T jcka
a T jckb

a |

− |T jaka
a T jakb

a T jbkb
a | |T jbka

a T jcka
a T jckb

a |

(14.77)

0 = |T iaja
a T ibja

a T iajb
a | |T ibjb

a T iajb
a T ibjc

a |

− |T iaja
a T ibja

a T ibjb
a | |T iajb

a T iajc
a T ibjb

a |

(14.78)

Where the determinants are to be be interpreted as

|T jaka

a T jbka

a T jakb
a | = det(T

ia
jaka

, T
ib

jbka
, T

ic
jakb

)iaibic
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14.4.9 Epipoles

The epipoles of T can be found indirectly via the relation of bifocal tensors to
T (e.g. equation (14.64)). Also recall that the right null vector of some F XY

ij

is εj
yx, whereas the left null vector is εi

xy (equations (14.35) and (14.36)).
From equation (14.65) we know that

FijT
i
jk = 0

When calculating F from this equation, we cannot guarantee that the rows
are scaled consistently. Nevertheless, this does not affect the right null space
of F . Hence, we can find εj

ba from this F . In the following we will list the
necessary relations to find all epipoles of T .

0 = 〈〈Ai2Ai3〉〉∧〈〈B1B2B3〉〉∧〈〈Ai2Ai3Ck〉〉

= Fi1jT
i1

jk → εj
ba

(14.79a)

0 = 〈〈Ai2Ai3〉〉∧〈〈C1C2C3〉〉∧〈〈Ai2Ai3Bj〉〉

= FAC
i1k T

i1
jk → εk

ca

(14.79b)

0 = 〈〈Bi2Bi3〉〉∧〈〈A1A2A3〉〉∧〈〈Bi2Bi3Ck〉〉

= FBA
i1j T BAC

i1
jk → εj

ab

(14.80a)

0 = 〈〈Bi2Bi3〉〉∧〈〈C1C2C3〉〉∧〈〈Bi2Bi3Aj〉〉

= FBC
i1k T BAC

i1
jk → εk

cb

(14.80b)

0 = 〈〈Ci2Ci3〉〉∧〈〈A1A2A3〉〉∧〈〈Ci2Ci3Bj〉〉

= FCA
i1k T CBA

i1
jk → εk

ac

(14.81a)

0 = 〈〈Ci2Ci3〉〉∧〈〈B1B2B3〉〉∧〈〈Ci2Ci3Ak〉〉

= FCB
i1j T CBA

i1
jk → εj

bc

(14.81b)

By → εj
xy we denote the epipole that can be found from the respective rela-

tion5 . Note that since

FXY
i1j1

= 〈〈X i2X i3Y j2Y j3〉〉

= 〈〈Y j2Y j3X i2X i3〉〉

= FY X
j1i1

(14.82)

we have also found all fundamental matrices.
5 Initial computations evaluating the quality of the epipoles found via this method

indicate that this may not be the best way to calculate the epipoles. It seems
that better results can be obtained when the epipoles are found directly from
T ABC .
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14.5 The Quadfocal Tensor

14.5.1 Derivation

Let L be a line in P
3 and let {Aµ}, {Bµ}, {Cµ} and {Dµ} define four cameras

A, B, C and D, respectively. The projection of L onto the image planes of
these four cameras is

L
A

−→ LA = L·La
i L

i
a = λa

i Li
a (14.83a)

L
B
−→ LB = L·Lb

iL
i
b = λb

iL
i
b (14.83b)

L
C
−→ LC = L·Lc

iL
i
c = λc

iL
i
c (14.83c)

L
D
−→ LD = L·Ld

i L
i
d = λd

i L
i
d (14.83d)

The intial line L can be recovered from these projections by intersecting any
two of the planes (LA∧A4), (LB∧B4), (LC∧C4) and (LD∧D4). For example,

L ' (LA∧A4) ∨ (LB∧B4) ' (LC∧C4) ∨ (LD∧D4) (14.84)

Therefore,

0 =
[[(

(LA∧A4) ∨ (LB∧B4)
)

∧
(

(LC∧C4) ∨ (LD∧D4)
)]]

= λa
i λb

jλ
c
kλd

l

[[ (

(Li
a∧A4) ∨ (Lj

b∧B4)
)

(

(Lk
c ∧C4) ∨ (Ll

d∧D4)
)]]

= λa
i λb

jλ
c
kλd

l

[[(

〈〈Ai〉〉 ∨ 〈〈Bj〉〉
)(

〈〈Ck〉〉 ∨ 〈〈Dl〉〉
)]]

= λa
i λb

jλ
c
kλd

l 〈〈A
iBjCkDl〉〉

(14.85)

Therefore, a quadfocal tensor may be defined as

Qijkl = 〈〈AiBjCkDl〉〉 (14.86)

If the quadfocal tensor is contracted with the homogeneous line coordinates
of the projections of one line onto the four camera image planes, the result
is zero. In this way the quadfocal tensor encodes the relative orientation of
the four camera image planes. However, note that contracting the quadfo-
cal tensor with the line coordinates of the projection of one line onto only
three image planes gives a zero vector. This follows directly from geometric
considerations. For example,

λa
i λb

jλ
c
kQijkl = λa

i λb
jλ

c
k〈〈A

iBjCk〉〉·Dl

'
(

L ∨ (λc
kCk)

)

·Dl
(14.87)

where L is the line whose images on image planes A, B and C have coordinates
{λa

i }, {λb
j} and {λc

k}, respectively. Hence, L lies on plane λc
kCk, and thus
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their meet is zero. This also shows that the quadfocal tensor does not add
any new information to what can be known from the trifocal tensor, since
the quadfocal tensor simply relates any three image planes out of a group of
four.

The form for Q given in equation (14.86) can be shown to be equivalent
to the form given by Heyden in [120]. In this form it is also immediately clear
that changing the order of the reciprocal vectors in equation (14.86) at most
changes the overall sign of Q.

14.5.2 Transferring Lines

If the image of a line is known on two image planes, then the quadfocal
tensor can be used to find its image on the other two image planes. This can
be achieved through a somewhat indirect route. Let L be a line projected
onto image planes A and B with coordinates {λa

i } and {λb
j}, respectively.

Then we know that

L ' λa
i λb

j〈〈A
iBj〉〉 (14.88)

Therefore, we can define three points {Xk
L} that lie on L as

Xk
L ≡ λa

i λb
j(〈〈A

iBj〉〉 ∨ 〈〈Ck〉〉)

= λa
i λb

j〈〈A
iBjCk〉〉

(14.89)

The projections of the {Xk
L} onto image plane D, denoted by {Xk

Ld
} are

given by

Xk
Ld

≡ Xk
L ·D

l

= λa
i λb

j〈〈A
iBjCk〉〉·Dl

= λa
i λb

j〈〈A
iBjCkDl〉〉

= λa
i λb

jQ
ijkl

(14.90)

From the points {Xk
Ld

} the projection of line L onto image plane D can be
recovered.

14.5.3 Rank of Q

The form for the quadfocal tensor as given in equation (14.86) may be ex-
panded in a number of ways. For example,

Qi1jkl = (Ai2∧Ai3∧A4)·(B
j∧Ck∧Dl)

= U j
b

[

Kc
k
i3

Kd
l
i2
− Kd

l
i3

Kc
k
i2

]

− Uk
c

[

Kb
j
i3

Kd
l
i2
− Kd

l
i3

Kb
j
i2

]

+ U l
d

[

Kb
j
i3

Kc
k
i2
− Kc

k
i3

Kb
j
i2

]

(14.91)
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In terms of the standard cross product this may be written as

Q•jkl = U j
b (Kc

k
•
× Kd

l
•
) − Uk

c (Kb
j
•
× Kd

l
•
) + U l

d(K
b
j
•
× Kc

k
•
) (14.92)

This decomposition of Q shows that the quadfocal tensor can be at most of
rank 9. From equation (14.91) it becomes clear that, as for the trifocal tensor,
the transformation Ai 7→ s(Ai + tiA4) leaves Q unchanged up to an overall
scale.

Let P = B4∧C4∧D4. As for the trifocal tensor case, define a basis {A′
i}

for image plane A by

A′
i = (Ai∧A4) ∨ P (14.93)

All the {A′
i} lie on plane P , that is they lie on the plane formed by B4, C4

and D4. Therefore, Kb′
j
i
= A′

i·B
j , Kc′ = A′

i·C
k and Kd′ = A′

i·D
l are of rank

2. As was shown previously, this is the minimum rank the camera matrices
can have. Hence, forming Q with the {A′

i} should yield its rank. However,
it is not immediately obvious from equation (14.91) what the rank of Q is
when substituting the {A′

i} for the {Ai}. A more yielding decomposition of
Q is achieved by expanding equation (14.93).

A′
i = (Ai∧A4) ∨ P

' [[AiA4]]·(B4∧C4∧D4)

= [[AiA4B4C4]]D4 − [[AiA4B4D4]]C4 + [[AiA4C4D4]]B4

= α1

i B4 + α2

i C4 + α3

i D4

(14.94)

where the {αj
i} are defined accordingly. Furthermore,

A′
i1∧A′

i2 = λ1

i3
C4∧D4 + λ2

i3
D4∧B4 + λ3

i3
B4∧C4 (14.95)

with λj3
i3

= αj1
i1

αj2
i2
− αj1

i2
αj2

i1
. Equation (14.91) may also be written as

Qi1jkl = (Ai2∧Ai3∧A4)·(B
j∧Ck∧Dl)

= U j
b

[

(A′
i2∧A′

i3)·(C
k∧Dl)

]

− Uk
c

[

(A′
i2∧A′

i3)·(B
j∧Dl)

]

+ U l
d

[

(A′
i2∧A′

i3)·(B
j∧Ck)

]

(14.96)

From equation (14.95) it then follows
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(A′
i2∧A′

i3)·(C
k∧Dl) = λ1

i1
D4 ·C

k C4 ·D
l

− λ2

i1
D4 ·C

k B4 ·D
l

− λ3

i1
B4 ·C

k C4 ·D
l

(14.97a)

(A′
i2∧A′

i3)·(B
j∧Dl) = λ1

i1
D4 ·B

j C4 ·D
l

− λ2

i1
D4 ·B

j B4 ·D
l

+ λ3

i1
C4 ·B

j B4 ·D
l

(14.97b)

(A′
i2∧A′

i3)·(B
j∧Ck) = − λ1

i1
C4 ·B

j D4 ·C
k

− λ2

i1
D4 ·B

j B4 ·C
k

+ λ3

i1
C4 ·B

j B4 ·C
k

(14.97c)

Each of these three equations has a linear combination of three rank 1, 3-
valence tensors on its right hand side. Furthermore, none of the rank 1, 3-
valence tensors from one equation is repeated in any of the others. Therefore,
substituting equations (14.97) into equation (14.96) gives a decomposition of
Q in terms of 9 rank 1 tensors. Since this is a minimal decomposition, Q is
of rank 9.

14.5.4 Degrees of Freedom of Q

Substituting equations (14.97) back into equation (14.96) gives

Qijkl = εj
ba

[

λ1

i ε
k
cdε

l
dc − λ2

i ε
k
cdε

l
db + λ3

i ε
k
cbε

l
dc

]

− εk
ca

[

λ1

i ε
j
bdε

l
dc − λ2

i ε
j
bdε

l
db + λ3

i ε
j
bcε

l
db

]

+ εl
da

[

λ1

i ε
j
bcε

k
cd − λ2

i ε
j
bdε

k
cb + λ3

i ε
j
bcε

k
cb

]

(14.98)

This decomposition of Q has 9×3+3×3−1 = 35 DOF. The general formula
for the DOF of Q gives 4×11−15 = 29 DOF. Therefore the parameterisation
of Q in equation (14.98) is overdetermined. However, it will still give a self-
consistent Q.

14.5.5 Constraints on Q

The constraints on Q can again be found very easily through geometric con-
siderations. Let the points {X ijk

Q } be defined as

X ijk
Q ≡ 〈〈AiBjCk〉〉 (14.99)

A point X ijk
Q can be interpreted as the intersection of line 〈〈AiBj〉〉 with plane

〈〈Ck〉〉. Therefore,

X ijka

Q ∧X ijkb

Q ∧X ijkc

Q = 0 (14.100)
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because the three intersection points X ijka

Q , X ijkb

Q and X ijkc

Q lie along line

〈〈AiBj〉〉. Hence, also their projections onto an image plane have to lie along a
line. Thus, projecting the intersection points onto an image plane D we have

0 = (X ijka

Q ·Dla) (X ijkb

Q ·Dlb) (X ijkc

Q ·Dlc)

(Dla∧Dlb∧Dlc)

⇐⇒ 0 = Qijkala Qijkblb Qijkclc [[DlaDlbDlcD4]]d

= εlalblc Qijkala Qijkblb Qijkclc

= det(Qijkl)kl

(14.101)

Similarly, this type of constraint may be shown for every pair of indices. We
therefore get the following constraints on Q.

det(Qijkl)ij = 0; det(Qijkl)ik = 0; det(Qijkl)il = 0

det(Qijkl)jk = 0; det(Qijkl)jl = 0; det(Qijkl)kl = 0
(14.102)

14.5.6 Relation between Q and T

We can find the relation between Q and T via the method employed to find
the relation between T and F . For example,

0 = 〈〈A1A2A3〉〉∧〈〈BjCkDl〉〉∧〈〈BjCk〉〉

=
∑

i1

(

〈〈Ai1BjCkDl〉〉〈〈Ai2Ai3BjCk〉〉
)

= QijklT
i
jk

(14.103)

Similarly, equations for the other possible trifocal tensors can be found. Be-
cause of the trifocal tensor symmetry detailed in equation (14.75) all trifocal
tensors may be evaluated from the following set of equations.

Qijkl T ABC

i
jk = 0; Qijkl T ABD

i
jl = 0; Qijkl T ACD

i
kl = 0

Qijkl T BAC

j
ik = 0; Qijkl T BAD

j
il = 0; Qijkl T BCD

j
kl = 0

Qijkl T CAB

k
ij = 0; Qijkl T CAD

k
il = 0; Qijkl T CBD

k
jl = 0

Qijkl T DAB

l
ij = 0; Qijkl T DAC

l
ik = 0; Qijkl T DBC

l
jk = 0

(14.104)

Note that the trifocal tensors found in this way will not be of consistent scale.
To fix the scale we start by defining intersection points

Xjkl
BCD ≡

[

A4∧〈〈B
jCk〉〉

]

∨ 〈〈CkDl〉〉

' εk
ca〈〈B

jCkDl〉〉
(14.105)



14. Multiple View Geometry 363

Projecting these points onto image plane A gives

Xjkl
BCDa

≡ Xjkl
BCD ·AiAi

' εk
ca〈〈B

jCkDl〉〉·AiAi

' εk
ca〈〈A

iBjCkDl〉〉Ai

= εk
caQijklAi

(14.106)

But we could have also arrived at an expression for X jkl
BCDa

via

Xjkl
BCDa

'
(

〈〈BjCk〉〉·La
ia

)(

〈〈CkDl〉〉·La
ib

)[

A4∧Lia
a

]

∨ Lib
a

'
(

T ABC

i1
jk T ACD

i2
kl − T ABC

i2
jk T ACD

i1
kl

)

Ai3

(14.107)

Equating this with equation (14.106) gives

T ABC

i1
jk T ACD

i2
kl − T ABC

i2
jk T ACD

i1
kl ' εk

caQ
i3jkl (14.108)

This equation may be expressed more concisely in terms of the standard cross
product.

T ABC

•
jk × T ACD

•
kl ' εk

caQ
•jkl (14.109)

Furthermore, from the intersection points

Xkjl
CBD ≡

[

A4∧〈〈C
kBj〉〉

]

∨ 〈〈BjDl〉〉

and their projections onto image plane A we get

T ABC

•
jk × T ABD

•
jl ' εj

baQ•jkl (14.110)

We can now find the correct scales for T ABC by demanding that

T ABC

i1
jk T ACD

i2
kl − T ABC

i2
jk T ACD

i1
kl

Qi3jkl
= φ (14.111)

for all j while keeping i1, k and l constant, where φ is some scalar. Further-
more, we know that

T ABC

i1
jk T ABD

i2
jl − T ABC

i2
jk T ABD

i1
jl

Qi3jkl
= φ (14.112)

for all k while keeping i1, k and l constant, where φ is some different scalar.
Equations (14.111) and (14.112) together fix the scales of T ABC completely.
Note that we do not have to know the epipoles εk

ca and εj
ba.

Similarly, all the other trifocal tensors can be found. These in turn can
be used to find the fundamental matrices and the epipoles.
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14.6 Reconstruction and the Trifocal Tensor

In the following we will investigate a computational aspect of the trifocal ten-
sor. In particular we are interested in the effect the determinant constraints
have on the “quality” of a trifocal tensor. That is, a trifocal tensor calculated
only from point matches has to be compared with a trifocal tensor calculated
form point matches while enforcing the determinant constraints.

For the calculation of the former a simple linear algorithm is used that
employs the trilinearity relationships, as, for example, given by Hartley in
[106]. In the following this algorithm will be called the “7pt algorithm”.

To enforce all the determinant constraints, an estimate of the trifocal
tensor is first found using the 7pt algorithm. From this tensor the epipoles
are estimated. Using these epipoles the image points are transformed into the
epipolar frame. With these transformed point matches the trifocal tensor can
then be found in the epipolar basis.

It can be shown [147] that the trifocal tensor in the epipolar basis has
only 7 non-zero components6. Using the image point matches in the epipolar
frame these 7 components can be found linearly. The trifocal tensor in the
“normal” basis is then recovered by tranforming the trifocal tensor in the
epipolar basis back with the initial estimates of the epipoles. The trifocal
tensor found in this way has to be fully self-consistent since it was calculated
from the minimal number of parameters. That also means that the determi-
nant constraints have to be fully satisfied. This algorithm will be called the
“MinFact” algorithm.

The main problem with the MinFact algorithm is that it depends crucially
on the quality of the initial epipole estimates. If these are bad, the trifocal
tensor will still be perfectly self-consistent but will not represent the true
camera structure particularly well. This is reflected in the fact that typically
a trifocal tensor calculated with the MinFact algorithm does not satisfy the
trilinearity relationships as well as a trifocal tensor calculated with the 7pt
algorithm, which is of course calculated to satisfy these relationships as well
as possible.

Unfortunately, there does not seem to be a way to find the epipoles and
the trifocal tensor in the epipolar basis simultaneously with a linear method.
In fact, the trifocal tensor in a “normal” basis is a non-linear combination
of the epipoles and the 7 non-zero components of the trifocal tensor in the
epipolar basis.

Nevertheless, since the MinFact algorithm produces a fully self-consistent
tensor, the camera matrices extracted from it also have to form a self-
consistent set. Reconstruction using such a set of camera matrices may be
expected to be better than reconstruction using an inconsistent set of camera

6 From this it follows directly that the trifocal tensor has 18 DOF: 12 epipolar
components plus 7 non-zero components of the trifocal tensor in the epipolar
basis minus 1 for an overall scale.
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matrices, as typically found from an inconsistent trifocal tensor. The fact that
the trifocal tensor found with the MinFact algorithm may not resemble the
true camera structure very closely, might not matter too much, since recon-
struction is only exact up to a projective transformation. The question is,
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Fig. 14.3. Mean distance between original points and recon-
structed points in arbitrary units as a function of mean Gaus-
sian error in pixels introduced by the cameras. The solid line
shows the values using the MinFact algorithm, and the dashed
line the values for the 7pt algorithm

of course, how to measure the quality of the trifocal tensor. Here the quality
is measured by how good a reconstruction can be achieved with the trifocal
tensor in a geometric sense. This is done as follows:

1. A 3D-object is projected onto the image planes of the three cameras,
which subsequently introduce some Gaussian noise into the projected
point coordinates. These coordinates are then quantised according to
the simulated camera resolution. The magnitude of the applied noise is
measured in terms of the mean Gaussian deviation in pixels.
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Fig. 14.4. Mean difference between elements of calculated and
true tensors in percent. Solid line shows values for trifocal tensor
calculated with 7pt algorithm, and dashed line shows values for
trifocal tensor calculated with MinFact algorithm

2. The trifocal tensor is calculated in one of two ways from the available
point matches:
a) using the 7pt algorithm, or
b) using the MinFact algorithm.

3. The epipoles and the camera matrices are extracted from the trifocal
tensor. The camera matrices are evaluated using Hartley´s recomputation
method [106].

4. The points are reconstructed using a version of what is called “Method
3” in [199] and [200] adapted for three views. This uses a SVD to solve for
the homogeneous reconstructed point algebraically using a set of camera
matrices. In [199] and [200] this algorithm was found to perform best of
a number of reconstruction algorithms.

5. This reconstruction still contains an unknown projective transformation.
Therefore it cannot be compared directly with the original object. How-
ever, since only synthetic data is used here, the 3D-points of the original
object are known exactly. Therefore, a projective transformation matrix
that best transforms the reconstructed points into the true points can be
calculated. Then the reconstruction can be compared with the original
3D-object geometrically.

6. The final measure of “quality” is arrived at by calculating the mean
distance in 3D-space between the reconstructed and the true points.
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Fig. 14.5. Mean difference between elements of true trifocal
tensor and trifocal tensor calculated with 7pt algorithm in per-
cent

These quality values are evaluated for a number of different noise magnitudes.
For each particular noise magnitude the above procedure is performed 100
times. The final quality value for a particular noise magnitude is then taken
as the average of the 100 trials.

Figure 14.3 shows the mean distance between the original points and the
reconstructed points in 3D-space in some arbitrary units7, as a function of
the noise magnitude. The camera resolution was 600 by 600 pixels.

This figure shows that for a noise magnitude of up to approximately 10
pixels both trifocal tensors seem to produce equally good reconstructions.
Note that for zero added noise the reconstruction quality is not perfect. This
is due to the quantisation noise of the cameras. The small increase in quality
for low added noise compared to zero added noise is probably due to the
cancellation of the quantisation and the added noise.

Apart from looking at the reconstruction quality it is also interesting to
see how close the components of the calculated trifocal tensors are to those
of the true trifocal tensor. Figures 14.4 and 14.5 both show the mean of the
percentage differences between the components of the true and the calculated
trifocal tensors as a function of added noise in pixels. Figure 14.4 compares the
trifocal tensors found with the 7pt and the MinFact algorithms. This shows
that the trifocal tensor calculated with the MinFact algorithm is indeed very

7 The particular object used was 2 units wide, 1 unit deep and 1.5 units high in
3D-space. The Y-axis measures in the same units.
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different to the true trifocal tensor, much more so than the trifocal tensor
calculated with the 7pt algorithm (shown enlarged in figure 14.5).

Table 14.1. Comparison of Multiple View Tensors

Fundamental Matrix Trifocal Tensor

Fi1j1 = 〈〈Ai2Ai3Bj2Bj3〉〉 T
i1

jk = 〈〈Ai2Ai3BjCk〉〉

Fij1 = ε
j3
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i
− ε

j
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i

T
i
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i ·(Bj∧B4)� � � �

line

T
i
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i ·〈〈B
j
C

k〉〉� � � �
line

det F = 0 det(T
i
jk)jk = 0 for each i

7 DOF 18 DOF

rank 2 rank 4

Quadfocal Tensor

Qijkl = 〈〈AiBjCkDl〉〉
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j
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�
Kc

k
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Kd
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l
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�
Kb

j
i3

Kd
l
i2
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l
i3
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j
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+ εl
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�
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j
i3

Kc
k

i2

− Kc
k

i3

Kb
j
i2 �

Qijkl = Ai ·〈〈Bj
C

k
D

l〉〉� � � �
point

det(Qijkl)xy = 0
where x and y are any pair of {ijkl}

29 DOF

rank 9

The data presented here seems to indicate that a tensor that obeys the
determinant constraints, i.e. is self-consistent, but does not satisfies the tri-
linearity relationships particularly well is equally as good, in terms of recon-
struction ability, as an inconsistent trifocal tensor that satisfies the trilin-
earity relationships quite well. In particular the fact that the trifocal tensor
calculated with the MinFact algorithm is so very much different to the true
trifocal tensor (see figure 14.4) does not seem to have a big impact on the
final recomputation quality.
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14.7 Conclusion

Table 14.1 summarises the expressions for the different tensors, their degrees
of freedom, their rank and their main constraints. In particular note the
similarities between the expressions for the tensors.

We have demonstrated in this paper how Geometric Algebra can be used
to give a unified formalism for multiple view tensors. Almost all properties of
the tensors could be arrived at from geometric considerations alone. In this
way the Geometric Algebra approach is much more intuitive than traditional
tensor methods. We have gained this additional insight into the workings of
multiple view tensors because Projective Geometry in terms of Geometric
Algebra allows us to describe the geometry on which multiple view tensors
are based, directly. Therefore, we can understand their “inner workings” and
inter-relations. The best examples of this are probably the derivations of the
constraints on T and Q which followed from the fact that the intersection
points of a line with three planes all have to lie along a line. It is hard to
imagine a more trivial fact.

A similar analysis of multiple view tensors was presented by Heyden in
[120]. However, we believe our treatment of the subject is more intuitive due
to its geometric nature. In particular the “quadratic p-relations” used by
Heyden were here replaced by the geometric fact that the intersection point
of a line with a plane lies on that line.

We hope that our unified treatment of multiple view tensors has not just
demonstrated the power of Geometric Algebra, but will also give a useful new
tool to researchers in the field of Computer Vision.


