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17.1 Introduction

How to represent an image point algebraically? Given a Cartesian coordinate
system of the retina plane, an image point can be represented by its coordi-
nates (u,v). If the image is taken by a pinhole camera, then since a pinhole
camera can be taken as a system that performs the perspective projection
from three-dimensional projective space to two-dimensional one with respect
to the optical center [77], it is convenient to describe a space point by its
homogeneous coordinates (x,y, z,1) and to describe an image point by its
homogeneous coordinates (u,v,1). In other words, the space of image points
can be represented by the space of 3 x 1 matrices. This is the coordinate
representation of image points.

There are other representations which are coordinate-free. The use of al-
gebras of geometric invariants in the coordinate-free representations can lead
to remarkable simplifications in geometric computing. Kanatani [128] uses
the three-dimensional affine space for space points, and the space of displace-
ments of the affine space for image points. In other words, he uses vectors
fixed at the origin of R? to represent space points, and uses free vectors to
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represent image points. Then he can use vector algebra to carry out geometric
computing. This algebraic representation is convenient for two-dimensional
projective geometry, but not for three-dimensional one. The space represent-
ing image points depends neither on the retina plane nor on the optical
center.

Bayro-Corrochano, Lasenby and Sommer use R* for both two-dimensional
and three-dimensional projective geometries[19, 17, 222]. They use a coordi-
nate system {e1, ez, e3, C} of R* to describe a pinhole camera, where the e’s
are points on the retina plane and C' is the optical center. Both space points
and image points are represented by vectors fixed at the origin of R%, the only
difference is that an image point is in the space spanned by vectors eq, es, e3.
This algebraic representation is convenient for projective geometric compu-
tations using the incidence algebra formulated in Clifford algebra. However,
it always needs a coordinate system for the camera. The space representing
image points depends only on the retina plane.

We noticed that none of these algebraic representations of image points
is related to the optical center. By intuition, it is better to represent image
points by vectors fixed at the optical center. The above-mentioned coordinate-
free representations do not have this property.

Hestenes [113] proposed a technique called space-time split to realize
the Clifford algebra of the Euclidean space in the Clifford algebra of the
Minkowskii space. The technique is later generalized to projective split by
Hestenes and Ziegler [118] for projective geometry. We find that a version of
this technique offers us exactly what we need: three-dimensional linear spaces
imbedded in a four-dimensional one, whose origins do not concur with that
of the four-dimensional space but whose Clifford algebras are realized in that
of the four-dimensional space.

Let C be a vector in R*. It represents either a space point or a point at
infinity of the space. Let M be another vector in R*. The image of the space
point or point at infinity M by a pinhole camera with optical center C' can
be described by C' A M. The image points can be represented by the three-
dimensional space C A R* = {C' A X|X € R*}. The Clifford algebra of the
space C' A R* can be realized in the Clifford algebra of R* by the theorem of
projective split proposed later in this chapter. The space representing image
points depends only on the optical center. The representation is completely
projective and completely coordinate-free.

Using this new representation and the version of Grassmann-Cayley al-
gebra formulated by Hestenes and Ziegler [118] within Clifford algebra, we
have reformulated camera modeling and calibration, epipolar and trifocal
geometries, relations among epipoles, epipolar tensors and trifocal tensors.
Remarkable simplifications and generalizations are obtained through the re-
formulation, both in conception and in application. In particular, we are to
derive and generalize all known constraints on epipolar and trifocal tensors
[76, 80, 81, 83] in a systematic way.
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This chapter is arranged as follows: in section 17.2 we collect some necess-
sary mathematical techniques, in particular the theorem of projective split in
Grassmann-Cayley algebra. In sections 17.3 and 17.4 we reformulate camera
modeling and calibration, and epipolar and trifocal geometries. In section
17.5 we derive and generalize the constraints on epipolar and trifocal tensors
systematically.

17.2 Preparatory Mathematics

17.2.1 Dual Bases

According to Hestenes and Sobczyk [117], let {eq,...,e,} be a basis of R™
and {ej,..., e} be the corresponding dual (or reciprocal) basis, then

6,’; (7].)7‘.71(61/\“‘/\éi/\"'/\(%;,)N7 (17 1)
e = (=1 et A ANEFA AR,

for 1 < i < n. Here “~” is the dual operator in G,, with respect to ey A---Ae,.
The basis {e1,... ,en} induces a basis {ej;, A---Ae;, |l <j1 <...<js <
n} for the s-vector subspace G; of the Clifford algebra G,, of R™. We have
(ejp A-eoAeg)”
= e}‘s A+ A e}‘l (172)

= (=1)rttists(st)/2 (e AL A Efy N NEL A Nen) .

Let x € G;, then

T = > z-(ej N Neg)" e N Aeg,
1<j1<...<js<n
- D (—1)irttists(st1)/2 o0 AL Agy (17.3)

1<j1<...<js<n
(1 A Néjy Ao AEj Av-r Aen) V.

Let an invertible transformation T of R™ maps {es,...,e,} to a basis
{e},...,el}. Let T* = (TT)~!. Then T* maps the dual basis {e},... ,e:}
to the dual basis {€'],... e, }.

Any linear mapping 7' : R™ — R™ has a tensor representation in R" ®
R™. Then

T=Y e e (17.4)
=1

For example, let I1,, be the identity transformation of R™, then in tensor

n
representation, II,, = Y e; ® ef for any basis {e1,...,e,}.
i=1
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17.2.2 Projective and Affine Spaces

An n-dimensional real projective space P™ can be realized in the space R"*1!,
where a projective r-space is an (r + 1)-dimensional linear subspace. In G, 1,
a projective r-space is represented by an (r+1)-blade, and the representation
is unique up to a nonzero scale. Throughout this chapter we use “x ~ y” to
denote that if x, y are scalars, they are equal up to a nonzero index-free scale,
otherwise they are equal up to a nonzero scale.

An n-dimensional real affine space A™ can be realized in the space R"*!
as a hyperplane away from the origin. Let ey be the vector from the origin
to the hyperplane and orthogonal to the hyperplane. When e2 = 1, a vector
x € R"! is an affine point if and only if « - ¢g = 1. An r-dimensional affine
plane is the intersection of an (r + 1)-dimensional linear subspace of R"*!
with A", and can be represented by an (r 4+ 1)-blade of G, 1 representing
the subspace.

oo
The space of displacements of A" is defined as A"= {x — y|z,y € A"}.
It is an n-dimensional linear subspace of R™*!'. Any element of it is called a

oo
direction. When A™ is taken as an (n — 1)-dimensional projective space, any

oo
element in it is called a point at infinity, and A™ is called the space at infinity
of A™. -
Let I, = eg - In41. Then it represents the space A™. The mapping
Or x—ey-x=1I,Vz, forx € G,yq, (17.5)

oo
maps G,t1 to G(A"), called the boundary mapping. When I, is fixed, 95, is
often written as 0. Geometrically, if I, {1 represents an r-dimensional affine

space, then OI, represents its space at infinity. For example, when x,y are
both affine points, d(x A y) = y — x is the point at infinity of line zy.

o0
Let {e1,...,en+1} be a basis of R*L. If e, 11 € A", €1,... ,e, €A", the
basis is called a Cartesian coordinate system of A", written as {e1,...,ep;
én+1}. The affine point e,yq is called the origin. Let z € A", then x =
n

ent1 + D, Aiei. (M,...,An) is called the Cartesian coordinates of x with
i=1
respect to the basis.
Below we list some properties of the three-dimensional projective (or

affine) space when described in Gj.

— Two planes N, N’ are identical if and only if NV N’ = 0, where N, N’ are
3-blades.

— A line L is on a plane N if and only if L V N = 0, where L is a 2-blade.

— Two lines L, L’ are coplanar if and only if L V L' = 0, or equivalently, if
and only if LA L =0.

— A point A is on a plane N if and only if AV N = 0, or equivalently, if and
only if AA N = 0. Here A is a vector.
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— A point A is on a line L if and only if AA L = 0.

— Three planes N, N, N” are concurrent if and only if NV N’ v N” = 0.
— For two lines L, L', LV L' =L~V L.

— For point A and plane N, AV N = A~V N™.

17.2.3 Projective Splits

The following is a modified version of the technique of projective split.

Definition 17.2.1. Let C be a blade in G,. The projective split Po of G,
with respect to C' is the following transformation: z — C' A z, for z € G,,.

Theorem 17.2.1. [Theorem of projective split in Grassmann-Cayley alge-
bra !] Let C be an r-blade in G,,. Let C A G,, = {C A z|x € G, }. Define in it
two products “A¢” and “V¢7: for z,y € G,,

(CA2)Ae (CAy)=CAx Ay,

(17.6)
(CAz)Ve (CAy)=(CAz)V(CAY),
and define
(CAx)~e =CA(CAX). (17.7)

Then vector space C'AG,, equipped with “Ag”, “Va 7, “~¢” is a Grassmann-
Cayley algebra isomorphic to G,_,, which is taken as a Grassmann-Cayley
algebra.

Proof. Let C AR™ = {C A z|z € R"}. It is an (n — r)-dimensional vector
space. By the linear isomorphism of { \C|\ € R} with R, it can be verified that
(C A Gp, A¢) is isomorphic to the Grassmann algebra generated by C A R™.
A direct computation shows that the composition of “~¢” with itself is the
scalar multiplication by (—1)*(»~1/2C2. That C'AG,, is a Grassmann-Cayley
algebra follows from the identity

(CA2)™ Ve (CAY)™ = ((C Az) Ao (C Ay, (17.8)
which can be verified by the definitions (17.6) and (17.7).
! Theorem 17.2.1 can be generalized to the following one, which is nevertheless
not needed in this chapter:
[Theorem of projective split in Clifford algebra] Let C be a blade in G,. The

space C'AG,, equipped with the following outer product “A¢” and inner product
“.¢” is a Clifford algebra isomorphic to G(C™):

(CAx)ANc (CAy) =CAzAYy,
(xAC)-c(CAy) =C2CA(zAC)-(CAY)),

for z,y € Gn.
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Let {e1,...,e,} be a basis of R”. The projective split Po can be written
as the composition of the outer product by C' and the identity transformation.
It has the following tensor representation:

Pe=Y% > (CheyA-ne)®(en A Ae).  (179)
s=0 1<j1<...<js<n

For example, when C' is a vector and P¢ is restricted to R™, then

n

Po=>) (Che)®@ef. (17.10)
i=1
In particular, when {eq,... ,e,—1,C} is a basis of R™, then
n—1
Po=) (Che)®e;. (17.11)
i=1

When Pc is restricted to G2, then

Po= Y (ChejNepy)®(ej Nej)™. (17.12)
1<ji<ja2<n
In particular, when {e1,... ,e,_1,C} is a basis of R™, then
Po =~ Z (CNhejNej,) ® (6;2 A 6;1)- (17.13)

1<j1<j2<n—1

When n = 4, we use the notation i < i; < i5 to denote that 4,471,492 is an
even permutation of 1,2, 3. Let

é; = e, Negy, é: = 6:1 N 62:2. (1714)
then
3
Po=-Y(CA&)®E. (17.15)
i=1

The following theorem establishes a connection between the projective
split and the boundary mapping.

Theorem 17.2.2. When C is an affine point, the boundary mapping 0
realizes an algebraic isomorphism between the Grassmann-Cayley algebras

C A Gyt and G(AM).
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17.3 Camera Modeling and Calibration

17.3.1 Pinhole Cameras

According to Faugeras [77], a pinhole camera can be taken as a system that
performs the perspective projection from P3 to P2 with respect to the optical
point C' € P3. To describe this mapping algebraically, let {e1, e2, e3; 0} be a
fixed Cartesian coordinate system of .43, called the world coordinate system.
Let {e{,e§, e, C} be a basis of R* satisfying (e{' Ae§ Ae§ AC)™ = 1, called
a camera projective coordinate system. When C is an affine point, let e
be the vector from C' to the origin O of the retina plane (or image plane),
and let €, e§ be two vectors in the retina plane. Then {e{,eS,e{;C} is a
Cartesian coordinate system of A3, called a camera affine coordinate system.

Let M be a point or point at infinity of A%, and let m® be its image.
Then M can be represented by its homogeneous coordinates which is a 4 x 1
matrix, and m® can be represented by its homogeneous coordinates which is
a 3 x 1 matrix. The perspective projection can then be represented by a 3 x 4
matrix.

€3

e§ e 0 e

Fig. 17.1. A pinhole camera.

In our approach, we describe a pinhole camera with optical center C,
which is either an affine point or a point at infinity of A2, as a system per-
forming the projective split of G4 with respect to C' € R*.

To see how this representation works, we first derive the matrix of the
project split P restricted to R*. We consider the case when the camera
coordinate system {e{,eS, e, O} is affine. According to (17.11),
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3

Po=Y (Chel)@el™. (17.1)
i=1
In the camera coordinate system, let the coordinates of e;, i = 1,2,3,

and O, be (e1,€2,¢€i3,0) = (el,0), and (O1,04,03,1) = (—cT, 1), respec-
tively. Here e; and c represent 3 x 1 matrices. The following matrix changes
{e§, e e, C} to {e1,ea,e3,0}:

e; 0O

o
|
o

(17.2)

0]
wN
o

Its transpose changes {e}, e5, €3, 0%} to {e{*, e§*, e{*, C*}. Substituting ¢,

i =1,2,3 expressed by e}, e}, e5, O* into (17.1), we get the matrix of Pc:
Pc=(e1 e e3 —c). (17.3)

When C = O, € = e1, € = ey and e§ = —fes, where f is the focal
length of the camera,

10 00
Pc=|01 00|, (17.4)
00-1/f0

which is the standard perspective projection matrix. This justifies the repre-
sentation of the perspective projection by Po and the representation of image
points by vectors in C' A R%.

In the case when the camera coordinate system is projective, let the 4 x 1
matrices eic*, i = 1,2,3 represent the coordinates of eic* with respect to

{ej,e3,e3,0*}. By (17.1),
Pc = (ef* ef* e§")T. (17.5)
Below we derive the matrix of Pc restricted to G7. Let
er = el x e, (17.6)

where ¢ < i1 < i9. It represents the coordinates of éic* with respect to the
basis of G induced by {e},e5, e}, O*}. According to (17.15), the matrix of
PC is

Po = —(&¢* &5* {7, (17.7)
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17.3.2 Camera Constraints

It is clear that as long as det(e; es e3) # 0, the matrix Po = (e1 e2 e3 — ¢)
represents a perspective projection. When there is further information on the
pinhole camera, for example vectors e, e§ of the camera affine coordinate
system are perpendicular, then P needs to satisfy additional equality con-
straints in order to represent the perspective projection carried out by such
a camera.

oo
Let “~3” represent the dual in G(A3). Let the dual bases of {ey,e2,e3}
o0
and {e,eS,e{} in A% be {e}?,e3?,e5?} and {e§*2,eS*?, e{**}, respectively.
Then
C _ C'xs Cx3\~sg _  Cxs C'x:
ef = (eg ™ Neg ™)™ =e5 ™ X e3"?,

ef = (e5 ™ Nef™) e = eg™ X ef ™

(17.8)

)

where “x” is the cross product in vector algebra. The perpendicularity con-
straint can be represented by

e ef = (5% x e§*3) - (e5* x e*2) = 0. (17.9)
Z-C*3 represent the coordinates of eic*“ with respect
}. Under the assumption that {ej, ez, e3} is an orthonormal

Let the 3 x 1 matrix e
*3

to {6;3, 633, eg

basis, e; " e " = ef*3 ~ef*3 for any 1 <14,j < 3. Then (17.9) is changed to
(e5** x e5*3) - (eF** x ") = 0, (17.10)

which is a constraint on P~ because

(e ef™ ef™*) =(e1 ey e3). (17.11)

17.3.3 Camera Calibration

Let M be a space point or point at infinity, m® be its image in the retina
plane. Assume that m® is a point, and has homogeneous coordinates (u, v, 1)
in the Cartesian coordinate system of the retina plane. Let the 4 x 1 matrix M
represent the homogeneous coordinates of M in the world coordinate system.
Then

(wv )T =2PcM= ("M ef* M ef* M)T, (17.12)
which can be written as two scalar equations:
(e —uel*) - M =0, (e§* —vel*) - M =0. (17.13)

The matrix Po = (e{* eS* e§*)T can be taken as a vector in the space
R* x R* x R* equipped with the induced inner product from R*. By this inner
product, (17.13) can be written as
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M 0 —uM)" - Poc=0, (0 M —ovM)"-Pc=0. (17.14)

Given M; and (u;,v;) fori =1,...,6, there are 12 equations of the forms
in (17.14). If there is no camera constraint, then since a 3 x 4 matrix rep-
resenting a perspective projection has 11 free parameters, P¢ can be solved
from the 12 equations if and only if the determinant of the coefficient matrix
A of these equations is zero, i. e.,

AS_ (M 0 —u;M)AAS (0 M; —v;M;) =0, (17.15)

where the outer products are in the Clifford algebra generated by R* x R*xR%.
Expanding the left-hand side of (17.15), and changing outer products into
determinants, we get

22 €(0)e(T)ua(1) Ua(2)Vr(1)Vr(2) det (Mg (1) Mo(2) Mr(1) Mr(2))
det(MU(,‘))i:;g..(; det(MT(j))jzguﬁ =0,
(17.16)

where 0,7 are any permutations of 1,...,6 by moving two elements to the
front of the sequence, and €(0), (1) are the signs of permutation.

For experimental data, (17.16) is not necessarily satisfied because of errors
in measurements.

17.4 Epipolar and Trifocal Geometries

17.4.1 Epipolar Geometry

There is no much difference between our algebraic description of the pinhole
camera and others if there is only one fixed camera involved, because the
underlying Grassmann-Cayley algebras are isomorphic. Let us reformulate
the epipolar geometry of two cameras with optical centers C, C’ respectively.

The image of C’ in camera C is ESY" = C A C”, called the epipole of ¢’
in camera C. Similarly, the image of C in camera C" is EC'C =’ AC, called
the epipole of C' in camera C’. An image line passing through the epipole
in camera C (or C”) is called an epipolar line with respect to C’ (or C).
Algebraically, an epipolar line is a vector in

CAC'AR*=(CAGHN(C'NGI). (17.1)

An epipolar line C AC’ AM corresponds to a unique epipolar line C' AC A M,
and vice versa.
Let there be two camera projective coordinate systems in the two cameras

respectively: {e§,e§,e§, C} and {e€,e§" e§", C"}. Using the relations
(CAef)V(CAEE)=—C, for1<i<3, (17.2)
and

(CAEEYV(CNEL) =CNeS, fori < iy < ia, (17.3)
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Fig. 17.2. Epipolar geometry.

we get the coordinates of epipole ECC".

ECY = (CAeF)YV C)iz1. 3
(CAeF)* VO )iz1a (17.4)

= ((e?/* A egl* A 630/*) vV eic*)i:l__g.

The following tensor in (C'AR*) ® (C’ AR?) is called the epipolar tensor
decide by C,C":

FO(mC m®) =m® vm. (17.5)

Let m€ € C ARY, mC e ¢’ AR They are images of the same space point
or point at infinity if and only if FEC (mC mC") = 0. This equality is called
the epipolar constraint between m¢ and m¢’.

In matrix form, with respect to the bases {C' A e{,C AeS,C A el} and
{C"neS ,C"NeS O N e§}, FEC' can be represented by

=((CAeE)Y* V(C"NeS ) )i j=1.3 (17.6)

FCC — ((C A e?) V (Cl A 6?/))173:1_3
= (é?* V é?,*)i,jzlng.
(17.6) is called the fundamental matrix.
The epipolar tensor induces a linear mapping F¢¢" from C AR* to (C' A

R*)* = C" AG3, called the epipolar transformation from camera C' to camera
(O
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FO (mC) = ' AmC. (17.7)

Similarly, it induces an epipolar transformation from camera C’ to camera C
as follows:

FOCmy =cam. (17.8)

Both transformations are just projective splits.

The kernel of FE:¢" is the one-dimensional subspace of C' AR?* represented
by C' A C’, the range of FC:¢" is the two-dimensional space C’ A C' A R%. In
geometric language, F oi¢’ maps the epipole of C’ to zero, and maps any
other point in camera C to an epipolar line with respect to C.

Furthermore, we have the following conclusion:

Proposition 17.4.1. Let L¢ be an epipolar line in camera C. If its dual is
mapped to epipolar line L¢ in camera C’ by F¢¢ | then the dual of L is
mapped back to LE by F¢¢.

The proof follows from the identity that for any vector M € R*,
CAC'ANCANC" ANM)™ )" ~CANC'" AM. (17.9)

17.4.2 Trifocal Geometry

Let there be three cameras with optical centers C, C’, C" respectively. Let M
be a space point or point at infinity. Its images C AM, C' AM and C” A M in
the three cameras must satisfy pairwise epipolar constraints. Let us consider
the inverse problem: If there are three image points mc,mcl,mcﬁ in the
three cameras respectively, they satisfy the pairwise epipolar constraints, is
it true that they are images of the same space point or point at infinity?

Fig. 17.3. Point correspondence in three cameras.
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A simple counter-example shows that the epipolar constraints are not
enough. When the 2-blades m®, m®, mC" belong to G(C A C' A C"), the
epipolar constraints are always satisfied, but the blades do not necessarily
share a common vector.

Assume that the epipolar constraint between mC and mC" is satisfied.
Let M be the intersection of the two lines m® and mC” in P3. Then m®
represents the image of M in camera C if and only if m© A M = 0, or
equivalently,

m® Vv (M Az) =0, for any z € R%. (17.10)
When C’,C”, M are not collinear, since

M AR = (C'AM ARY) vV (C" A M AR?), (17.11)
(17.10) can be written as

mC v (m® Ac m§ )V (m€ Acrm§) =0, (17.12)

for any image points m§ " m§ " in cameras C’, C" respectively. When C”, C”,
M are collinear, since m® ~ m®", (17.12) is equivalent to the epipolar
constraint between m® and m® . So the constraint (17.12) must be satisfied

for m©, mcl7 mC” to be images of the same space point or point at infinity.

Definition 17.4.1. The following tensor in (C AR*)®(C'AG?)®(C" NG2) is
called the trifocal tensor [105, 106, 214] of camera C' with respect to cameras
c’,C".
T(m®, L, L")y =m® v L v LC", (17.13)
where m€ € C AR, L € ¢ AG2, LC" € C" N G2.
Two other trifocal tensors can be defined by interchanging C' with C’, C”
respectively:
T'(m®,LC, L°") =mC v LC v LC",
) , , , (17.14)
T"(mC" L, LC") = mC" v LC v L.

c’

In this section we discuss T only. Let {e{, eSS, C}, {e§", eSS, C"Y,
{e§" €S, e§",C"} be camera projective coordinate systems of the three
cameras rebpectlvely. Then T has the following component representation:

=((CAef)V(C'A AC,) V(C"ANES"))ik=1.3

= ((CNeE)* V((C" NS AC" NS )™))ijk=1.3 (17.15)
= (g~ ( A ))i ket
= (—(e¢ ; /*) VS ) kmt.3-

The trifocal tensor T induces three trifocal transformations:
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The mapping 7% : (C' A G3) x (C" AN G}) — (CARY* = CAGE is
defined as

7L, L")y = C A (LY v L. (17.16)

When L is fixed, TC induces a linear mapping ng/ :C"NGE —
CAG2:

TS (L") = 0 A (L v LY. (17.17)

If LY is an epipolar line with respect to C, the kernel of TLCCC?” is all
epipolar lines with respect to C, the range is the epipolar line represented
by LC'; else if LC is an epipolar line with respect to C”, the kernel is
the epipolar line represented by LY, the range is all epipolar lines with
respect to C”. For other cases, the kernel is zero.

Geometrically, when TC(LC/,LC“) # 0, then LY v LC" represents a
line or line at infinity L of A3, both LE and L€ are images of L.
TC(LC,, LCH) is just the image of L in camera C.

. The mapping TC" : (C AR*) x (C" A G3) — (C" AG2)* = C' AR* is

defined as
T (m%, L") = ' A (m€ v L"), (17.18)

When m€ is fixed, TC induces a linear mapping Tgcc :C" NG —
C' AR%:

TCEL (L") = ' A (m€ v L), (17.19)
If m© is the epipole of C”, the kernel of Tmclcc is all epipolar lines with
respect to C, the range is the epipole of C”. For other cases, the kernel
is the epipolar line C” A m®, the range is the two-dimensional subspace
of C" AR* represented by C' A mC.
Geometrically, when TC/(mC,LCN) #£ 0, then m© v LC" represents a
point or point at infinity M of A3, m® is its image in camera C, and
LC" is the image of a space line or line at infinity passing through M.
Tcl(mc, LC”) is just the image of M in camera C’.

. The mapping TC" : (C AR x (C" AG2) — (C" AG2)* = C” AR* is

defined as
T (m®, L) = " A (m€ v LE). (17.20)

We prove below two propositions in [81, 83] using the above reformulation

of trifocal tensors.

Proposition 17.4.2. Let LY be an epipolar line in camera C’ with respect
to C and L¢ be the corresponding epipolar line in camera C. Then for any
line LC" in camera C” which is not the epipolar line with respect to C,
T (LY, LC") ~ LC.



17. Coordinate-Free Projective Geometry for Computer Vision 429

Proof. The hypotheses are L¢" ~ LC, ¢ v LY # 0. Using the formula that
for any C € R?*, A3, B3 € G,

C A (Ag \Y Bg) = (C V Bd)Ag — (C V Ad)Bd, (1721)
we get
T(LY Ly~ C A (LC Vv LE)y = (C v LC)LC — (C v LO)LC" ~ LC.

Proposition 17.4.3. Let m®,mC" be images of the point or point at in-
finity M in cameras C’,C” respectively. Let LC be an image line passing
through mC" but not through ECC. Let LC be an image line passing
through mC” but not through E€”C". Then the intersection of TC (L, LE")
with the epipolar line C' A m is the image of M in camera C.

Proof. The hypotheses are MVLY = MVLC" =0,CVLE #0,C' VLS #
0. So
TO(LC, L") v (C Am©)
= (CALE VLE )V (CAC AM)
=((CAC)VLYVLEYCAM)—(CAM)VLE v L) (CAC
= —(C VLY v LY CAM)
~CAM.

17.5 Relations among Epipoles, Epipolar Tensors, and
Trifocal Tensors of Three Cameras

Consider the following 9 vectors of R*:

ES = {eC*, e " |1 <, j,k < 3}. (17.1)

J

According to (17.4), (17.6) and (17.15), by interchanging among C,C’ C”
any of the epipoles, epipolar tensors and trifocal tensors of the three cameras
has its components represented as a determinant of 4 vectors in ES. For
example,

BEC = (£ A e n e A5

FGY = (68 né§™ ) (17.2)

Tije = (e5* A ejc,* A eg”*)w.

Conversely, any determinant of 4 vectors in ES equals a component of
one of the epipoles, epipolar tensors and trifocal tensors up to an index-free
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scale. Since the only constraint on the 9 vectors is that they are all in R,
theoretically all relations among the epipoles, epipolar tensors and trifocal
tensors can be established by manipulating in the algebra of determinants of
vectors in ES using the following Cramer’s rule [76, 80]:

(o Axs ANxg ANas) w1 = (11 Axs Axg As)~xo — (21 Ao Axg A 25)~ 3

+($1 Nxo Nx3 N\ .’1?5)N31‘4 — ((L‘l Nxo ANx3 N\ $4)N$5,
(17.3)

where the 2’s are vectors in R*.

In practice, however, we can only select a few expressions from the algebra
of determinants and make manipulations, and it is difficult to make the selec-
tion. In this section we propose a different approach. Instead of considering
the algebra of determinants directly, we consider the set of meets of different
blades, each blade being an outer product of vectors in ES. Since the meet
operator is associative and anti-commutative in the sense that

AV B, = (1) B,V A,, (17.4)

for A, € Gj and B, € G, for the same expression of meets we can have a
variety of expansions. Then we can obtain various equalities on determinants
of vectors in E'S, which may be changed into equalities, or equalities up to
an index-free constant, on components of the epipoles, epipolar tensors and
trifocal tensors.

It appears that we need only 7 expressions of meets to derive and further
generalize all the known constraints on epipolar and trifocal tensors.

It should be reminded that in this chapter we always use the notation
1 < 11 < iy to denote that ,i1, i is an even permutation of 1,2, 3.

17.5.1 Relations on Epipolar Tensors
Consider the following expression:

Fexp = (e$"* A e§™* A egl*) V(e§* AeS* AeS*) v (S Ael"* A 630”*).
(17.5)

It is the dual of the blade C' A C' A C”.
Expanding Fexp from left to right, we get

((ef"" ne§™ ne§™) Vel ) (e v el e

Fexp =
i k=1

1,

co! pec” 0"«
1E7: F=eg ™

T T

i,

Expanding Fexp from right to left, we get
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Fexp = ((e?/* A eg/* A eSC/*) i ekcz//*)((ef* AeS*Ae§*) v egl”*)

bl
1 []es
/

’

—Q

€ Ne§* NeS ) v egl”*)((ef* AeS*Ae§*) v ekcz//*)) el

C//C/ //C //C/ //C C//*
(Ek2 Eg - E; " By, Jex

Mo =
e =

=
Il

where k < k1 < ko. So for any 1 < < 3,

3
cc’ pec” ellfeled
Y EFCFY ~ KOO (17.6)
k=1
Cllccl _ C//C C//c/ C//C C//c/
where K} = Ek1 E,€2 — Ek2 E'k1 . )
(17.6) is a fundamental relation on the epipolar tensor F¢“" and the
epipoles. In matrix form, it can be written as

(FCC)TECY ~ EC7C x EC7C, (17.7)
in Grassmann-Cayley algebra, it can be written as
C"N(CANC) = (C"NC) Ner (C" NCT. (17.8)

Geometrically, it means that the epipolar line in camera C” with respect
to both C' and C’ is the image line connecting the two epipoles EC"C and
EC"Y" . One should notice the obvious advantage of Grassmann-Cayley alge-
braic representation in geometric interpretation.

. " 1T, 1" . . .
Since E¢ ¢ x E¢ "¢ is orthogonal to E¢" ¢ | an immediate corollary is

(ECCH)TFCC RS =, (17.9)

which is equivalent to (C AC") V (C" AC") = 0. Geometrically, it means that
the two epipoles E€ ¢ and E¢ ¢ satisfy the epipolar constraint.

17.5.2 Relations on Trifocal Tensors I

The first idea to derive relations on trifocal tensors is very simple: if the
tensor (T;jk )i, j,k=1..3 is given, then expanding

(€ N eS™) v (€ neS " ne§ ) (17.10)
gives a 2-vector of the eC"*’s whose coefficients are known. Similarly, expand-
ing

Texp, = (65" A eﬁ/*) v (e9* A eg*) v (e?”* A eg”* A eg”*). (17.11)

" .
€7 g whose coefficients are known.

1
€75 whose

from right to left gives a vector of the e
Expanding Texp; from left to right, we get a vector of the e
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coefficients depend on epipolar tensors. By comparing the coefficients of the
e®"*’s, we get a relation on T and epipolar tensors.
Assume that j < j1 < jo. Expanding Texp; from left to right, we get
’ ’ 3 ~ Nl "
Texpy = — (6% A e]C1 A ejc; ) g_:l(eic* vV ekC ) eg *
3
CC/ CC// C//
*kZ:lFij Fip= e ™

Expanding Texp; from right to left, we get

M)

Texp; = (((élc* A ej(-’;/*) vV eg/*)((éf* A eg*) vV egl”*)

k

1
~ ! 1 N ! 1" 1"
— ((eic* A e]C1 )V egl *)((elc* A e]C2 IV ekc; *)) ekc *

C//
(Tijyis Tijorys — Tigoky Tijoks) €

I
Mes

k

1

where k < k1 < ka. So

Fgc FQC = tiCjM (17.12)
where
ticjk = Tijlleijzkz - Tij1k2Tij2k1' (1713)

Proposition 17.5.1. For any 1 <1,k < 3,
Fgc FSC" ~ tgk (17.14)

Corollary 17.5.1. Let 1 <1, j1, jo2, k1, k2 < 3, then

4 C

Bt f 1<k<3; 17.15
cor = ¢ forany 1 <k <3; (17.15)
ij2 ijak

R .

};clc" = ch, L forany 1 <j <3; (17.16)
Zk:z ij:z

t%lkl t%2k1

tij1 k2 tijz k2
Notice that (17.17) is a constraint of degree 4 on T.
To understand relation (17.14) geometrically, we first express it in terms of
Grassmann-Cayley algebra. When C'Ae¢ is fixed, T induces a linear mapping
TC"C . " AG2 — C" AR* by

TE"C(LCy =" A ((C A ef) v LY. (17.18)

The matrix of TiC”C is (—ﬂjk)ik:1,,3~
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Define a linear mapping tiC”C : C'AR* — C" A G2 as follows: let
m€ e ¢’ AR* and m© = LS v LY, where L', LY € C' A G?, then

1€ m) = TE" L) neon TEO(LE), (17.19)

We need to prove that this mapping is well-defined. Using the formula that
for any 2-blade Cy € G7 and 3-blades A3, B3 € G},

(Cy Vv A3) A (C2V B3) = —(Az V B3 V C3)Cs, (17.20)
we get
7" (m) = " A((CNeQ) VL) A (C nef) v LS
=LY VLS V(CAeE) C"NCAEE
=-—mC Vv (CAre) C"NCAeC
= imcl\/(C’/\eiC) (C"NC NS NS ) e nel”.

k=1
(17.21)

So t?”C is well-defined. Let j < j1 < j2 and k < k1 < k2, then since
t€"C(C N eS) = TE"C(C" Ne§" N e ) Aen TEC(C Ne§" Nef))

- < Z TiijQC” A 6?;) c ( Z nglklcl/ /\€kcu>

ko=1 ki1=1

3
_ " AC”
- Z ( ij1k1 z]ng - TZ]l k2ﬂ]2k1) C"ne )

the matrix of tiC“C is (tijk)}jkzl..?)'

So (17.14) is equivalent to

TC" LY N TEC(LS) = =mC Vv (C AeC) C"ANCAEC. (17.22)
Geometrically, TC 'C maps an image line in camera C’ to an image point on
the epipolar line C A C A e¢ in camera C”'. (17.22) says that the image line
connecting the two image points 7°" ¢ (LS") and TC"C(LS") in camera C”
is just the epipolar line C” A C' A €. This is the geometric interpretation of
(17.14).

17.5.3 Relations on Trifocal Tensors I1

Now we let the two é€°*’s in Texp; be different, and let the two eC’* be the
same, i. e., we consider the expression
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Texps = (ef* Ne™ A ejc/*) V(eSF A eS* A ejcl*) V(e A el A el ).
(17.23)

Assume that i < i1 < i9. Expanding Texpy from left to right, we get

3
_ c c c C'a\~ c c’ AC" 5y O
Texpy = —(ef™ Nei," Neg," Nej ) <Z ((es™ A e; )V eéy Fex *)
k=1
3
_ c’'Crpn ,C"x
= kil Ej; Tkijek .

Expanding Texps from right to left, we get

3 ’ 7 ~AC's /e "y,
Texpo —kzl (((ég* /\e]C ) \/eg’; *)((eg /\ejc )\/ekc1 )

N ’ 1 N ’ " 1
= (€5 NSV e (@S N e v el ) e

"

3
C
- Z (Tiljk1T1'2j/€2 - Tiljkszi'zjh)ek 5
k=1

where k < k1 < ka. So

where

t%k = Ty jiy Tigjks — Tivjiko Tinjter - (17'25)
Proposition 17.5.2. For any 1 <7,k < 3,

ES Tl ~ 15 (17.26)
Corollary 17.5.2. For any 1 < 4,i1,49,7, k, k1, k2 < 3,

c’ c’
Tty _ tige, Teig _ thg (17.27)
Tias o T thy

Same as before, to understand relation (17.26) geometrically, we first ex-
press it in terms of Grassmann-Cayley algebra. When C’ A é]C is fixed, T
induces a linear mapping chcl :C"NG2 — C NG? by

CC/ C// o AC«l C//
Ty% (LY ) =CA((C"AeF ) VLY, (17.28)

o i . . cc’
whose matrix is (—Tjjk)ik=1..3. 7" also induces a linear mapping T”j :

C" AR* — C AR* by

79 (m") = ¢ A (mC" v (C' A e, (17.29)
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whose matrix is (fT,g’ij)aizl__?’. Define a linear mapping tjcc’ O AR —
CAR* as follows: let m©" € C”AR* and m© = L{ VLY, where L | LS €
C" A G2, then

tS (m") =1 (L") v TEC(LS). (17.30)

We need to prove that this mapping is well-defined. Using the formula that
for any C' € R* and As, B3 € G3,

(CA(AsV Bs3))V Bsg =—(BsV(C)(As V Bs), (17.31)

we get

th’(mC”)z( A(C Ae )vLC”)) (CA((C/Aé.C’)VLg”))
:—C/\( /\(C”/\éc VLC”) V(C e VLg‘”)
= ("N YV C CA(C NS )YV LS VL")
=(C"AeF YV C CA((CAES ) VmE)
= ES'C 779 (m€").
(17.32)

So tjcc’ is well-defined. Using (17.30), it can be verified that the matrix of

tjCC’ is (t%;c)i’kzlug.
Thus, (17.26) is equivalent to

TELE") v T (LS ) = (¢ A ey v O O (e AeS ) v LS v LS.
(17.33)

Geometrically, TjCC/ maps an image line LY in camera C” to the image line
in camera C, which is the image of the space line on both planes C’ /\éjc/ and
LC". (17.33) says that the intersection of the two image lines TJ»CC/(Llc”) and
TJ»CC,(LSW) is just the image of the intersection of the plane C’ /\éf/ with the

line L?” \ Lg’w in the space. This is the geometric interpretation of (17.26).

17.5.4 Relations on Trifocal Tensors I1I

Consider the following expression obtained by changing one of the e *’s in
Texpy to an eC*.

Texps = (6" Ne§™) v (65" Nef ™) v (ef neS ™ ne§™).  (17.34)

Expanding Texps from left to right, we get
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4 1 3 // 1"
Texps = (éc*/\ec *)Veg * (Z(éic*VelC *) elc *)
=1

_ Z E]kFCC// C//
Expanding Texps from right to left, we get
Texpg _ (ézc* A ejcl*) Vv ((éZC* A eg//* A 6%”*)~ek2 A e C//
— (9% NS A eg )Nekl A ekc,,*)
- cc'’y,c”
- (njlezkl +E]k2sz2 )ek -
C// C// C// C//
- iJszkl n]szkz ky
where k < k1 < ko.

Proposition 17.5.3. For any 1 <1,j < 3,

ZTM FSC" =o. (17.35)
By (17.16), F{¢" = Fccﬂtgk/tgl So (17.35) is equivalent to

3

ZTijkt%k = det(Tijk)j’k:Lﬁ = 0, (1736)
k=1

for any 1 <i4,j < 3. (17.36) can also be obtained directly by expanding the
following expression:

S NS ™)V (9* AeS )V (€9 A eS )V (€€ A el A eS).
(17.37)

Expanding from left to right, (17.37) gives zero; expanding from right to left,
it gives det(Tsjk)j,k=1..3-

To understand (17.36) geometrically, we check the dual form of (17.37),
which is
C"A((Cnef)V(C ned)
A(C AeCY Vv (C' N eSH) (17.38)
A(C Ne€)V (C"NES).

(17.38) equals zero because the intersections of a line with three planes are
always collinear.

Interchanging C' with C”, we get det(T,:;’ij)m:L,g =0forany 1 <k < 3.
By (17.26), we have
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det(t5 )i j=1.3 = 0. (17.39)

A similar constraint can be obtained by interchanging C and C".
(17.37) can be generalized to the following one:

((neenet™ ) v ((Zxee)nes™) -

3 ! 1 1 1
v((z N €6 *)/\e?*) V(e AT AeSH).
i=1

where the \’s are indeterminants. (17.40) equals zero when expanded from
the left, and equals a polynomial of the A’s when expanded from the right.
The coefficients of the polynomial are expressions of the Tj;;’s. Thus, we get
10 constraints of degree 3 on T, called the rank constraints by Faugeras and
Papadopoulo [81, 83].

17.5.5 Relations on Trifocal Tensors IV

5C

Now, we let the two é~*’s in Texps be different. Consider

T6$p4 — (ezC* A eg* A e]o/*) V. (67,0* A 61'02* A eg//*) v (6?“* A eg”* A 630”*).
(17.41)

Assume that i < i1 < is. Expanding Texp, from left to right, we get

4 1" 1 1 1"
Texps = (ec* A ec* A ec* A ec e AT A A e?*)”ekc *
(C*/\BC*/\BC*/\ek *)N

(i(( Cx /\60*)\/ 5C" *)elC *>

=1
c’'c pcc” " x
(E E + ﬂijlek )
C// C// C// C//*
+,-_F7;2ij +,-_F7,2ij kz .

i1k1 i1k2

Expanding Texp, from right to left, we get

Texpy = ((eic* A eg*) vV (eJC,* A ekcﬂ*))(ég* v égl "“)ekc1 *
+ (€€ NeS*) V(5™ nef ) (e5* v s *)el
— (((eF N ey v (e e )G v e
+ (€7 A eV (e§7 A e,%‘ NSV e)) e

_ . // C// . // C//
= 12JkF1k1 €k +Tl2]kF1k2 €y

_(Tizjlelk +Ti2jk2F1k2 ) 4 ",

1
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where k < k1 < k. So
3
> T FSY = —Ef OB (17.42)
k=1
Interchanging i1, 45 in Texpy, we obtain
3
ZThijgkC = Ef CE7Y. (17.43)
k=1

Proposition 17.5.4. For any 1 <14,j < 3,
ESCECY ~ Wy, (17.44)
3 1!
where Wij = Z Tiljk-FngC .
k=1

From (17.36), (17.42) and (17.43) we get
Proposition 17.5.5. For any 1 <i1,i9,5 < 3,
3
Y (T + T FSE) = 0. (17.45)
k=1

In fact, (17.44) can be proved by direct computation:

e

Wi =Y (CAe)V(C NS )V (C"NeS") (CAeS)V(C" Nef™)

k
3 !’ 1 !
:—<C"/\<Z(CAeg)v(C“Aeg e¢ >)\/(C/\eg)v(C/AéjC)

")
k=1

=(C"ANCNeQ)V(CNeS)V(CNeS)

=(C"ANC NS NeS)~ (CNC NES)™

" ’
— ECC"RYC.

1

So (17.44) is equivalent to

(C"NCNES)V(CNEE)V(CTNES) =

o . o (17.46)
1! ~ ! A ~,
(C"NC Neg Neg, ) (CANCTNET )™
(17.45) is equivalent to the anti-symmetry of C"" A C' A el Aef with respect
to eﬁ and eg.

Define
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212J1J2 thul k Lizjok (17.47)

for 1 < iy, is, 1,72 < 3. By (17.12), (17.36), (17.42) and (17.43),

Weldel cC!' peC
Uiingi Z Filj iy Tiajak
0, if il = ig; (1748)
/ . . - -
= —FSCESCECCT, i i <y < i
FECESCECC”, i<y <ir.

Two corollaries can be drawn immediately:
Corollary 17.5.3. 1. For any 1 <14;,5; < 3, where 1 < k < 4,

c’c c’c EC’/C

Uitiogije  Wigisjajo  ja (17.49)
crc — T orc T poe '
11127173 13147473 3

2. Let ¢ < i1 < io. Then for any 1 < j; < 3 where 1 <[ <4,

c''c c'’'c ECC,,

Ui i1 jo _ Ui is 354 _ 4 17.50
lellde] - lellde] - _ECC// . ( . )
11951 ]2 11934 i

Corollary 17.5.4. 1. For any 1 < i1,19,j1 < 3 where i1 # io,,

c’'c

c'c
EY " >~ (ug40,5,)ia=1..3- (17.51)
2. For any 1 < 71,72 < 3,
cc’ c’'c ,c’'C c’'c ,c'C c’c ,C"C \T
E (u2311]2u3231]2’ U235 5 31512 u21]132u321132) (17'52)

Now we explain (17.48) in terms of Grassmann-Cayley algebra. We have
defined two mappings T ¢ and t¢ ¢ in (17.18) and (17.19), whose matrices

are (—T5jx)j,k=1..3 and (¢ ”k)j k—=1..3 respectively. By the definition of ul1$2€1]2’
uf i35, C" = 1 C(CT A ) VTS C(CTAES,). (17.53)
Expanding the right-hand side of (17.53), we get
ug;;(;lp U C(C’ A e ,C'A e,Q,C’ A 631 O A éC ), (17.54)

where UC"C : (O ARY) x (CARY) x (C' AR*) x (C' A G3) — R is defined
by
U Cm§ mg m LYY = —m§{ vm® Cv LS "V (m§ rcms).
(17.55)
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(17 54) is (17.48) in Grassmann-Cayley algebraic form. It means that the
uC" s are components of the mapping Uee.

Notice that (17.49) is a group of degree 6 constraints on 7. It is closely
related to Faugeras and Mourrain’s first group of degree 6 constraints:

|Tk1k2» Tk1l2‘ Tl1l2»||Tk71k72» TllkZ‘ Tl1l2‘|
= Tiko. Thito. Tooto || Thiko. Tivks. Thito.l,

(17.56)

where Tk, = (Thykok )k=1..3-

It is difficult to find the symmetry of the indices in (17.56), so we first
express (17.56) in terms of Grassmann-Cayley algebra. Using the fact that
—Tk, k. is the coordinates of C” A ((C' A egl) V(C" A ég)), we get

IThiks. Thito. Ti1o.]™
- (C”/\((C/\egl)\/(C A g)))
Aew (€ ((Cnef) v (e ned)))
pon (€7 A ((C ne) v (Cnedy))
:c"A((CAeg) (C' A &€ )) ((CA%) (C'AéC’))
AEnegyvierned)).

By formula (17.20),

|Tkyko. Thits. Tiytp.] = —(C A e(k’l) V(C'A ég/) v (C’ /\écl)
(C"ANC NS )V(C ALYV (C e
= —(CAe)V(C'NES)V(C NEL)
C"V(CAeS Nel) CV(C AeD.
(17.57)

Define a mapping VC" : (CAR*) x (CARY) x (C"AG?) x (C'AG) — R
as follows:

VE (m¢€,m§ ,LC/,LC/ C" Vv (m§ Anem§
(my,my, LY ) =—(C"V (m{ Ac 2,)) / (17.58)
(v L§Ym& v LS v LY.
Let
0 e = VE (O NS, O nEE CNES, O N EST. (17.59)

By (17.57),
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Tk, Thata. Tiita.| = 057, kot (17.60)

Similarly, we can get

|Tk1k2 Tl1k2 Tlllz | Ullkllzkz’
|Tl1k72 Tkllz Tl1l2 | Ullk1k2l2’ (17'61)
Tk ks, Tiiks. Thato| = 05115, -
So (17.56) is equivalent to
" "
lg/l/lkzlz _ lcljclﬂczlz , (1762)
Vkililaks  Vlikiloks

which is simpler than (17.56) in appearance. By (17.58), (17.59), in Grassmann-
Cayley algebra, (17.62) is just the following identity:

¢’ v (mf Aem§) Cv LS m?vLC'ng'

"V (mS AemG) CVLY m§ VIS VLY
o (17.63)
C”" v (m§ Anemf) CVvLY m§vLI¢vLS

"V (m§ Aem§) CV LY m§ VLS VLY

for any m$,m§ € C AR, L' LS e ¢’ A G2
By (17.58), we have

0, if iy = iz or j1 = jo;

ngc ECCECC , if i <11 <9 and j < j1 < Jo,
o _ . . . ; ; 1
s = ori <is < i1 and j < jo < j1;

FECESCECC”,  ifi =iy =iy and j < ja < ju,

0ri-<i2-<ilandj-<j1-<j2.

(17.64)
Corollary 17.5.5. 1. For any 1 <1;,71,72 <3 where 1 <[ <4,
C// C//
Ugf;ﬁh _ ”icsjfjljg. (17.65)
iviajoji  Visiajajn
2. Let i < i3 < i9. Then for any 1 < j; < 3 where 1 <[ <4,
C// C//
Yitiojigo _ v7172j3j4 (17.66)

C// C//
i11j1J2 Vivijsja
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17.56) is a special case of (17.65) where i3 = i2,44 = i1. Comparing
UC"C with VC, we get

Ve (m$ m$, LY, LY = U C(mS mS, LY v LS LS. (17.67)
It appears that we have generalized Faugeras and Mourrain’s first group of
degree-six constraints furthermore by U C”C, because (17.50) is equivalent to
(17.66), while (17.65) is a special case of (17.49) where j;, = j1. An explana-
tion for this phenomenon is that the variables in V" are less separated than
those in UC"'“, so there are less constraints on 7' that come from V¢ than
from UC"C.

Interchanging C’ and C” in (17.56), we get Faugeras and Mourrain’s
second group of degree 6 constraints:

IThy ko Thyto Toytol|Thy ko Toyko Tyt

(17.68)
= |Tl1~k72 Tkl‘l2 Tl1~12||Tk1~k2 Tll‘kz Tk1~lz|a

where Ty, k, = (Thykky )1=1.3-

This group of constraints can be generalized similarly.
17.5.6 Relations on Trifocal Tensors V
Consider the following expression:

Texps = (eic* A ef’:* A ejc,*) \Y (eg* A ejc,* A eg”*) V (e?”* A eg A g ).
(17.69)

Assume that i < i1 < io. Expanding Texps from left to right, we get
Texps _ _EC CEC c’ C// Zij Zﬂzzj " % .

Expanding Texp, from right to left, we get

C" %

Tea:pg, = _Tk212jﬂ23kek2 TklzijDJk'ekl
/ C”
+(Tk2iiji2jk’2 +Tk1i2jTi2jk’1) E

where k < k1 < ka. So
Z T Tiase = —E§ CEJ". (17.70)

Proposition 17.5.6. For any 1 <1,j < 3,

3
> T T ~ BESCES . (17.71)
k=1
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Using the relation (17.26), we get

3
> 0 T = det(Tijn)in=r.3 = (ES ©)2EC". (17.72)
k=1

Corollary 17.5.6. For any 1 < 1,49, j1 < 3 where i1 # ia,

el det(T' 'k)' k=1..3

c'c’ oo LYA2)

E <—( ey . (17.73)
2102717 j=1..3

17.5.7 Relations on Trifocal Tensors VI

The second idea of deriving relations on trifocal tensors is as follows: if the
tensor (Tijk )i, j,k=1..3 is given, then expanding

(€5 Ael ™ )V (€ NeS™ Aef™) (17.74)

5 whose coefficients are known. Similarly, expanding

gives a vector of the e
(e]C’* A e]C’*) V(e AeS* A e A e]a*), (17.75)
(e]C’* A ekcﬂ*) V(ef* AeSF AeS* A ekc”*)

c

. ’ 1" .
gives two 2-vectors of the e} * /\eic*’s and the eg * /\eic*’s respectively, whose

coefficients are known. The meet of two such 2-vectors, i. e.,

Texps = ((e]cl,* A egl”*) v (e{* AeS* Ae* A eﬁ/*))
V ((ej(’; A ekc2 YV (ef* AeSF Ae§* A egz *))
(17.76)

is an expression of the Tj;;’s. Expanding the meets differently, we get a rela-
tion on T, epipoles and epipolar tensors.
Assume that j < j1 < jo and k < k1 < k2. Expanding Texpg according
to its parentheses, we get
S o c” 2Cx  C c’
Texps = (Z (€5, " Neg, ") Ve en Nej, *>
11=
3
C/ C// AC C C//
Vv ‘Zl(eﬁ *Neg, Vet et A ek, *>
2=

e

(_Tiljlklrfléhlm + rfi2j1 k1 E1j2k2)nj1 k2>

i=1

where i < i3 < 3. Using the fact that the meet of a 4-vector with any
multivector in G, is a scalar multiplication of the multivector by the dual of
the 4-vector, we get
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Texps = (e Jcl/* Ne C” )V (e](/;/* A eg/*) v (e§* A e§* AeS* A e](/;/*)
V(e neS*F Ae§ /\ek )

_ FC'C” EC’CEC”C
Jk j ’

So
3
FG OB OB = Tk Toajoks — Toajums Tinjoka ) Dijuko- - (17.77)
1=1
Interchanging ji, j2 in Texps, we get
3
—F5 B OB = (Tijaks Tiajuke — Tiajoka Tovjuks) Tijoka- - (17.78)
=1
Interchanging k1, ko in Texps, we get
3
—FG B OBL Y = (TijikaTiajaky — TiajukaTov ok ) Tijuke - (17.79)

i=1
Interchanging (j1, k1) and (jo, k2) in Texps, we get

3
G ESCEL Y = (TjoksTingiks — Toajoks Tinjik ) Tijok - (17.80)
i=1
When j; = js or ky = ko, Texps = 0 by expanding from left to right.
Define

3
c
Vjyjskiks = — Z(Tiljlleizjm = Tigjites Ty jokes ) Tijr ks - (17.81)
=1
Then
0, if j1 = jo or k1 = ko;
—FGC"ESCESC, i j < j1 < jo and k < ky < ko,
chl’]éklkz = or j < jo < j1 and k < ko < ky;
FGC"ESCEC'C, i j<ji <jrand k < ky < ki,
orj <jo<jyand k <k < ks.
(17.82)
Proposition 17.5.7. For any 1 < j1, jo, k1, ko < 3,
c c'c c”c
Yjijokiks _ _Ejl o Yigekiks Ej (17 83)
c = c'c) .0 = e .
Viiikiks O kel B
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Corollary 17.5.7. 1. For any 1 < j;,k; < 3, where 1 <[ <4,

C C C C
Yjrjakiks _ Yjrjokska . Yjijakike _ Yjsjakiko (17.84)

)

C C C C
Vjojikike  Yjagikska  Ujijokekr  Ujsjakak:

2. For any 1 < 4,7, 71, k1 <3 where 1 <1 <2,

€ . megey
Jijzkika 1192771 17.85
C =——crc - (17.85)
v us .
J2Jg1kikz 119272

Notice that (17.84) and (17.85) are groups of degree 6 constraints on 7.
(17.84) is closely related to Faugeras and Mourrain’s third group of degree 6
constraints:

|T~k1k2 T~k112 T‘1112||T~k1k2 T‘llk2 T~l1lz|
= |T~l1k2 T‘kll2 T.l1l2||T‘k1k2 T‘llk2 T~k112|’

(17.86)

where Tk, k, = (Thky ko ) k=1..3-
Let us express (17.86) in terms of Grassmann—Cayley algebra. Using the
fact that —T ,k, is the coordinates of C'A ((C’ A ek1 YV (C"A ékcz”)), we get
IT kiks Tokts Taytn| C
- (c A ((c' neS) v (c” )))
o(en(@na)vierne))
c (c A ((C’ Né ) (€ A ég”)))
A ey e neg)))
Vv ( ( C’/\ v (C”Aég”)))
V(CTAE) VI(CT A,

\

-c(c

By (17.31), we have

IT kiko Tokito Tyt
= (ca ((C’/\éc) (c”neg))
V(O AV (€ nel Y v (C ey (" aeyve  (1T.87)
= —(C”/\ekl)\/C’ (" nef"yv e
(C"NECYV(C NeE )V (CT NeL )V (C" nef).

Define a mapping VE : (C'AG?) x (C'AGT) x (C"AG2) x (C" ANGE) — R
as follows:
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vews, Ly, L 1"y =~ veyws voyrs ves vieé v esh.

(17.88)
Then
vl neg, crnes e nel " nely = ol s (17.89)
According to (17.87),
c
|T~k1k2 T‘k112 T~l1l2| = Vkylikols- (1790)
Similarly, we have
|T~k1k2 T~llk2 T‘1112| = Ul(fkllgk'g’
|T~l1k'2 T.k1l2 T.l112| - vﬁk1k2127 (1791)
IT kaks Titsks Tobata] = VK, 11101,
Now (17.86) is equivalent to
c c
v v
lgllkzlz _ léklkzlz7 (1792)
Ukililaks  Vlikiloks
or more explicitly, the following identity:
¢'ve rg've r¢'vig vie¢ v iLg”
LY've LY"vo LY v LIS v LS vIL{"
(17.93)

Ls've §"ve g vie¢ vieg vig”
S LY'vCe LY"vCe LY VLY VLS v LE"

(17.84) is a straightforward generalization of it.

17.5.8 A Unified Treatment of Degree-six Constraints

In this section we make a comprehensive investigation of Faugeras and Mour-
rain’s three groups of degree-six constraints. We have defined ugigl j, 10
(17.47) to derive and generalize the first group of constraints. We are go-
ing to follow the same line to derive and generalize the other two groups of
constraints.

The trifocal tensor T" induces 6 kinds of linear mappings as shown in table
17.1. We have defined two linear mappings t{ ¢ and ¢§“ in (17.19) and
(17.30) respectively, which are generated by the T’s. There are 6 such linear
mappings as shown in table 17.2. Let

m® =L¢" VLS, m® =L{"vL§" L =m{ AcmS.

Here

Sk = TirjikTinjor — TingakTinjs ks (17.94)

where i < i1 < i3 and j < j1 < Jo. tgk and tg; have been defined in (17.13)
and (17.25) respectively.
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Table 17.1. Linear mappings induced by T'

Mapping Definition Matrix

TZ.C/C C"ANG? — C'ANR* (—Tijk)jk=1..3
L — ' A((CAef)v L
TiC”C C'NG? — C"ANR* (*Tijk)zk:ln3
LY " A((C A€V L)
T].CC' C"NG? — C NG (—Tijk)ik=1..3
LC// ;_)C/\((C,/\é]C/)VLCH)
ch”c/ CARY — C" AR? (*Tijk)g:kzy.a
m® — C" A (mC v (C' A eS))
e C'NG: — CAGE (=Tijk)ig=1.3
LY — CALE v (C" AEE")
ch/c” CARY — C'AR? (_Tijk)g:j:LB
mC &' A (mC v (C" A el Y)

The mappings t’s are well-defined because

t&'CmC" )y = —(CAef)vmC" C'ACAEE,

t€"Cm%) = —(CAef)vmT C"ANCAEE,

1 (mC") = (C' A eS YV C CA((CAES)vmE"), (17.95)
t9"C(LO) = —(C' AT )V O C"ALOV (O NES),

1€ (mC") = (C" Neg" )V C CA(mE v (€ nEE)),

(L) = —(C" nef" )V O O A(LE V(" neS")).

For any 1 < i1, 42, j1,j2, k1, k2 < 3, let
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Table 17.2. Linear mappings induced by ¢

Mapping Definition Matrix
’
t$°¢ C'"AR* — C' NG} (tSk)jk=1..
1" ! 1 /C C//
m® = TE (LY ) Ay TE (L)
e C' AR — C" A GE (t0) T k1.,
mc/ — TZC//C(L?/) /\C// TZC//C(LQC’/)
16" C" AR' — C AR () inmr..
m® — TEC (LY ) ve TP (L)
1 ! ’
t§7¢ CAGE— C"AGE (t5k) f et
1 ’ 17 !
LE =T (mf) Aen T (mf)
o C'AR* — C AR! (S )ig=1..
’ 1 4 17 4
m® — TEC (LY ) Ve TF Y (L)
c'c” C 2 c’ 2 c''\T
i NGL — C" NG (i )ii=1..
LC — kc«/c// (mlc’) /\C/ T]?,C” (mzc)
c'’'c 3 C
iizjijz = 2o tivjukLininks
k=1
3
C//C/ o C/ -
iizjijz = 2o tivjukLingoks
k=1
! 3 C
uilizkle = Zl tiljkl Tizjkzv
j:
Clcl/ 3 17
ui1i2k1k2 = 4 tiljkl Ti?jk27
Jj=1
3

cc’

_ ¢
Uj Gakiks = thz‘jllewzkzv
1=

17
'U,CC

Then

3
o o B
Frjekiks = .thz‘jllewzkr
1=

(17.96)
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C//C 7 C// 7 C/ C//C / Ac/
1112]1]20 - t (C A € ) v Ti2 (C A €52 )’
C//C/ C//C/ AC C//c/ C
ug i, C" =15 Y (CNER) VT < (CNegy),
ugigkleCl _ tC C(C// A eC ) Vi TC C(C// AC )’
(17.97)
c'c’ C c” ~C c'c” C
lllgkleC/ - t (C /\ ei1) \/ TkQ (C /\ 6i2)7
cc’ Telod " c”’ cc’ " ~C"
WG gk, O = 157 (C" Al ) VTEE (G Ne, ),
cc” _cc” ! c’ cc” l ~C’
us ek, C =tk (C'Nef ) VILE (CTAES,).

Expanding the right-hand side of the above equalities, we can get a factored
form of the w’s, from which we get the following constraints.

c’'c

f1isinj,: (see also subsection 17.5.5)

Constraints from u

0, if i1 = io;
c’c ’ . . .
Uirisjng = § — FSE EC CECC” if i < iy < iy; (17.98)
FECESCBEC” if i < iy < i1
Two constraints can be obtained from ugzgl ot
1. For any 1 <17, < 3, where 1 <[ <4,
c'c c'c
gffém = ’Cﬁfj‘é‘”? (17.99)
i112J1]3 1314J473
2. Let i < i1 < i2. Then for any 1 < j; < 3 where 1 <[ <4,
C//C C//C
Ualis — _Walus (17.100)
1195172 4195374
Define U C : (C AR*) x (C ARY) x (C' AR%) x (C' AG2) — R by

o' roty _
my,mg,m*% [ LY) =

C

— (my
Then
ucecn e
c’c’

Constraints from u$

1172J132

, , (17.101)
vm)(CV LOYNC" Vv (m§ Ac m§)).
lede]
,C'A 612, o' A ej1 70/ ) =ul, 5, (17.102)

If i1 # ig, then
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0, lf j1 = jg;
c’c’ ’ " [P . .
Wiyigjrja = ESCESCTFSS i § < g1 < jas (17.103)
—ESCESCFESC i < g2 < g1

. . " ’
Two constraints can be obtained from ugiz st

1. Let iy # ig, i3 # i4. Then for any 1 < jy,j2 < 3,

C”C, C//C/

t122J1J2 __ T13%471]72

DA o )y (17.104)
1182721 1314721

2. Let ¢ < i1 < 4. Then for any 1 < j; < 3 where 1 <[ < 4,

C//c/ C//c/

11127172 11227374

Loy o Ll (17.105)
ii27152 Uiin jaja

Define UC"Y" : (CAG2) x (CARY) x (C" AG2) x (C" AG2) — R by

U@l me LY LYy = (LC v e"y(LS v &) (mC v LS v LY.

(17.106)
When 7:1 7é ig,
c'c’ ~C C 1 N 2C' A 5C c'c’
U (CNé,CNey, CTNE; L CTNES ) = Uy i s (17.107)
. c'c .
Constraints from (A
0, if 11 = iz;
c'c " ’ "o . .
Uiliokike — — Elg; CEZ»CC Fz?kci s ifi < 11 < 12; (17~108)
ESCECCESE i i < ip < iy
Two constraints can be obtained from ugfkl ko'
1. For any 1 <4, k; < 3 where 1 <[ <4,
c'c c'c
Uiahike — _llahaks (17.109)
iviskiks  Wizigkaks
2. Let ¢ < i1 < i2. Then for any 1 < k; < 3 where 1 <1 <4,
c'c c'c
—EE = et (17.110)

iviki ko Ui ikska
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Define UC'C : (C ARY) x (C AR?) x (C" AR%) x (C” AG2) — R by

UC'C ¢, mS,mC”, L") =

my,mg,m
. . (17.111)
— (m§ vm©)(C VL) OV (m§ Ac m§)).
Then
c'c " ~C" c'c
U CNeS,CNneS,C" Ne . C"NéG ) =ul Siin, (17.112)
Constraints from uglzklkz If i1 # ig, then
O if ]{)1 = k‘g;
uS G = ES"CESCFSL i k <k < ko (17.113)
— BC"CESCFCC" itk < ky < k.
Two constraints can be obtained from uglgkl ko'
1. Let i1 # io and i3 # i4. Then for any 1 < kq, ko < 3,
C/c// C/c//
L) (17.114)
iviskaks  Yigigkoks
2. Let i < iy < i2. Then for any 1 < k; < 3 where 1 <1 <4,
C,C” C/C//
Sigkiks _ Stizkoks (17.115)
tink: ka Uiis kg ka

Define UC'C" : (C A G2) x (C ARY) x (C” AG2) x (C" AG2) — R by

U (L mC L, LSy = (L v &")(LS" v C)(mC v LE" v LS.

(17.116)
When iy # 9,
ueeenes, o ne,cm neg C ey =ul Sy, (17117
Constraints from ujcjzklk2 If k1 # ko, then
0, if j1 = jo;
ujclgzkllw =y - EC CECNCFJ(I/;C” ifj < j1 < Jo2; (17.118)

ES'CELCFSC" i § < ja = i

Two constraints can be obtained from u¢¢’ k1 k
J1j2k1k2”
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1. Let k1 # ko and ks # k4. Then for any 1 < jq,j2 < 3,

’ ’

j1j2ki1ka j1j2kska
kiks _ _Jijskaks (17.119)
Yjajikiks  Wiogikaka

2. Let k < k1 < ko, then for any 1 < j; <3 where 1 <[ <4,

cc’ cc’

J1j2k1ks j3jakikz
Gor— = —gar—- (17.120)
U1 jakik Ujsjakk

Define U : (C' A G2) x (C" AG2) x (C" ARY) x (C” AG2) — R by

! ! ! 17 "
vee Ly, 1§ mC" 1) =

’ 1 ’ ’ 1" (17121)
— (LY v OYLE v O)(LY v LS vmE).
When ki # ks,
cc’ AC ¢ c” Neoll cc’
U“Y(C'NE O Nes,  C Ney, ,C" Nég, ) =uj 5, (17.122)
Constraints from ufmklb If j1 # jo, then
0, if kl = kQ;
coc” ’ 7" /A
Ujy jokiky = ESCECCFCC" i k < ky < ka; (17.123)
—ESCECCFSL" it k< ky < Ky
Two constraints can be obtained from ujclgkl ko'
1. Let j1 # jo and j3 # j4. Then for any 1 < kqy, ko < 3,
CC// CC//

Jijekika _ “jsjakiks
UCC// - UCC// . (17.124)

J1je2kak1 j3jakaky

2. Let j < j1 < Jja2, then for any 1 < k; < 3 where 1 <1 <4,
Mele " Mele "

Jijekika _ Tjijokska
UCC” - UCC.'H . (17.125)

J1jk1ke J1jkska

Define UCC" : (C" AR*) x (C" AG2) x (C" AG3) x (C" ANGZ) — R by

e m® L, 18", 15") = (L v C)(L v O)

, " " (17.126)
(m® v L{ VLS.
When j1 7é jg,
e nes o neS o nel 0" nel ) = uSS k. (17.127)
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We have
Ve (my,m§, LY, LY)
U C(mé m§, LS v LS LS"), it L v LY # 0; (17.128)
—UC"(m$ Ao m$,m¢, LS L"), if m€ v m§ # 0.
Thus
Uiy 5 <1 < o

C/
" — U; s if 7 < =< J1;
WO nizgip 117 = J2 <0 (17.129)

e — ugi/gjl, if i <41 < i9;
crer
111J2J1°

Comparing these constraints, we find that the constraints (17.65), (17.66)
from V" are equivalent to the constraints (17.104), (17.105) from U<,
and are included in the constraints (17.99), (17.100) from U C. Faugeras
and Mourrain’s first group of constraints is a special case of any of (17.65),
(17.104) and (17.99). Similarly, Faugeras and Mourrain’s second group of
constraints is a special case of any of (17.109), (17.114).

We also have

Ve(rs, s Ly, LS
Ucc/(L?/7Lg/7L?// VLQC//7Lg//)7 if L?// \/Lgl! # O; (17‘130)
—UCe (LY N LS, LS, LS" LE"Y, if LS v LS # 0.

U ifi <12 <15.

Thus

ujcj?kzkl’ if j < Jj1 < Jjo;

CC” . . . .

— uY Lif § < 4o < j1;

VS jateaks = ditkakyy B I3 (17.131)
UC ifk <k < k‘g,

J1jekka?
uﬁmkk27 ifk < ko < k.

The constraints (17.84), (17.85) from V¢ are equivalent to the constraints
(17.124), (17.125) from U ¢, and are also equivalent to the constraints
(17.119), (17.120) from U® ©. Faugeras and Mourrain’s third group of con-

straints is a special case of any of (17.84), (17.124) and (17.119).

17.6 Conclusion

In this chapter we propose a new algebraic representation for image points
obtained from a pinhole camera, based on Hestenes and Ziegler’s idea of pro-
jective split. We reformulate camera modeling and calibration, epipolar and
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trifocal geometries with this new representation. We also propose a system-
atic approach to derive constraints on epipolar and trifocal tensors, by which
we have not only derived all known constraints, but also made considerable
generalizations.



