
17. Coordinate-Free Projective

Geometry for Computer Vision∗

Hongbo Li and Gerald Sommer

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

17.1 Introduction

How to represent an image point algebraically? Given a Cartesian coordinate
system of the retina plane, an image point can be represented by its coordi-
nates (u, v). If the image is taken by a pinhole camera, then since a pinhole
camera can be taken as a system that performs the perspective projection
from three-dimensional projective space to two-dimensional one with respect
to the optical center [77], it is convenient to describe a space point by its
homogeneous coordinates (x, y, z, 1) and to describe an image point by its
homogeneous coordinates (u, v, 1). In other words, the space of image points
can be represented by the space of 3 × 1 matrices. This is the coordinate
representation of image points.

There are other representations which are coordinate-free. The use of al-
gebras of geometric invariants in the coordinate-free representations can lead
to remarkable simplifications in geometric computing. Kanatani [128] uses
the three-dimensional affine space for space points, and the space of displace-
ments of the affine space for image points. In other words, he uses vectors
fixed at the origin of R

3 to represent space points, and uses free vectors to

∗ This work has been supported by Alexander von Humboldt Foundation (H.L.)
and by DFG Grants So-320-2-1 and So-320-2-2 (G.S.)

416 Hongbo Li, Gerald Sommer

represent image points. Then he can use vector algebra to carry out geometric
computing. This algebraic representation is convenient for two-dimensional
projective geometry, but not for three-dimensional one. The space represent-
ing image points depends neither on the retina plane nor on the optical
center.

Bayro-Corrochano, Lasenby and Sommer use R
4 for both two-dimensional

and three-dimensional projective geometries[19, 17, 222]. They use a coordi-
nate system {e1, e2, e3, C} of R

4 to describe a pinhole camera, where the e’s
are points on the retina plane and C is the optical center. Both space points
and image points are represented by vectors fixed at the origin of R

4, the only
difference is that an image point is in the space spanned by vectors e1, e2, e3.
This algebraic representation is convenient for projective geometric compu-
tations using the incidence algebra formulated in Clifford algebra. However,
it always needs a coordinate system for the camera. The space representing
image points depends only on the retina plane.

We noticed that none of these algebraic representations of image points
is related to the optical center. By intuition, it is better to represent image
points by vectors fixed at the optical center. The above-mentioned coordinate-
free representations do not have this property.

Hestenes [113] proposed a technique called space-time split to realize
the Clifford algebra of the Euclidean space in the Clifford algebra of the
Minkowskii space. The technique is later generalized to projective split by
Hestenes and Ziegler [118] for projective geometry. We find that a version of
this technique offers us exactly what we need: three-dimensional linear spaces
imbedded in a four-dimensional one, whose origins do not concur with that
of the four-dimensional space but whose Clifford algebras are realized in that
of the four-dimensional space.

Let C be a vector in R
4. It represents either a space point or a point at

infinity of the space. Let M be another vector in R
4. The image of the space

point or point at infinity M by a pinhole camera with optical center C can
be described by C ∧ M . The image points can be represented by the three-
dimensional space C ∧ R

4 = {C ∧ X |X ∈ R
4}. The Clifford algebra of the

space C ∧ R
4 can be realized in the Clifford algebra of R

4 by the theorem of
projective split proposed later in this chapter. The space representing image
points depends only on the optical center. The representation is completely
projective and completely coordinate-free.

Using this new representation and the version of Grassmann-Cayley al-
gebra formulated by Hestenes and Ziegler [118] within Clifford algebra, we
have reformulated camera modeling and calibration, epipolar and trifocal
geometries, relations among epipoles, epipolar tensors and trifocal tensors.
Remarkable simplifications and generalizations are obtained through the re-
formulation, both in conception and in application. In particular, we are to
derive and generalize all known constraints on epipolar and trifocal tensors
[76, 80, 81, 83] in a systematic way.

17. Coordinate-Free Projective Geometry for Computer Vision 417

This chapter is arranged as follows: in section 17.2 we collect some necess-
sary mathematical techniques, in particular the theorem of projective split in
Grassmann-Cayley algebra. In sections 17.3 and 17.4 we reformulate camera
modeling and calibration, and epipolar and trifocal geometries. In section
17.5 we derive and generalize the constraints on epipolar and trifocal tensors
systematically.

17.2 Preparatory Mathematics

17.2.1 Dual Bases

According to Hestenes and Sobczyk [117], let {e1, . . . , en} be a basis of R
n

and {e∗1, . . . , e∗n} be the corresponding dual (or reciprocal) basis, then

e∗i = (−1)i−1(e1 ∧ · · · ∧ ěi ∧ · · · ∧ en)∼,

ei = (−1)i−1(e∗1 ∧ · · · ∧ ě∗i ∧ · · · ∧ e∗n)∼,
(17.1)

for 1 ≤ i ≤ n. Here “∼” is the dual operator in Gn with respect to e1∧· · ·∧en.
The basis {e1, . . . , en} induces a basis {ej1 ∧ · · · ∧ ejs

|1 ≤ j1 < . . . < js ≤
n} for the s-vector subspace Gs

n of the Clifford algebra Gn of R
n. We have

(ej1 ∧ · · · ∧ ejs
)∗

= e∗js
∧ · · · ∧ e∗j1

= (−1)j1+···+js+s(s+1)/2(e1 ∧ · · · ∧ ěj1 ∧ · · · ∧ ějs
∧ · · · ∧ en)∼.

(17.2)

Let x ∈ Gs
n, then

x =
∑

1≤j1<...<js≤n

x · (ej1 ∧ · · · ∧ ejs
)∗ ej1 ∧ · · · ∧ ejs

=
∑

1≤j1<...<js≤n

(−1)j1+···+js+s(s+1)/2 ej1 ∧ · · · ∧ ejs

(e1 ∧ · · · ∧ ěj1 ∧ · · · ∧ ějs
∧ · · · ∧ en) ∨ x.

(17.3)

Let an invertible transformation T of R
n maps {e1, . . . , en} to a basis

{e′1, . . . , e′n}. Let T ∗ = (T T)−1. Then T ∗ maps the dual basis {e∗1, . . . , e∗n}
to the dual basis {e′

∗
1, . . . , e′

∗
n}.

Any linear mapping T : R
n −→ R

m has a tensor representation in R
n ⊗

R
m. Then

T =

n
∑

i=1

e′i ⊗ e∗i . (17.4)

For example, let Πn be the identity transformation of R
n, then in tensor

representation, Πn =
n
∑

i=1

ei ⊗ e∗i for any basis {e1, . . . , en}.

418 Hongbo Li, Gerald Sommer

17.2.2 Projective and Affine Spaces

An n-dimensional real projective space P
n can be realized in the space R

n+1,
where a projective r-space is an (r+1)-dimensional linear subspace. In Gn+1,
a projective r-space is represented by an (r+1)-blade, and the representation
is unique up to a nonzero scale. Throughout this chapter we use “x ' y” to
denote that if x, y are scalars, they are equal up to a nonzero index-free scale,
otherwise they are equal up to a nonzero scale.

An n-dimensional real affine space An can be realized in the space R
n+1

as a hyperplane away from the origin. Let e0 be the vector from the origin
to the hyperplane and orthogonal to the hyperplane. When e2

0 = 1, a vector
x ∈ R

n+1 is an affine point if and only if x · e0 = 1. An r-dimensional affine
plane is the intersection of an (r + 1)-dimensional linear subspace of R

n+1

with An, and can be represented by an (r + 1)-blade of Gn+1 representing
the subspace.

The space of displacements of An is defined as
∞

An= {x − y|x, y ∈ An}.
It is an n-dimensional linear subspace of R

n+1. Any element of it is called a

direction. When
∞

An is taken as an (n− 1)-dimensional projective space, any

element in it is called a point at infinity, and
∞

An is called the space at infinity
of An.

Let In = e0 · In+1. Then it represents the space
∞

An. The mapping

∂In
: x 7→ e0 · x = In ∨ x, for x ∈ Gn+1, (17.5)

maps Gn+1 to G(
∞

An), called the boundary mapping. When In is fixed, ∂In
is

often written as ∂. Geometrically, if Ir+1 represents an r-dimensional affine
space, then ∂Ir represents its space at infinity. For example, when x, y are
both affine points, ∂(x ∧ y) = y − x is the point at infinity of line xy.

Let {e1, . . . , en+1} be a basis of R
n+1. If en+1 ∈ An, e1, . . . , en ∈

∞

An, the
basis is called a Cartesian coordinate system of An, written as {e1, . . . , en;
en+1}. The affine point en+1 is called the origin. Let x ∈ An, then x =

en+1 +
n
∑

i=1

λiei. (λ1, . . . , λn) is called the Cartesian coordinates of x with

respect to the basis.
Below we list some properties of the three-dimensional projective (or

affine) space when described in G4.

– Two planes N , N ′ are identical if and only if N ∨N ′ = 0, where N, N ′ are
3-blades.

– A line L is on a plane N if and only if L ∨ N = 0, where L is a 2-blade.
– Two lines L, L′ are coplanar if and only if L ∨ L′ = 0, or equivalently, if

and only if L ∧ L′ = 0.
– A point A is on a plane N if and only if A∨N = 0, or equivalently, if and

only if A ∧ N = 0. Here A is a vector.

17. Coordinate-Free Projective Geometry for Computer Vision 419

– A point A is on a line L if and only if A ∧ L = 0.
– Three planes N, N ′, N ′′ are concurrent if and only if N ∨ N ′ ∨ N ′′ = 0.
– For two lines L, L′, L ∨ L′ = L∼ ∨ L′∼.
– For point A and plane N , A ∨ N = A∼ ∨ N∼.

17.2.3 Projective Splits

The following is a modified version of the technique of projective split.

Definition 17.2.1. Let C be a blade in Gn. The projective split PC of Gn

with respect to C is the following transformation: x 7→ C ∧ x, for x ∈ Gn.

Theorem 17.2.1. [Theorem of projective split in Grassmann-Cayley alge-
bra 1] Let C be an r-blade in Gn. Let C ∧ Gn = {C ∧ x|x ∈ Gn}. Define in it
two products “∧C” and “∨C”: for x, y ∈ Gn,

(C ∧ x) ∧C (C ∧ y) = C ∧ x ∧ y,

(C ∧ x) ∨C (C ∧ y) = (C ∧ x) ∨ (C ∧ y),
(17.6)

and define

(C ∧ x)∼C = C ∧ (C ∧ x)∼. (17.7)

Then vector space C∧Gn equipped with “∧C”, “∨C ”, “∼C ” is a Grassmann-
Cayley algebra isomorphic to Gn−r, which is taken as a Grassmann-Cayley
algebra.

Proof. Let C ∧ R
n = {C ∧ x|x ∈ R

n}. It is an (n − r)-dimensional vector
space. By the linear isomorphism of {λC|λ ∈ R} with R, it can be verified that
(C ∧ Gn,∧C) is isomorphic to the Grassmann algebra generated by C ∧ R

n.
A direct computation shows that the composition of “∼C ” with itself is the
scalar multiplication by (−1)n(n−1)/2C2. That C∧Gn is a Grassmann-Cayley
algebra follows from the identity

(C ∧ x)∼C ∨C (C ∧ y)∼C = ((C ∧ x) ∧C (C ∧ y))∼C , (17.8)

which can be verified by the definitions (17.6) and (17.7).

1 Theorem 17.2.1 can be generalized to the following one, which is nevertheless
not needed in this chapter:

[Theorem of projective split in Clifford algebra] Let C be a blade in Gn. The
space C∧Gn equipped with the following outer product “∧C” and inner product
“·C” is a Clifford algebra isomorphic to G(C∼):

(C ∧ x) ∧C (C ∧ y) = C ∧ x ∧ y,

(x ∧ C) ·C (C ∧ y) = C−2 C ∧ ((x ∧ C) · (C ∧ y)),

for x, y ∈ Gn.

420 Hongbo Li, Gerald Sommer

Let {e1, . . . , en} be a basis of R
n. The projective split PC can be written

as the composition of the outer product by C and the identity transformation.
It has the following tensor representation:

PC =

n
∑

s=0

∑

1≤j1<...<js≤n

(C ∧ ej1 ∧ · · · ∧ ejs
) ⊗ (ej1 ∧ · · · ∧ ejs

)∗. (17.9)

For example, when C is a vector and PC is restricted to R
n, then

PC =

n
∑

i=1

(C ∧ ei) ⊗ e∗i . (17.10)

In particular, when {e1, . . . , en−1, C} is a basis of R
n, then

PC =
n−1
∑

i=1

(C ∧ ei) ⊗ e∗i . (17.11)

When PC is restricted to G2
n, then

PC =
∑

1≤j1<j2≤n

(C ∧ ej1 ∧ ej2) ⊗ (ej1 ∧ ej2)
∗. (17.12)

In particular, when {e1, . . . , en−1, C} is a basis of R
n, then

PC = −
∑

1≤j1<j2≤n−1

(C ∧ ej1 ∧ ej2) ⊗ (e∗j2 ∧ e∗j1). (17.13)

When n = 4, we use the notation i ≺ i1 ≺ i2 to denote that i, i1, i2 is an
even permutation of 1, 2, 3. Let

êi = ei1 ∧ ei2 , ê∗i = e∗i1 ∧ e∗i2 . (17.14)

then

PC = −

3
∑

i=1

(C ∧ êi) ⊗ ê∗i . (17.15)

The following theorem establishes a connection between the projective
split and the boundary mapping.

Theorem 17.2.2. When C is an affine point, the boundary mapping ∂
realizes an algebraic isomorphism between the Grassmann-Cayley algebras

C ∧ Gn+1 and G(
∞

An).

17. Coordinate-Free Projective Geometry for Computer Vision 421

17.3 Camera Modeling and Calibration

17.3.1 Pinhole Cameras

According to Faugeras [77], a pinhole camera can be taken as a system that
performs the perspective projection from P

3 to P
2 with respect to the optical

point C ∈ P
3. To describe this mapping algebraically, let {e1, e2, e3; O} be a

fixed Cartesian coordinate system of A3, called the world coordinate system.
Let {eC

1 , eC
2 , eC

3 , C} be a basis of R
4 satisfying (eC

1 ∧eC
2 ∧eC

3 ∧C)∼ = 1, called
a camera projective coordinate system. When C is an affine point, let eC

3

be the vector from C to the origin OC of the retina plane (or image plane),
and let eC

1 , eC
2 be two vectors in the retina plane. Then {eC

1 , eC
2 , eC

3 ; C} is a
Cartesian coordinate system of A3, called a camera affine coordinate system.

Let M be a point or point at infinity of A3, and let mC be its image.
Then M can be represented by its homogeneous coordinates which is a 4× 1
matrix, and mC can be represented by its homogeneous coordinates which is
a 3×1 matrix. The perspective projection can then be represented by a 3×4
matrix.

M

m

O

C

e e

e

e

e

e

1 2

3

1

2

3

C

C

C

.O
C

Fig. 17.1. A pinhole camera.

In our approach, we describe a pinhole camera with optical center C,
which is either an affine point or a point at infinity of A3, as a system per-
forming the projective split of G4 with respect to C ∈ R

4.
To see how this representation works, we first derive the matrix of the

project split PC restricted to R
4. We consider the case when the camera

coordinate system {eC
1 , eC

2 , eC
3 , C} is affine. According to (17.11),

422 Hongbo Li, Gerald Sommer

PC =

3
∑

i=1

(C ∧ eC
i) ⊗ eC∗

i . (17.1)

In the camera coordinate system, let the coordinates of ei, i = 1, 2, 3,
and O, be (ei1, ei2, ei3, 0) = (eT

i , 0), and (O1, O2, O3, 1) = (−cT , 1), respec-
tively. Here ei and c represent 3 × 1 matrices. The following matrix changes
{eC

1 , eC
2 , eC

3 , C} to {e1, e2, e3, O}:

















eT
1 0

eT
2 0

eT
3 0

−cT 1

















. (17.2)

Its transpose changes {e∗1, e
∗
2, e

∗
3, O

∗} to {eC∗
1 , eC∗

2 , eC∗
3 , C∗}. Substituting eC∗

i ,
i = 1, 2, 3 expressed by e∗1, e

∗
2, e

∗
3, O

∗ into (17.1), we get the matrix of PC :

PC = (e1 e2 e3 − c). (17.3)

When C = O, eC
1 = e1, eC

2 = e2 and eC
3 = −fe3, where f is the focal

length of the camera,

PC =











1 0 0 0

0 1 0 0

0 0 −1/f 0











, (17.4)

which is the standard perspective projection matrix. This justifies the repre-
sentation of the perspective projection by PC and the representation of image
points by vectors in C ∧ R

4.
In the case when the camera coordinate system is projective, let the 4×1

matrices eC∗
i , i = 1, 2, 3 represent the coordinates of eC∗

i with respect to
{e∗1, e

∗
2, e

∗
3, O

∗}. By (17.1),

PC = (eC∗
1 eC∗

2 eC∗
3)T . (17.5)

Below we derive the matrix of PC restricted to G2
4 . Let

êC∗
i = eC∗

i1 × eC∗
i2 , (17.6)

where i ≺ i1 ≺ i2. It represents the coordinates of êC∗
i with respect to the

basis of G2
4 induced by {e∗1, e

∗
2, e

∗
3, O

∗}. According to (17.15), the matrix of
PC is

PC = −(êC∗
1 êC∗

2 êC∗
3)T . (17.7)

17. Coordinate-Free Projective Geometry for Computer Vision 423

17.3.2 Camera Constraints

It is clear that as long as det(e1 e2 e3) 6= 0, the matrix PC = (e1 e2 e3 − c)
represents a perspective projection. When there is further information on the
pinhole camera, for example vectors eC

1 , eC
2 of the camera affine coordinate

system are perpendicular, then PC needs to satisfy additional equality con-
straints in order to represent the perspective projection carried out by such
a camera.

Let “∼3” represent the dual in G(
∞

A3). Let the dual bases of {e1, e2, e3}

and {eC
1 , eC

2 , eC
3 } in

∞

A3 be {e∗3

1 , e∗3

2 , e∗3

3 } and {eC∗3

1 , eC∗3

2 , eC∗3

3 }, respectively.
Then

eC
1 = (eC∗3

2 ∧ eC∗3

3)∼3 = eC∗3

2 × eC∗3

3 ,

eC
2 = (eC∗3

3 ∧ eC∗3

1)∼3 = eC∗3

3 × eC∗3

1 ,
(17.8)

where “×” is the cross product in vector algebra. The perpendicularity con-
straint can be represented by

eC
1 · eC

2 = (eC∗3

2 × eC∗3

3) · (eC∗3

3 × eC∗3

1) = 0. (17.9)

Let the 3 × 1 matrix eC∗3

i represent the coordinates of eC∗3

i with respect
to {e∗3

1 , e∗3

2 , e∗3

3 }. Under the assumption that {e1, e2, e3} is an orthonormal
basis, eC∗3

i · eC∗3

j = eC∗3

i ·eC∗3

j for any 1 ≤ i, j ≤ 3. Then (17.9) is changed to

(eC∗3

2 × eC∗3

3) · (eC∗3

3 × eC∗3

1) = 0, (17.10)

which is a constraint on PC because

(eC∗3

1 eC∗3

2 eC∗3

3) = (e1 e2 e3)
T . (17.11)

17.3.3 Camera Calibration

Let M be a space point or point at infinity, mC be its image in the retina
plane. Assume that mC is a point, and has homogeneous coordinates (u, v, 1)
in the Cartesian coordinate system of the retina plane. Let the 4×1 matrix M

represent the homogeneous coordinates of M in the world coordinate system.
Then

(u v 1)T ' PCM = (eC∗
1 · M eC∗

2 · M eC∗
3 ·M)T , (17.12)

which can be written as two scalar equations:

(eC∗
1 − ueC∗

3) · M = 0, (eC∗
2 − veC∗

3) ·M = 0. (17.13)

The matrix PC = (eC∗
1 eC∗

2 eC∗
3)T can be taken as a vector in the space

R
4×R

4×R
4 equipped with the induced inner product from R

4. By this inner
product, (17.13) can be written as

424 Hongbo Li, Gerald Sommer

(M 0 − uM)T ·PC = 0, (0 M − vM)T · PC = 0. (17.14)

Given Mi and (ui, vi) for i = 1, . . . , 6, there are 12 equations of the forms
in (17.14). If there is no camera constraint, then since a 3 × 4 matrix rep-
resenting a perspective projection has 11 free parameters, PC can be solved
from the 12 equations if and only if the determinant of the coefficient matrix
A of these equations is zero, i. e.,

Λ6
i=1(Mi 0 − uiMi) ∧ Λ6

i=1(0 Mi − viMi) = 0, (17.15)

where the outer products are in the Clifford algebra generated by R
4×R

4×R
4.

Expanding the left-hand side of (17.15), and changing outer products into
determinants, we get

∑

σ,τ
ε(σ)ε(τ)uσ(1)uσ(2)vτ(1)vτ(2) det(Mσ(1) Mσ(2) Mτ(1) Mτ(2))

det(Mσ(i))i=3..6 det(Mτ(j))j=3..6 = 0,

(17.16)

where σ, τ are any permutations of 1, . . . , 6 by moving two elements to the
front of the sequence, and ε(σ), ε(τ) are the signs of permutation.

For experimental data, (17.16) is not necessarily satisfied because of errors
in measurements.

17.4 Epipolar and Trifocal Geometries

17.4.1 Epipolar Geometry

There is no much difference between our algebraic description of the pinhole
camera and others if there is only one fixed camera involved, because the
underlying Grassmann-Cayley algebras are isomorphic. Let us reformulate
the epipolar geometry of two cameras with optical centers C, C ′ respectively.

The image of C ′ in camera C is ECC′

= C ∧ C ′, called the epipole of C ′

in camera C. Similarly, the image of C in camera C ′ is EC′C = C′∧C, called
the epipole of C in camera C ′. An image line passing through the epipole
in camera C (or C ′) is called an epipolar line with respect to C ′ (or C).
Algebraically, an epipolar line is a vector in

C ∧ C ′ ∧ R
4 = (C ∧ G2

4) ∩ (C ′ ∧ G2
4). (17.1)

An epipolar line C∧C ′∧M corresponds to a unique epipolar line C ′∧C∧M ,
and vice versa.

Let there be two camera projective coordinate systems in the two cameras
respectively: {eC

1 , eC
2 , eC

3 , C} and {eC′

1 , eC′

2 , eC′

3 , C′}. Using the relations

(C ∧ eC
i) ∨ (C ∧ êC

i) = −C, for 1 ≤ i ≤ 3, (17.2)

and

(C ∧ êC
i1) ∨ (C ∧ êC

i2) = C ∧ êC
i , for i ≺ i1 ≺ i2, (17.3)

17. Coordinate-Free Projective Geometry for Computer Vision 425

M

m

C

.

C’.

.

.

E

CC’

E

C’C

C

C’
m

Fig. 17.2. Epipolar geometry.

we get the coordinates of epipole ECC′

:

ECC′

= ((C ∧ êC
i) ∨ C′)i=1..3

= ((C ∧ êC
i)∼ ∨ C′∼)i=1..3

= ((eC′∗
1 ∧ eC′∗

2 ∧ eC′∗
3) ∨ eC∗

i)i=1..3.

(17.4)

The following tensor in (C ∧R
4)⊗ (C ′ ∧R

4) is called the epipolar tensor
decide by C, C ′:

FCC′

(mC , mC′

) = mC ∨ mC′

. (17.5)

Let mC ∈ C ∧ R
4, mC′

∈ C′ ∧ R
4. They are images of the same space point

or point at infinity if and only if F CC′

(mC , mC′

) = 0. This equality is called
the epipolar constraint between mC and mC′

.
In matrix form, with respect to the bases {C ∧ eC

1 , C ∧ eC
2 , C ∧ eC

3 } and
{C′ ∧ eC′

1 , C′ ∧ eC′

2 , C′ ∧ eC′

3 }, FCC′

can be represented by

FCC′

= ((C ∧ eC
i) ∨ (C ′ ∧ eC′

j))i,j=1..3

= ((C ∧ eC
i)∼ ∨ (C′ ∧ eC′

j)∼)i,j=1..3

= (êC∗
i ∨ êC′∗

j)i,j=1..3.

(17.6)

(17.6) is called the fundamental matrix.
The epipolar tensor induces a linear mapping F C;C′

from C ∧R
4 to (C ′ ∧

R
4)∗ = C′ ∧G2

4 , called the epipolar transformation from camera C to camera
C′:

426 Hongbo Li, Gerald Sommer

FC;C′

(mC) = C ′ ∧ mC . (17.7)

Similarly, it induces an epipolar transformation from camera C ′ to camera C
as follows:

FC′;C(mC′

) = C ∧ mC′

. (17.8)

Both transformations are just projective splits.
The kernel of F C;C′

is the one-dimensional subspace of C∧R
4 represented

by C ∧ C ′, the range of F C;C′

is the two-dimensional space C ′ ∧ C ∧ R
4. In

geometric language, F C;C′

maps the epipole of C ′ to zero, and maps any
other point in camera C to an epipolar line with respect to C.

Furthermore, we have the following conclusion:

Proposition 17.4.1. Let LC be an epipolar line in camera C. If its dual is
mapped to epipolar line LC′

in camera C ′ by FC;C′

, then the dual of LC′

is
mapped back to LC by FC′;C .

The proof follows from the identity that for any vector M ∈ R
4,

C ∧ (C ′ ∧ (C ∧ C ′ ∧ M)∼C)∼C′ ' C ∧ C ′ ∧ M. (17.9)

17.4.2 Trifocal Geometry

Let there be three cameras with optical centers C, C ′, C′′ respectively. Let M
be a space point or point at infinity. Its images C∧M , C ′∧M and C ′′∧M in
the three cameras must satisfy pairwise epipolar constraints. Let us consider
the inverse problem: If there are three image points mC , mC′

, mC′′

in the
three cameras respectively, they satisfy the pairwise epipolar constraints, is
it true that they are images of the same space point or point at infinity?

C

.

C’
.

.
C”

C

m

m

C”

C’

M

m

Fig. 17.3. Point correspondence in three cameras.

17. Coordinate-Free Projective Geometry for Computer Vision 427

A simple counter-example shows that the epipolar constraints are not
enough. When the 2-blades mC , mC′

, mC′′

belong to G(C ∧ C ′ ∧ C′′), the
epipolar constraints are always satisfied, but the blades do not necessarily
share a common vector.

Assume that the epipolar constraint between mC′

and mC′′

is satisfied.
Let M be the intersection of the two lines mC′

and mC′′

in P
3. Then mC

represents the image of M in camera C if and only if mC ∧ M = 0, or
equivalently,

mC ∨ (M ∧ x) = 0, for any x ∈ R
4. (17.10)

When C ′, C′′, M are not collinear, since

M ∧ R
4 = (C ′ ∧ M ∧ R

4) ∨ (C ′′ ∧ M ∧ R
4), (17.11)

(17.10) can be written as

mC ∨ (mC′

∧C′ mC′

0) ∨ (mC′′

∧C′′ mC′′

0) = 0, (17.12)

for any image points mC′

0 , mC′′

0 in cameras C ′, C′′ respectively. When C ′, C′′,
M are collinear, since mC′

' mC′′

, (17.12) is equivalent to the epipolar
constraint between mC and mC′

. So the constraint (17.12) must be satisfied
for mC , mC′

, mC′′

to be images of the same space point or point at infinity.

Definition 17.4.1. The following tensor in (C∧R
4)⊗(C ′∧G2

4)⊗(C ′′∧G2
4) is

called the trifocal tensor [105, 106, 214] of camera C with respect to cameras
C′, C′′:

T (mC , LC′

, LC′′

) = mC ∨ LC′

∨ LC′′

, (17.13)

where mC ∈ C ∧ R
4, LC′

∈ C′ ∧ G2
4 , LC′′

∈ C′′ ∧ G2
4 .

Two other trifocal tensors can be defined by interchanging C with C ′, C′′

respectively:

T ′(mC′

, LC , LC′′

) = mC′

∨ LC ∨ LC′′

,

T ′′(mC′′

, LC , LC′

) = mC′′

∨ LC ∨ LC′

.
(17.14)

In this section we discuss T only. Let {eC
1 , eC

2 , eC
3 , C}, {eC′

1 , eC′

2 , eC′

3 , C′},
{eC′′

1 , eC′′

2 , eC′′

3 , C′′} be camera projective coordinate systems of the three
cameras respectively. Then T has the following component representation:

T = ((C ∧ eC
i) ∨ (C ′ ∧ êC′

j) ∨ (C ′′ ∧ êC′′

k))i,j,k=1..3

= ((C ∧ eC
i)∼ ∨ ((C ′ ∧ êC′

j)∼ ∧ (C′′ ∧ êC′′

k)∼))i,j,k=1..3

= (êC∗
i ∨ (eC′∗

j ∧ eC′′∗
k))i,j,k=1..3

= (−(êC∗
i ∧ eC′∗

j) ∨ eC′′∗
k)i,j,k=1..3.

(17.15)

The trifocal tensor T induces three trifocal transformations:

428 Hongbo Li, Gerald Sommer

1. The mapping T C : (C′ ∧ G2
4) × (C ′′ ∧ G2

4) −→ (C ∧ R
4)∗ = C ∧ G2

4 is
defined as

T C(LC′

, LC′′

) = C ∧ (LC′

∨ LC′′

). (17.16)

When LC′

is fixed, T C induces a linear mapping T CC′

LC′ : C′′ ∧ G2
4 −→

C ∧ G2
4 :

T CC′

LC′ (LC′′

) = C ∧ (LC′

∨ LC′′

). (17.17)

If LC′

is an epipolar line with respect to C, the kernel of T CC′

LC′ is all
epipolar lines with respect to C, the range is the epipolar line represented
by LC′

; else if LC′

is an epipolar line with respect to C ′′, the kernel is
the epipolar line represented by LC′

, the range is all epipolar lines with
respect to C ′′. For other cases, the kernel is zero.
Geometrically, when T C(LC′

, LC′′

) 6= 0, then LC′

∨ LC′′

represents a
line or line at infinity L of A3, both LC′

and LC′′

are images of L.
T C(LC′

, LC′′

) is just the image of L in camera C.
2. The mapping T C′

: (C ∧ R
4) × (C ′′ ∧ G2

4) −→ (C ′ ∧ G2
4)∗ = C′ ∧ R

4 is
defined as

T C′

(mC , LC′′

) = C ′ ∧ (mC ∨ LC′′

). (17.18)

When mC is fixed, T C′C induces a linear mapping T C′C
mC : C′′ ∧ G2

4 −→
C′ ∧ R

4:

T C′C
mC (LC′′

) = C ′ ∧ (mC ∨ LC′′

). (17.19)

If mC is the epipole of C ′′, the kernel of T C′C
mC is all epipolar lines with

respect to C, the range is the epipole of C ′′. For other cases, the kernel
is the epipolar line C ′′ ∧ mC , the range is the two-dimensional subspace
of C′ ∧ R

4 represented by C ′ ∧ mC .
Geometrically, when T C′

(mC , LC′′

) 6= 0, then mC ∨ LC′′

represents a
point or point at infinity M of A3, mC is its image in camera C, and
LC′′

is the image of a space line or line at infinity passing through M .
T C′

(mC , LC′′

) is just the image of M in camera C ′.
3. The mapping T C′′

: (C ∧ R
4) × (C ′ ∧ G2

4) −→ (C ′′ ∧ G2
4)∗ = C′′ ∧ R

4 is
defined as

T C′′

(mC , LC′

) = C ′′ ∧ (mC ∨ LC′

). (17.20)

We prove below two propositions in [81, 83] using the above reformulation
of trifocal tensors.

Proposition 17.4.2. Let LC′

be an epipolar line in camera C ′ with respect
to C and LC be the corresponding epipolar line in camera C. Then for any
line LC′′

in camera C ′′ which is not the epipolar line with respect to C,
T C(LC′

, LC′′

) ' LC .

17. Coordinate-Free Projective Geometry for Computer Vision 429

Proof. The hypotheses are LC′

' LC , C ∨ LC′′

6= 0. Using the formula that
for any C ∈ R

4, A3, B3 ∈ G3
4 ,

C ∧ (A3 ∨ B3) = (C ∨ B3)A3 − (C ∨ A3)B3, (17.21)

we get

T C(LC′

, LC′′

) ' C ∧ (LC ∨ LC′′

) = (C ∨ LC′′

)LC − (C ∨ LC)LC′′

' LC .

Proposition 17.4.3. Let mC′

, mC′′

be images of the point or point at in-
finity M in cameras C ′, C′′ respectively. Let LC′

be an image line passing
through mC′

but not through EC′C . Let LC′′

be an image line passing
through mC′′

but not through EC′′C′

. Then the intersection of T C(LC′

, LC′′

)
with the epipolar line C ∧ mC′

is the image of M in camera C.

Proof. The hypotheses are M∨LC′

= M ∨LC′′

= 0, C∨LC′

6= 0, C ′∨LC′′

6=
0. So

T C(LC′

, LC′′

) ∨ (C ∧ mC′

)

= (C ∧ (LC′

∨ LC′′

)) ∨ (C ∧ C ′ ∧ M)

= ((C ∧ C ′) ∨ LC′

∨ LC′′

)(C ∧ M) − ((C ∧ M) ∨ LC′

∨ LC′′

)(C ∧ C ′)

= −(C ∨ LC′

)(C′ ∨ LC′′

)(C ∧ M)

' C ∧ M.

17.5 Relations among Epipoles, Epipolar Tensors, and

Trifocal Tensors of Three Cameras

Consider the following 9 vectors of R
4:

ES = {eC∗
i , eC′∗

j , eC′′∗
k |1 ≤ i, j, k ≤ 3}. (17.1)

According to (17.4), (17.6) and (17.15), by interchanging among C, C ′, C′′

any of the epipoles, epipolar tensors and trifocal tensors of the three cameras
has its components represented as a determinant of 4 vectors in ES. For
example,

ECC′

i = (eC∗
i ∧ eC′∗

1 ∧ eC′∗
2 ∧ eC′∗

3)∼;

FCC′

ij = (êC∗
i ∧ êC′∗

j)∼;

Tijk = (êC∗
i ∧ eC′∗

j ∧ eC′′∗
k)∼.

(17.2)

Conversely, any determinant of 4 vectors in ES equals a component of
one of the epipoles, epipolar tensors and trifocal tensors up to an index-free

430 Hongbo Li, Gerald Sommer

scale. Since the only constraint on the 9 vectors is that they are all in R
4,

theoretically all relations among the epipoles, epipolar tensors and trifocal
tensors can be established by manipulating in the algebra of determinants of
vectors in ES using the following Cramer’s rule [76, 80]:

(x2 ∧ x3 ∧ x4 ∧ x5)
∼x1 = (x1 ∧ x3 ∧ x4 ∧ x5)

∼x2 − (x1 ∧ x2 ∧ x4 ∧ x5)
∼x3

+(x1 ∧ x2 ∧ x3 ∧ x5)
∼x4 − (x1 ∧ x2 ∧ x3 ∧ x4)

∼x5,

(17.3)

where the x’s are vectors in R
4.

In practice, however, we can only select a few expressions from the algebra
of determinants and make manipulations, and it is difficult to make the selec-
tion. In this section we propose a different approach. Instead of considering
the algebra of determinants directly, we consider the set of meets of different
blades, each blade being an outer product of vectors in ES. Since the meet
operator is associative and anti-commutative in the sense that

Ar ∨ Bs = (−1)rsBs ∨ Ar, (17.4)

for Ar ∈ Gr
4 and Bs ∈ Gs

4 , for the same expression of meets we can have a
variety of expansions. Then we can obtain various equalities on determinants
of vectors in ES, which may be changed into equalities, or equalities up to
an index-free constant, on components of the epipoles, epipolar tensors and
trifocal tensors.

It appears that we need only 7 expressions of meets to derive and further
generalize all the known constraints on epipolar and trifocal tensors.

It should be reminded that in this chapter we always use the notation
i ≺ i1 ≺ i2 to denote that i, i1, i2 is an even permutation of 1, 2, 3.

17.5.1 Relations on Epipolar Tensors

Consider the following expression:

Fexp = (eC′∗
1 ∧ eC′∗

2 ∧ eC′∗
3) ∨ (eC∗

1 ∧ eC∗
2 ∧ eC∗

3) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).
(17.5)

It is the dual of the blade C ′ ∧ C ∧ C ′′.
Expanding Fexp from left to right, we get

Fexp =
3
∑

i,k=1

((eC′∗
1 ∧ eC′∗

2 ∧ eC′∗
3) ∨ eC∗

i)(êC∗
i ∨ êC′′∗

k)eC′′∗
k

=
3
∑

i,k=1

ECC′

i FCC′′

ik eC′′∗
k .

Expanding Fexp from right to left, we get

17. Coordinate-Free Projective Geometry for Computer Vision 431

Fexp =
3
∑

k=1

(

((eC′∗
1 ∧ eC′∗

2 ∧ eC′∗
3) ∨ eC′′∗

k2
)((eC∗

1 ∧ eC∗
2 ∧ eC∗

3) ∨ eC′′∗
k1

)

− ((eC′∗
1 ∧ eC′∗

2 ∧ eC′∗
3) ∨ eC′′∗

k1
)((eC∗

1 ∧ eC∗
2 ∧ eC∗

3) ∨ eC′′∗
k2

)
)

eC′′∗
k

=
3
∑

k=1

(EC′′C′

k2
EC′′C

k1
− EC′′C′

k1
EC′′C

k2
)eC′′∗

k ,

where k ≺ k1 ≺ k2. So for any 1 ≤ i ≤ 3,

3
∑

k=1

ECC′

i FCC′′

ik ' KC′′CC′

k , (17.6)

where KC′′CC′

k = EC′′C
k1

EC′′C′

k2
− EC′′C

k2
EC′′C′

k1
.

(17.6) is a fundamental relation on the epipolar tensor F CC′′

and the
epipoles. In matrix form, it can be written as

(FCC′′

)TECC′

' EC′′C × EC′′C′

; (17.7)

in Grassmann-Cayley algebra, it can be written as

C′′ ∧ (C ∧ C ′) ' (C ′′ ∧ C) ∧C′′ (C′′ ∧ C′). (17.8)

Geometrically, it means that the epipolar line in camera C ′′ with respect
to both C and C ′ is the image line connecting the two epipoles EC′′C and
EC′′C′

. One should notice the obvious advantage of Grassmann-Cayley alge-
braic representation in geometric interpretation.

Since EC′′C ×EC′′C′

is orthogonal to EC′′C′

, an immediate corollary is

(ECC′

)T FCC′′

EC′′C′

= 0, (17.9)

which is equivalent to (C ∧C ′)∨ (C ′′ ∧C′) = 0. Geometrically, it means that
the two epipoles EC′′C and EC′′C′

satisfy the epipolar constraint.

17.5.2 Relations on Trifocal Tensors I

The first idea to derive relations on trifocal tensors is very simple: if the
tensor (Tijk)i,j,k=1..3 is given, then expanding

(êC∗
i ∧ eC′∗

j) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3) (17.10)

gives a 2-vector of the eC′′∗’s whose coefficients are known. Similarly, expand-
ing

Texp1 = (êC∗
i ∧ eC′∗

j1) ∨ (êC∗
i ∧ eC′∗

j2) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3). (17.11)

from right to left gives a vector of the eC′′∗’s whose coefficients are known.
Expanding Texp1 from left to right, we get a vector of the eC′′∗’s whose

432 Hongbo Li, Gerald Sommer

coefficients depend on epipolar tensors. By comparing the coefficients of the
eC′′∗’s, we get a relation on T and epipolar tensors.

Assume that j ≺ j1 ≺ j2. Expanding Texp1 from left to right, we get

Texp1 = −(êC∗
i ∧ eC′∗

j1
∧ eC′∗

j2
)∼

3
∑

k=1

(êC∗
i ∨ êC′′∗

k) eC′′∗
k

= −
3
∑

k=1

FCC′

ij FCC′′

ik eC′′∗
k .

Expanding Texp1 from right to left, we get

Texp1 =
3
∑

k=1

(

((êC∗
i ∧ eC′∗

j1) ∨ eC′′∗
k2

)((êC∗
i ∧ eC′∗

j2) ∨ eC′′∗
k1

)

− ((êC∗
i ∧ eC′∗

j1) ∨ eC′′∗
k1

)((êC∗
i ∧ eC′∗

j2) ∨ eC′′∗
k2

)
)

eC′′∗
k

=
3
∑

k=1

(Tij1k2
Tij2k1

− Tij1k1
Tij2k2

) eC′′∗
k ,

where k ≺ k1 ≺ k2. So

FCC′

ij FCC′′

ik = tCijk, (17.12)

where

tCijk = Tij1k1
Tij2k2

− Tij1k2
Tij2k1

. (17.13)

Proposition 17.5.1. For any 1 ≤ i, j, k ≤ 3,

FCC′

ij FCC′′

ik ' tCijk. (17.14)

Corollary 17.5.1. Let 1 ≤ i, j1, j2, k1, k2 ≤ 3, then

FCC′

ij1

FCC′

ij2

=
tCij1k

tCij2k

, for any 1 ≤ k ≤ 3; (17.15)

FCC′′

ik1

FCC′′

ik2

=
tCijk1

tCijk2

, for any 1 ≤ j ≤ 3; (17.16)

tCij1k1

tCij1k2

=
tCij2k1

tCij2k2

. (17.17)

Notice that (17.17) is a constraint of degree 4 on T .
To understand relation (17.14) geometrically, we first express it in terms of

Grassmann-Cayley algebra. When C∧eC
i is fixed, T induces a linear mapping

T C′′C
i : C′ ∧ G2

4 −→ C ′′ ∧ R
4 by

T C′′C
i (LC′

) = C ′′ ∧ ((C ∧ eC
i) ∨ LC′

). (17.18)

The matrix of T C′′C
i is (−Tijk)T

j,k=1..3.

17. Coordinate-Free Projective Geometry for Computer Vision 433

Define a linear mapping tC
′′C

i : C′ ∧ R
4 −→ C ′′ ∧ G2

4 as follows: let

mC′

∈ C′ ∧ R
4 and mC′

= LC′

1 ∨ LC′

2 , where LC′

1 , LC′

2 ∈ C′ ∧ G2
4 , then

tC
′′C

i (mC′

) = T C′′C
i (LC′

1) ∧C′′ T C′′C
i (LC′

2). (17.19)

We need to prove that this mapping is well-defined. Using the formula that
for any 2-blade C2 ∈ G2

4 and 3-blades A3, B3 ∈ G3
4 ,

(C2 ∨ A3) ∧ (C2 ∨ B3) = −(A3 ∨ B3 ∨ C2)C2, (17.20)

we get

tC
′′C

i (mC′

) = C ′′ ∧ ((C ∧ eC
i) ∨ LC′

1) ∧ ((C ∧ eC
i) ∨ LC′

2)

= −LC′

1 ∨ LC′

2 ∨ (C ∧ eC
i) C′′ ∧ C ∧ eC

i

= −mC′

∨ (C ∧ eC
i) C′′ ∧ C ∧ eC

i

=
3
∑

k=1

mC′

∨ (C ∧ eC
i) (C′′ ∧ C ∧ eC

i ∧ eC′′

k)∼ C′′ ∧ êC′′

k .

(17.21)

So tC
′′C

i is well-defined. Let j ≺ j1 ≺ j2 and k ≺ k1 ≺ k2, then since

tC
′′C

i (C′ ∧ eC′

j) = T C′′C
i (C′ ∧ eC′

j ∧ eC′

j1
) ∧C′′ T C′′C

i (C′ ∧ eC′

j ∧ eC′

j2
)

= −

(

3
∑

k2=1

Tij2k2
C′′ ∧ eC′′

k2

)

∧C′′

(

3
∑

k1=1

Tij1k1
C′′ ∧ eC′′

k1

)

=
3
∑

k=1

(Tij1k1
Tij2k2

− Tij1k2
Tij2k1

)C′′ ∧ êC′′

k ,

the matrix of tC
′′C

i is (tijk)T
j,k=1..3.

So (17.14) is equivalent to

T C′′C
i (LC′

1) ∧C′′ T C′′C
i (LC′

2) = −mC′

∨ (C ∧ eC
i) C′′ ∧ C ∧ eC

i . (17.22)

Geometrically, T C′′C
i maps an image line in camera C ′ to an image point on

the epipolar line C ′′ ∧C ∧ eC
i in camera C ′′. (17.22) says that the image line

connecting the two image points T C′′C
i (LC′

1) and T C′′C
i (LC′

2) in camera C ′′

is just the epipolar line C ′′ ∧ C ∧ eC
i . This is the geometric interpretation of

(17.14).

17.5.3 Relations on Trifocal Tensors II

Now we let the two êC∗’s in Texp1 be different, and let the two eC′∗ be the
same, i. e., we consider the expression

434 Hongbo Li, Gerald Sommer

Texp2 = (eC∗
i1 ∧ eC∗

i ∧ eC′∗
j) ∨ (eC∗

i2 ∧ eC∗
i ∧ eC′∗

j) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).

(17.23)

Assume that i ≺ i1 ≺ i2. Expanding Texp2 from left to right, we get

Texp2 = −(eC∗
i ∧ eC∗

i1 ∧ eC∗
i2 ∧ eC′∗

j)∼
(

3
∑

k=1

((eC∗
i ∧ eC′∗

j) ∨ êC′′∗
k)eC′′∗

k

)

=
3
∑

k=1

EC′C
j T ′′

kije
C′′∗
k .

Expanding Texp2 from right to left, we get

Texp2 = −
3
∑

k=1

(

((êC∗
i2 ∧ eC′∗

j) ∨ eC′′∗
k2

)((êC∗
i1 ∧ eC′∗

j) ∨ eC′′∗
k1

)

− ((êC∗
i2 ∧ eC′∗

j) ∨ eC′′∗
k1

)((êC∗
i1 ∧ eC′∗

j) ∨ eC′′∗
k2

)
)

eC′′∗
k

= −
3
∑

k=1

(Ti1jk1
Ti2jk2

− Ti1jk2
Ti2jk1

)eC′′∗
k ,

where k ≺ k1 ≺ k2. So

−EC′C
j T ′′

kij = tC
′

ijk, (17.24)

where

tC
′

ijk = Ti1jk1
Ti2jk2

− Ti1jk2
Ti2jk1

. (17.25)

Proposition 17.5.2. For any 1 ≤ i, j, k ≤ 3,

EC′C
j T ′′

kij ' tC
′

ijk . (17.26)

Corollary 17.5.2. For any 1 ≤ i, i1, i2, j, k, k1, k2 ≤ 3,

T ′′
ki1j

T ′′
ki2j

=
tC

′

i1jk

tC
′

i2jk

;
T ′′

k1ij

T ′′
k2ij

=
tC

′

k1ij

tC
′

k2ij

. (17.27)

Same as before, to understand relation (17.26) geometrically, we first ex-
press it in terms of Grassmann-Cayley algebra. When C ′ ∧ êC′

j is fixed, T

induces a linear mapping T CC′

j : C′′ ∧ G2
4 −→ C ∧ G2

4 by

T CC′

j (LC′′

) = C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

), (17.28)

whose matrix is (−Tijk)i,k=1..3. T ′′ also induces a linear mapping T ′′CC′

j :
C′′ ∧ R

4 −→ C ∧ R
4 by

T ′′CC′

j (mC′′

) = C ∧ (mC′′

∨ (C′ ∧ êC′

j)), (17.29)

17. Coordinate-Free Projective Geometry for Computer Vision 435

whose matrix is (−T ′′
kij)

T
k,i=1..3. Define a linear mapping tCC′

j : C′′ ∧ R
4 −→

C∧R
4 as follows: let mC′′

∈ C′′∧R
4 and mC′′

= LC′′

1 ∨LC′′

2 , where LC′′

1 , LC′′

2 ∈
C′′ ∧ G2

4 , then

tCC′

j (mC′′

) = T CC′

j (LC′′

1) ∨ T CC′

j (LC′′

2). (17.30)

We need to prove that this mapping is well-defined. Using the formula that
for any C ∈ R

4 and A3, B3 ∈ G3
4 ,

(C ∧ (A3 ∨ B3)) ∨ B3 = −(B3 ∨ C)(A3 ∨ B3), (17.31)

we get

tCC′

j (mC′′

) =
(

C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

1)
)

∨
(

C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

2)
)

= −C ∧
(

C ∧
(

(C′ ∧ êC′

j) ∨ LC′′

1

)

∨ (C′ ∧ êC′

j) ∨ LC′′

2

)

= (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

1 ∨ LC′′

2)

= (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨ mC′′

)

= EC′C
j T ′′CC′

j (mC′′

).

(17.32)

So tCC′

j is well-defined. Using (17.30), it can be verified that the matrix of

tCC′

j is (tC
′

ijk)i,k=1..3.
Thus, (17.26) is equivalent to

T CC′

j (LC′′

1) ∨ T CC′

j (LC′′

2) = (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨ LC′′

1 ∨ LC′′

2).

(17.33)

Geometrically, T CC′

j maps an image line LC′′

in camera C ′′ to the image line

in camera C, which is the image of the space line on both planes C ′∧ êC′

j and

LC′′

. (17.33) says that the intersection of the two image lines T CC′

j (LC′′

1) and

T CC′

j (LC′′

2) is just the image of the intersection of the plane C ′∧ êC′

j with the

line LC′′

1 ∨ LC′′

2 in the space. This is the geometric interpretation of (17.26).

17.5.4 Relations on Trifocal Tensors III

Consider the following expression obtained by changing one of the eC′∗’s in
Texp1 to an eC′′∗:

Texp3 = (êC∗
i ∧ eC′∗

j) ∨ (êC∗
i ∧ eC′′∗

k) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3). (17.34)

Expanding Texp3 from left to right, we get

436 Hongbo Li, Gerald Sommer

Texp3 = (êC∗
i ∧ eC′∗

j) ∨ eC′′∗
k

(

3
∑

l=1

(êC∗
i ∨ êC′′∗

l) eC′′∗
l

)

= −
3
∑

l=1

TijkFCC′′

il eC′′∗
l .

Expanding Texp3 from right to left, we get

Texp3 = (êC∗
i ∧ eC′∗

j) ∨
(

(êC∗
i ∧ eC′′∗

k ∧ eC′′∗
k1

)∼eC′′∗
k2

∧ eC′′∗
k

− (êC∗
i ∧ eC′′∗

k ∧ eC′′∗
k2

)∼eC′′∗
k1

∧ eC′′∗
k

)

= (Tijk1
FCC′′

ik1
+ Tijk2

FCC′′

ik2
)eC′′∗

k

−TijkFCC′′

ik1
eC′′∗

k1
− TijkFCC′′

ik2
eC′′∗

k2
,

where k ≺ k1 ≺ k2.

Proposition 17.5.3. For any 1 ≤ i, j ≤ 3,

3
∑

k=1

TijkFCC′′

ik = 0. (17.35)

By (17.16), F CC′′

ik = FCC′′

i1 tCijk/tCij1. So (17.35) is equivalent to

3
∑

k=1

TijktCijk = det(Tijk)j,k=1..3 = 0, (17.36)

for any 1 ≤ i, j ≤ 3. (17.36) can also be obtained directly by expanding the
following expression:

(êC∗
i ∧ eC′∗

1) ∨ (êC∗
i ∧ eC′∗

2) ∨ (êC∗
i ∧ eC′∗

3) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).

(17.37)

Expanding from left to right, (17.37) gives zero; expanding from right to left,
it gives det(Tijk)j,k=1..3.

To understand (17.36) geometrically, we check the dual form of (17.37),
which is

C′′ ∧ ((C ∧ eC
i) ∨ (C ′ ∧ êC′

1))

∧((C ∧ eC
i) ∨ (C ′ ∧ êC′

2))

∧((C ∧ eC
i) ∨ (C ′ ∧ êC′

3)).

(17.38)

(17.38) equals zero because the intersections of a line with three planes are
always collinear.

Interchanging C with C ′′, we get det(T ′′
kij)i,j=1..3 = 0 for any 1 ≤ k ≤ 3.

By (17.26), we have

17. Coordinate-Free Projective Geometry for Computer Vision 437

det(tC
′

ijk)i,j=1..3 = 0. (17.39)

A similar constraint can be obtained by interchanging C and C ′.
(17.37) can be generalized to the following one:

(

(
3
∑

i=1

λiê
C∗
i) ∧ eC′∗

1

)

∨

(

(
3
∑

i=1

λiê
C∗
i) ∧ eC′∗

2

)

∨

(

(
3
∑

i=1

λiê
C∗
i) ∧ eC′∗

3

)

∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).

(17.40)

where the λ’s are indeterminants. (17.40) equals zero when expanded from
the left, and equals a polynomial of the λ’s when expanded from the right.
The coefficients of the polynomial are expressions of the Tijk’s. Thus, we get
10 constraints of degree 3 on T , called the rank constraints by Faugeras and
Papadopoulo [81, 83].

17.5.5 Relations on Trifocal Tensors IV

Now, we let the two êC∗’s in Texp3 be different. Consider

Texp4 = (eC∗
i ∧ eC∗

i1 ∧ eC′∗
j) ∨ (eC∗

i ∧ eC∗
i2 ∧ eC′′∗

k) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).

(17.41)

Assume that i ≺ i1 ≺ i2. Expanding Texp4 from left to right, we get

Texp4 = (eC∗
i ∧ eC∗

i1
∧ eC∗

i2
∧ eC′∗

j)∼(eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3 ∧ eC∗

i)∼eC′′∗
k

−(eC∗
i ∧ eC∗

i1 ∧ eC′∗
j ∧ eC′′∗

k)∼
(

3
∑

l=1

((eC∗
i ∧ eC∗

i2
) ∨ êC′′∗

l)eC′′∗
l

)

= (EC′C
j ECC′′

i + Ti2jkFCC′′

i1k)eC′′∗
k

+ Ti2jkFCC′′

i1k1
eC′′∗

k1
+ Ti2jkFCC′′

i1k2
eC′′∗

k2
.

Expanding Texp4 from right to left, we get

Texp4 = ((eC∗
i ∧ eC∗

i1
) ∨ (eC′∗

j ∧ eC′′∗
k))(êC∗

i1
∨ êC′′∗

k1
)eC′′∗

k1

+ ((eC∗
i ∧ eC∗

i1) ∨ (eC′∗
j ∧ eC′′∗

k))(êC∗
i1 ∨ êC′′∗

k2
)eC′′∗

k2

−
(

((eC∗
i ∧ eC∗

i1
) ∨ (eC′∗

j ∧ eC′′∗
k1

))(êC∗
i1

∨ êC′′∗
k1

)

+ ((eC∗
i ∧ eC∗

i1) ∨ (eC′∗
j ∧ eC′′∗

k2
))(êC∗

i1 ∨ êC′′∗
k2

)
)

eC′′∗
k

= Ti2jkFCC′′

i1k1
eC′′∗

k1
+ Ti2jkFCC′′

i1k2
eC′′∗

k2

− (Ti2jk1
FCC′′

i1k1
+ Ti2jk2

FCC′′

i1k2
)eC′′∗

k ,

438 Hongbo Li, Gerald Sommer

where k ≺ k1 ≺ k2. So

3
∑

k=1

Ti2jkFCC′′

i1k = −EC′C
j ECC′′

i . (17.42)

Interchanging i1, i2 in Texp4, we obtain

3
∑

k=1

Ti1jkFCC′′

i2k = EC′C
j ECC′′

i . (17.43)

Proposition 17.5.4. For any 1 ≤ i, j ≤ 3,

EC′C
j ECC′′

i ' Wij , (17.44)

where Wij =
3
∑

k=1

Ti1jkFCC′′

i2k .

From (17.36), (17.42) and (17.43) we get

Proposition 17.5.5. For any 1 ≤ i1, i2, j ≤ 3,

3
∑

k=1

(Ti1jkFCC′′

i2k + Ti2jkFCC′′

i1k) = 0. (17.45)

In fact, (17.44) can be proved by direct computation:

Wij =
3
∑

k=1

(C ∧ eC
i1

) ∨ (C ′ ∧ êC′

j) ∨ (C ′′ ∧ êC′′

k) (C ∧ eC
i2

) ∨ (C ′′ ∧ eC′′

k)

= −

(

C′′ ∧

(

3
∑

k=1

(C ∧ eC
i2

) ∨ (C ′′ ∧ eC′′

k) êC′′

k

))

∨ (C ∧ eC
i1

) ∨ (C ′ ∧ êC′

j)

= (C ′′ ∧ C ∧ eC
i2

) ∨ (C ∧ eC
i1

) ∨ (C ′ ∧ êC′

j)

= (C ′′ ∧ C ∧ eC
i1 ∧ eC

i2)
∼ (C ∧ C ′ ∧ êC′

j)∼

= ECC′′

i EC′C
j .

So (17.44) is equivalent to

(C′′ ∧ C ∧ eC
i2

) ∨ (C ∧ eC
i1

) ∨ (C ′ ∧ êC′

j) =

(C′′ ∧ C ∧ eC
i1 ∧ eC

i2)
∼ (C ∧ C ′ ∧ êC′

j)∼;
(17.46)

(17.45) is equivalent to the anti-symmetry of C ′′ ∧ C ∧ eC
i1 ∧ eC

i2 with respect

to eC
i1 and eC

i2 .
Define

17. Coordinate-Free Projective Geometry for Computer Vision 439

uC′′C
i1i2j1j2 =

3
∑

k=1

tCi1j1kTi2j2k (17.47)

for 1 ≤ i1, i2, j1, j2 ≤ 3. By (17.12), (17.36), (17.42) and (17.43),

uC′′C
i1i2j1j2 =

3
∑

k=1

FCC′

i1j1 FCC′′

i1k Ti2j2k

=



















0, if i1 = i2;

− FCC′

i1j1
EC′C

j2
ECC′′

i , if i ≺ i1 ≺ i2;

FCC′

i1j1 EC′C
j2 ECC′′

i , if i ≺ i2 ≺ i1.

(17.48)

Two corollaries can be drawn immediately:

Corollary 17.5.3. 1. For any 1 ≤ il, jl ≤ 3, where 1 ≤ k ≤ 4,

uC′′C
i1i2j1j2

uC′′C
i1i2j1j3

=
uC′′C

i3i4j4j2

uC′′C
i3i4j4j3

=
EC′C

j2

EC′C
j3

. (17.49)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uC′′C
i1i2j1j2

uC′′C
i1ij1j2

=
uC′′C

i1i2j3j4

uC′′C
i1ij3j4

= −
ECC′′

i

ECC′′

i2

. (17.50)

Corollary 17.5.4. 1. For any 1 ≤ i1, i2, j1 ≤ 3 where i1 6= i2,,

EC′C ' (uC′′C
i1i2j1j2)j2=1..3. (17.51)

2. For any 1 ≤ j1, j2 ≤ 3,

ECC′′

' (uC′′C
23j1j2u

C′′C
32j1j2 ,−uC′′C

23j1j2u
C′′C
31j1j2 ,−uC′′C

21j1j2u
C′′C
32j1j2)

T . (17.52)

Now we explain (17.48) in terms of Grassmann-Cayley algebra. We have
defined two mappings T C′′C

i and tC
′′C

i in (17.18) and (17.19), whose matrices

are (−Tijk)j,k=1..3 and (tCijk)j,k=1..3 respectively. By the definition of uC′′C
i1i2j1j2

,

uC′′C
i1i2j1j2C

′′ = tC
′′C

i1 (C′ ∧ eC′

j1) ∨ T C′′C
i2 (C′ ∧ êC′

j2). (17.53)

Expanding the right-hand side of (17.53), we get

uC′′C
i1i2j1j2 = UC′′C(C ∧ eC

i1 , C ∧ eC
i2 , C

′ ∧ eC′

j1 , C′ ∧ êC′

j2), (17.54)

where UC′′C : (C ∧ R
4) × (C ∧ R

4) × (C ′ ∧ R
4) × (C ′ ∧ G2

4) −→ R is defined
by

UC′′C(mC
1 , mC

2 , mC′

, LC′

) = −mC
1 ∨ mC′

C ∨ LC′

C′′ ∨ (mC
1 ∧C mC

2).
(17.55)

440 Hongbo Li, Gerald Sommer

(17.54) is (17.48) in Grassmann-Cayley algebraic form. It means that the
uC′′C ’s are components of the mapping UC′′C .

Notice that (17.49) is a group of degree 6 constraints on T . It is closely
related to Faugeras and Mourrain’s first group of degree 6 constraints:

|Tk1k2. Tk1l2. Tl1l2.||Tk1k2. Tl1k2. Tl1l2.|

= |Tl1k2. Tk1l2. Tl1l2.||Tk1k2. Tl1k2. Tk1l2.|,
(17.56)

where Tk1k2. = (Tk1k2k)k=1..3.
It is difficult to find the symmetry of the indices in (17.56), so we first

express (17.56) in terms of Grassmann-Cayley algebra. Using the fact that
−Tk1k2. is the coordinates of C ′′ ∧ ((C ∧ eC

k1
) ∨ (C ′ ∧ êC′

k2
)), we get

|Tk1k2. Tk1l2. Tl1l2.|
∼

=
(

C′′ ∧
(

(C ∧ eC
k1

) ∨ (C ′ ∧ êC′

k2
)
))

∧C′′

(

C′′ ∧
(

(C ∧ eC
k1

) ∨ (C ′ ∧ êC′

l2
)
))

∧C′′

(

C′′ ∧
(

(C ∧ eC
l1

) ∨ (C ′ ∧ êC′

ls2
)
))

= C′′ ∧
(

(C ∧ eC
k1

) ∨ (C ′ ∧ êC′

k2
)
)

∧
(

(C ∧ eC
k1

) ∨ (C ′ ∧ êC′

l2
)
)

∧
(

(C ∧ eC
l1

) ∨ (C ′ ∧ êC′

l2
)
)

.

By formula (17.20),

|Tk1k2. Tk1l2. Tl1l2.| = −(C ∧ eC
k1

) ∨ (C ′ ∧ êC′

l2
) ∨ (C ′ ∧ êC′

k2
)

(C′′ ∧ C ∧ eC
k1

) ∨ (C ∧ eC
l1

) ∨ (C ′ ∧ êC′

l2
)

= − (C ∧ eC
k1

) ∨ (C ′ ∧ êC′

k2
) ∨ (C ′ ∧ êC′

l2
)

C′′ ∨ (C ∧ eC
k1

∧ eC
l1

) C ∨ (C ′ ∧ êC′

l2
).

(17.57)

Define a mapping V C′′

: (C∧R
4)× (C∧R

4)× (C ′∧G2
4)× (C ′∧G2

4) −→ R

as follows:

V C′′

(mC
1 , mC

2 , LC′

1 , LC′

2) = −(C ′′ ∨ (mC
1 ∧C mC

2))

(C ∨ LC′

2)(mC
1 ∨ LC′

1 ∨ LC′

2).
(17.58)

Let

vC′′

k1l1k2l2 = V C′′

(C′ ∧ êC′

k1
, C′ ∧ êC′

l1 , C′′ ∧ êC′′

k2
, C′′ ∧ êC′′

l2). (17.59)

By (17.57),

17. Coordinate-Free Projective Geometry for Computer Vision 441

|Tk1k2. Tk1l2. Tl1l2.| = vC′′

k1l1k2l2 . (17.60)

Similarly, we can get

|Tk1k2. Tl1k2. Tl1l2.| = vC′′

l1k1l2k2
,

|Tl1k2. Tk1l2. Tl1l2.| = vC′′

l1k1k2l2
,

|Tk1k2. Tl1k2. Tk1l2.| = vC′′

k1l1l2k2
.

(17.61)

So (17.56) is equivalent to

vC′′

k1l1k2l2

vC′′

k1l1l2k2

=
vC′′

l1k1k2l2

vC′′

l1k1l2k2

, (17.62)

which is simpler than (17.56) in appearance. By (17.58), (17.59), in Grassmann-
Cayley algebra, (17.62) is just the following identity:

C′′ ∨ (mC
1 ∧C mC

2) C ∨ LC′

2 mC
1 ∨ LC′

1 ∨ LC′

2

C′′ ∨ (mC
1 ∧C mC

2) C ∨ LC′

1 mC
1 ∨ LC′

2 ∨ LC′

1

=
C′′ ∨ (mC

2 ∧C mC
1) C ∨ LC′

2 mC
2 ∨ LC′

1 ∨ LC′

2

C′′ ∨ (mC
2 ∧C mC

1) C ∨ LC′

1 mC
2 ∨ LC′

2 ∨ LC′

1

,

(17.63)

for any mC
1 , mC

2 ∈ C ∧ R
4, LC′

1 , LC′

2 ∈ C′ ∧ G2
4 .

By (17.58), we have

vC′′

i1i2j1j2
=











































0, if i1 = i2 or j1 = j2;

− FCC′

i1j EC′C
j2 ECC′′

i , if i ≺ i1 ≺ i2 and j ≺ j1 ≺ j2,

or i ≺ i2 ≺ i1 and j ≺ j2 ≺ j1;

FCC′

i1j EC′C
j2

ECC′′

i , if i ≺ i1 ≺ i2 and j ≺ j2 ≺ j1,

or i ≺ i2 ≺ i1 and j ≺ j1 ≺ j2.

(17.64)

Corollary 17.5.5. 1. For any 1 ≤ il, j1, j2 ≤ 3 where 1 ≤ l ≤ 4,

vC′′

i1i2j1j2

vC′′

i1i2j2j1

=
vC′′

i3i4j1j2

vC′′

i3i4j2j1

. (17.65)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

vC′′

i1i2j1j2

vC′′

i1ij1j2

=
vC′′

i1i2j3j4

vC′′

i1ij3j4

. (17.66)

442 Hongbo Li, Gerald Sommer

(17.56) is a special case of (17.65) where i3 = i2, i4 = i1. Comparing
UC′′C with V C′′

, we get

V C′′

(mC
1 , mC

2 , LC′

1 , LC′

2) = UC′′C(mC
1 , mC

2 , LC′

1 ∨ LC′

2 , LC′

2). (17.67)

It appears that we have generalized Faugeras and Mourrain’s first group of
degree-six constraints furthermore by UC′′C , because (17.50) is equivalent to
(17.66), while (17.65) is a special case of (17.49) where j4 = j1. An explana-
tion for this phenomenon is that the variables in V C′′

are less separated than
those in UC′′C , so there are less constraints on T that come from V C′′

than
from UC′′C .

Interchanging C ′ and C′′ in (17.56), we get Faugeras and Mourrain’s
second group of degree 6 constraints:

|Tk1.k2
Tk1.l2 Tl1.l2 ||Tk1.k2

Tl1.k2
Tl1.l2 |

= |Tl1.k2
Tk1.l2 Tl1.l2 ||Tk1.k2

Tl1.k2
Tk1.l2 |,

(17.68)

where Tk1.k2
= (Tk1kk2

)k=1..3.
This group of constraints can be generalized similarly.

17.5.6 Relations on Trifocal Tensors V

Consider the following expression:

Texp5 = (eC∗
i ∧ eC∗

i1 ∧ eC′∗
j) ∨ (eC∗

i2 ∧ eC′∗
j ∧ eC′′∗

k) ∨ (eC′′∗
1 ∧ eC′′∗

2 ∧ eC′′∗
3).

(17.69)

Assume that i ≺ i1 ≺ i2. Expanding Texp5 from left to right, we get

Texp5 = −EC′C
j EC′C′′

j eC′′∗
k − Ti2jk

3
∑

l=1

T ′′
li2je

C′′∗
l .

Expanding Texp4 from right to left, we get

Texp5 = −T ′′
k2i2jTi2jkeC′′∗

k2
− T ′′

k1i2jTi2jkeC′′∗
k1

+(T ′′
k2i2jTi2jk2

+ T ′′
k1i2jTi2jk1

)eC′′∗
k ,

where k ≺ k1 ≺ k2. So

3
∑

k=1

T ′′
ki2jTi2jk = −EC′C

j EC′C′′

j . (17.70)

Proposition 17.5.6. For any 1 ≤ i, j ≤ 3,

3
∑

k=1

T ′′
kijTijk ' EC′C

j EC′C′′

j . (17.71)

17. Coordinate-Free Projective Geometry for Computer Vision 443

Using the relation (17.26), we get

3
∑

k=1

tC
′

ijkTijk = det(Tijk)i,k=1..3 = (EC′C
j)2EC′C′′

j . (17.72)

Corollary 17.5.6. For any 1 ≤ i1, i2, j1 ≤ 3 where i1 6= i2,

EC′C′′

'

(

det(Tijk)i,k=1..3

(uC′′C
i1i2j1j)

2

)

j=1..3

. (17.73)

17.5.7 Relations on Trifocal Tensors VI

The second idea of deriving relations on trifocal tensors is as follows: if the
tensor (Tijk)i,j,k=1..3 is given, then expanding

(eC′∗
j ∧ eC′′∗

k) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3) (17.74)

gives a vector of the eC∗’s whose coefficients are known. Similarly, expanding

(eC′∗
j ∧ eC′∗

j) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′∗

j),

(eC′
∗

j ∧ eC′′
∗

k) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′′

∗
k)

(17.75)

gives two 2-vectors of the eC′∗
j ∧eC∗

i ’s and the eC′′∗
k ∧eC∗

i ’s respectively, whose
coefficients are known. The meet of two such 2-vectors, i. e.,

Texp6 =
(

(eC′∗
j1

∧ eC′′∗
k1

) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′∗

j1
)
)

∨
(

(eC′∗
j2 ∧ eC′′∗

k2
) ∨ (eC∗

1 ∧ eC∗
2 ∧ eC∗

3 ∧ eC′′∗
k2

)
)

(17.76)

is an expression of the Tijk’s. Expanding the meets differently, we get a rela-
tion on T , epipoles and epipolar tensors.

Assume that j ≺ j1 ≺ j2 and k ≺ k1 ≺ k2. Expanding Texp6 according
to its parentheses, we get

Texp6 =

(

3
∑

i1=1

(eC′∗
j1

∧ eC′′∗
k1

) ∨ êC∗
i1

eC∗
i1

∧ eC′∗
j1

)

∨

(

3
∑

i2=1

(eC′∗
j2

∧ eC′′∗
k2

) ∨ êC∗
i2

eC∗
i2

∧ eC′′∗
k2

)

=
3
∑

i=1

(−Ti1j1k1
Ti2j2k2

+ Ti2j1k1
Ti1j2k2

)Tij1k2
,

where i ≺ i1 ≺ i2. Using the fact that the meet of a 4-vector with any
multivector in G4 is a scalar multiplication of the multivector by the dual of
the 4-vector, we get

444 Hongbo Li, Gerald Sommer

Texp6 = (eC′∗
j1

∧ eC′′∗
k1

) ∨ (eC′∗
j2

∧ eC′′∗
k2

) ∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′∗

j1
)

∨ (eC∗
1 ∧ eC∗

2 ∧ eC∗
3 ∧ eC′′∗

k2
)

= − F C′C′′

jk EC′C
j1

EC′′C
k2

.

So

FC′C′′

jk EC′C
j1 EC′′C

k2
=

3
∑

i=1

(Ti1j1k1
Ti2j2k2

− Ti2j1k1
Ti1j2k2

)Tij1k2
. (17.77)

Interchanging j1, j2 in Texp5, we get

−FC′C′′

jk EC′C
j2 EC′′C

k2
=

3
∑

i=1

(Ti1j2k1
Ti2j1k2

− Ti2j2k1
Ti1j1k2

)Tij2k2
. (17.78)

Interchanging k1, k2 in Texp5, we get

−FC′C′′

jk EC′C
j1 EC′′C

k1
=

3
∑

i=1

(Ti1j1k2
Ti2j2k1

− Ti2j1k2
Ti1j2k1

)Tij1k1
. (17.79)

Interchanging (j1, k1) and (j2, k2) in Texp5, we get

FC′C′′

jk EC′C
j2 EC′′C

k1
=

3
∑

i=1

(Ti1j2k2
Ti2j1k1

− Ti2j2k2
Ti1j1k1

)Tij2k1
. (17.80)

When j1 = j2 or k1 = k2, Texp5 = 0 by expanding from left to right.
Define

vC
j1j2k1k2

= −
3
∑

i=1

(Ti1j1k1
Ti2j2k2

− Ti2j1k1
Ti1j2k2

)Tij1k2
. (17.81)

Then

vC
j1j2k1k2

=











































0, if j1 = j2 or k1 = k2;

− FC′C′′

jk EC′C
j1 EC′′C

k2
, if j ≺ j1 ≺ j2 and k ≺ k1 ≺ k2,

or j ≺ j2 ≺ j1 and k ≺ k2 ≺ k1;

FC′C′′

jk EC′C
j1 EC′′C

k2
, if j ≺ j1 ≺ j2 and k ≺ k2 ≺ k1,

or j ≺ j2 ≺ j1 and k ≺ k1 ≺ k2.

(17.82)

Proposition 17.5.7. For any 1 ≤ j1, j2, k1, k2 ≤ 3,

vC
j1j2k1k2

vC
j2j1k1k2

= −
EC′C

j1

EC′C
j2

;
vC

j1j2k1k2

vC
j1j2k2k1

= −
EC′′C

k2

EC′′C
k1

. (17.83)

17. Coordinate-Free Projective Geometry for Computer Vision 445

Corollary 17.5.7. 1. For any 1 ≤ jl, kl ≤ 3, where 1 ≤ l ≤ 4,

vC
j1j2k1k2

vC
j2j1k1k2

=
vC

j1j2k3k4

vC
j2j1k3k4

;
vC

j1j2k1k2

vC
j1j2k2k1

=
vC

j3j4k1k2

vC
j3j4k2k1

. (17.84)

2. For any 1 ≤ il, j, jl, kl ≤ 3 where 1 ≤ l ≤ 2,

vC
j1j2k1k2

vC
j2j1k1k2

= −
uC′′C

i1i2jj1

uC′′C
i1i2jj2

. (17.85)

Notice that (17.84) and (17.85) are groups of degree 6 constraints on T .
(17.84) is closely related to Faugeras and Mourrain’s third group of degree 6
constraints:

|T.k1k2
T.k1l2 T.l1l2 ||T.k1k2

T.l1k2
T.l1l2 |

= |T.l1k2
T.k1l2 T.l1l2 ||T.k1k2

T.l1k2
T.k1l2 |,

(17.86)

where T.k1k2
= (Tkk1k2

)k=1..3.
Let us express (17.86) in terms of Grassmann-Cayley algebra. Using the

fact that −T.k1k2
is the coordinates of C ∧ ((C ′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)), we get

|T.k1k2
T.k1l2 T.l1l2 |C

=
(

C ∧
(

(C′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)
))

∨C

(

C ∧
(

(C′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

l2
)
))

∨C

(

C ∧
(

(C′ ∧ êC′

l1
) ∨ (C ′′ ∧ êC′′

l2
)
))

= C
(

C ∧
(

(C′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)
))

∨
(

C ∧
(

(C′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

l2
)
))

∨ (C′ ∧ êC′

l1
) ∨ (C ′′ ∧ êC′′

l2
).

By (17.31), we have

|T.k1k2
T.k1l2 T.l1l2 |

=
(

C ∧
(

(C′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

k2
)
))

∨(C′ ∧ êC′

k1
) ∨ (C ′′ ∧ êC′′

l2
) ∨ (C ′ ∧ êC′

l1
) (C′′ ∧ êC′′

l2
) ∨ C

= − (C ′ ∧ êC′

k1
) ∨ C (C ′′ ∧ êC′′

l2
) ∨ C

(C′ ∧ êC′

k1
) ∨ (C ′ ∧ êC′

l1
) ∨ (C ′′ ∧ êC′′

k2
) ∨ (C ′′ ∧ êC′′

l2
).

(17.87)

Define a mapping V C : (C′∧G2
4)×(C ′∧G2

4)×(C ′′∧G2
4)×(C ′′∧G2

4) −→ R

as follows:

446 Hongbo Li, Gerald Sommer

V C(LC′

1 , LC′

2 , LC′′

1 , LC′′

2) = −(LC′

1 ∨ C)(LC′′

2 ∨ C)(LC′

1 ∨ LC′

2 ∨ LC′′

1 ∨ LC′′

2).
(17.88)

Then

V C(C′ ∧ êC′

k1
, C′ ∧ êC′

l1 , C′′ ∧ êC′′

k2
, C′′ ∧ êC′′

l2) = vC
k1l1k2l2 , (17.89)

According to (17.87),

|T.k1k2
T.k1l2 T.l1l2 | = vC

k1l1k2l2 . (17.90)

Similarly, we have

|T.k1k2
T.l1k2

T.l1l2 | = vC
l1k1l2k2

,

|T.l1k2
T.k1l2 T.l1l2 | = vC

l1k1k2l2
,

|T.k1k2
T.l1k2

T.k1l2 | = vC
k1l1l2k2

.

(17.91)

Now (17.86) is equivalent to

vC
k1l1k2l2

vC
k1l1l2k2

=
vC

l1k1k2l2

vC
l1k1l2k2

, (17.92)

or more explicitly, the following identity:

LC′

1 ∨ C LC′′

2 ∨ C LC′

1 ∨ LC′

2 ∨ LC′′

1 ∨ LC′′

2

LC′

1 ∨ C LC′′

1 ∨ C LC′

1 ∨ LC′

2 ∨ LC′′

2 ∨ LC′′

1

=
LC′

2 ∨ C LC′′

2 ∨ C LC′

2 ∨ LC′

1 ∨ LC′′

1 ∨ LC′′

2

LC′

2 ∨ C LC′′

1 ∨ C LC′

2 ∨ LC′

1 ∨ LC′′

2 ∨ LC′′

1

.

(17.93)

(17.84) is a straightforward generalization of it.

17.5.8 A Unified Treatment of Degree-six Constraints

In this section we make a comprehensive investigation of Faugeras and Mour-
rain’s three groups of degree-six constraints. We have defined uC′′C

i1i2j1j2
in

(17.47) to derive and generalize the first group of constraints. We are go-
ing to follow the same line to derive and generalize the other two groups of
constraints.

The trifocal tensor T induces 6 kinds of linear mappings as shown in table
17.1. We have defined two linear mappings tC′′C

i and tCC′

j in (17.19) and
(17.30) respectively, which are generated by the T ’s. There are 6 such linear
mappings as shown in table 17.2. Let

mC′

= LC′

1 ∨ LC′

2 , mC′′

= LC′′

1 ∨ LC′′

2 , LC = mC
1 ∧C mC

2 .

Here

tC
′′

ijk = Ti1j1kTi2j2k − Ti1j2kTi2j1k, (17.94)

where i ≺ i1 ≺ i2 and j ≺ j1 ≺ j2. tCijk and tC
′

ijk have been defined in (17.13)
and (17.25) respectively.

17. Coordinate-Free Projective Geometry for Computer Vision 447

Table 17.1. Linear mappings induced by T

Mapping Definition Matrix

T C′C
i C′′

∧ G
2

4 −→ C′
∧

�
4 (−Tijk)j,k=1..3

LC′′

7→ C′
∧ ((C ∧ eC

i) ∨ LC′′

)

T C′′C
i C′

∧ G
2

4 −→ C′′
∧

�
4 (−Tijk)T

j,k=1..3

LC′

7→ C′′
∧ ((C ∧ eC

i) ∨ LC′

)

T CC′

j C′′
∧ G

2

4 −→ C ∧ G
2

4 (−Tijk)i,k=1..3

LC′′

7→ C ∧ ((C′
∧ êC′

j) ∨ LC′′

)

T C′′C′

j C ∧
�

4
−→ C′′

∧
�

4 (−Tijk)T
i,k=1..3

mC
7→ C′′

∧ (mC
∨ (C′

∧ êC′

j))

T CC′′

k C′
∧ G

2

4 −→ C ∧ G
2

4 (−Tijk)i,j=1..3

LC′

7→ C ∧ (LC′

∨ (C′′
∧ êC′′

k))

T C′C′′

k C ∧
�

4
−→ C′

∧
�

4 (−Tijk)T
i,j=1..3

mC
7→ C′

∧ (mC
∨ (C′′

∧ êC′′

k))

The mappings t’s are well-defined because

tC
′C

i (mC′′

) = − (C ∧ eC
i) ∨ mC′′

C′ ∧ C ∧ eC
i ,

tC
′′C

i (mC′

) = − (C ∧ eC
i) ∨ mC′

C′′ ∧ C ∧ eC
i ,

tCC′

j (mC′′

) = (C ′ ∧ êC′

j) ∨ C C ∧ ((C ′ ∧ êC′

j) ∨ mC′′

),

tC
′′C′

j (LC) = − (C ′ ∧ êC′

j) ∨ C C ′′ ∧ (LC ∨ (C′ ∧ êC′

j)),

tCC′′

k (mC′

) = (C ′′ ∧ êC′′

k) ∨ C C ∧ (mC′

∨ (C′′ ∧ êC′′

k)),

tC
′C′′

k (LC) = − (C ′′ ∧ êC′′

k) ∨ C C ′ ∧ (LC ∨ (C′′ ∧ êC′′

k)).

(17.95)

For any 1 ≤ i1, i2, j1, j2, k1, k2 ≤ 3, let

448 Hongbo Li, Gerald Sommer

Table 17.2. Linear mappings induced by t

Mapping Definition Matrix

tC′C
i C′′

∧ � 4
−→ C′

∧ G
2

4 (tC
ijk)j,k=1..3

mC′′

7→ T C′C
i (LC′′

1) ∧C′ T C′C
i (LC′′

2)

tC′′C
i C′

∧ � 4
−→ C′′

∧ G
2

4 (tC
ijk)T

j,k=1..3

mC′

7→ T C′′C
i (LC′

1) ∧C′′ T C′′C
i (LC′

2)

tCC′

j C′′
∧ � 4

−→ C ∧ � 4 (tC′

ijk)i,k=1..3

mC′′

7→ T CC′

j (LC′′

1) ∨C T CC′

j (LC′′

2)

tC′′C′

j C ∧ G
2

4 −→ C′′
∧ G

2

4 (tC′

ijk)T
i,k=1..3

LC
7→ T C′′C′

j (mC
1) ∧C′′ T C′′C′

j (mC
2)

tCC′′

k C′
∧ � 4

−→ C ∧ � 4 (tC′′

ijk)i,j=1..3

mC′

7→ T CC′′

k (LC′

1) ∨C T CC′′

k (LC′

2)

tC′C′′

k C ∧ G
2

4 −→ C′
∧ G

2

4 (tC′′

ijk)T
i,j=1..3

LC
7→ T C′C′′

k (mC
1) ∧C′ T C′C′′

k (mC
2)

uC′′C
i1i2j1j2

=
3
∑

k=1

tCi1j1kTi2j2k,

uC′′C′

i1i2j1j2
=

3
∑

k=1

tC
′

i1j1kTi2j2k,

uC′C
i1i2k1k2

=
3
∑

j=1

tCi1jk1
Ti2jk2

,

uC′C′′

i1i2k1k2
=

3
∑

j=1

tC
′′

i1jk1
Ti2jk2

,

uCC′

j1j2k1k2
=

3
∑

i=1

tC
′

ij1k1
Tij2k2

,

uCC′′

j1j2k1k2
=

3
∑

i=1

tC
′′

ij1k1
Tij2k2

.

(17.96)

Then

17. Coordinate-Free Projective Geometry for Computer Vision 449

uC′′C
i1i2j1j2

C′′ = tC
′′C

i1
(C′ ∧ eC′

j1
) ∨ T C′′C

i2
(C′ ∧ êC′

j2
),

uC′′C′

i1i2j1j2
C′′ = tC

′′C′

j1
(C ∧ êC

i1
) ∨ T C′′C′

j2
(C ∧ eC

i2
),

uC′C
i1i2k1k2

C′ = tC
′C

i1 (C′′ ∧ eC′′

k1
) ∨ T C′C

i2 (C′′ ∧ êC′′

k2
),

uC′C′′

i1i2k1k2
C′ = tC

′C′′

k1
(C ∧ êC

i1) ∨ T C′C′′

k2
(C ∧ eC

i2),

uCC′

j1j2k1k2
C = tCC′

j1 (C′′ ∧ eC′′

k1
) ∨ T CC′

j2 (C′′ ∧ êC′′

k2
),

uCC′′

j1j2k1k2
C = tCC′′

k1
(C′ ∧ eC′

j1) ∨ T CC′′

k2
(C′ ∧ êC′

j2).

(17.97)

Expanding the right-hand side of the above equalities, we can get a factored
form of the u’s, from which we get the following constraints.

Constraints from uC′′C
i1i2j1j2

: (see also subsection 17.5.5)

uC′′C
i1i2j1j2 =



















0, if i1 = i2;

− FCC′

i1j1 EC′C
j2 ECC′′

i , if i ≺ i1 ≺ i2;

FCC′

i1j1
EC′C

j2
ECC′′

i , if i ≺ i2 ≺ i1.

(17.98)

Two constraints can be obtained from uC′′C
i1i2j1j2

:

1. For any 1 ≤ il, jl ≤ 3, where 1 ≤ l ≤ 4,

uC′′C
i1i2j1j2

uC′′C
i1i2j1j3

=
uC′′C

i3i4j4j2

uC′′C
i3i4j4j3

. (17.99)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uC′′C
i1i2j1j2

uC′′C
i1ij1j2

=
uC′′C

i1i2j3j4

uC′′C
i1ij3j4

. (17.100)

Define UC′′C : (C ∧ R
4) × (C ∧ R

4) × (C ′ ∧ R
4) × (C ′ ∧ G2

4) −→ R by

UC′′C(mC
1 , mC

2 , mC′

, LC′

) =

− (mC
1 ∨ mC′

)(C ∨ LC′

)(C′′ ∨ (mC
1 ∧C mC

2)).
(17.101)

Then

UC′′C(C ∧ eC
i1 , C ∧ eC

i2 , C
′ ∧ eC′

j1 , C′ ∧ êC′

j2) = uC′′C
i1i2j1j2 . (17.102)

Constraints from uC′′C′

i1i2j1j2
: If i1 6= i2, then

450 Hongbo Li, Gerald Sommer

uC′′C′

i1i2j1j2 =



















0, if j1 = j2;

EC′C
j1 ECC′′

i1 FCC′

i2j , if j ≺ j1 ≺ j2;

− EC′C
j1

ECC′′

i1
FCC′

i2j , if j ≺ j2 ≺ j1.

(17.103)

Two constraints can be obtained from uC′′C′

i1i2j1j2 :
1. Let i1 6= i2, i3 6= i4. Then for any 1 ≤ j1, j2 ≤ 3,

uC′′C′

i1i2j1j2

uC′′C′

i1i2j2j1

=
uC′′C′

i3i4j1j2

uC′′C′

i3i4j2j1

. (17.104)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uC′′C′

i1i2j1j2

uC′′C′

ii2j1j2

=
uC′′C′

i1i2j3j4

uC′′C′

ii2j3j4

. (17.105)

Define UC′′C′

: (C ∧ G2
4) × (C ∧ R

4) × (C ′ ∧ G2
4) × (C ′ ∧ G2

4) −→ R by

UC′′C′

(LC , mC , LC′

1 , LC′

2) = (LC ∨ C′′)(LC′

1 ∨ C)(mC ∨ LC′

1 ∨ LC′

2).
(17.106)

When i1 6= i2,

UC′′C′

(C ∧ êC
i1 , C ∧ eC

i2 , C
′ ∧ êC′

j1 , C′ ∧ êC′

j2) = uC′′C′

i1i2j1j2 . (17.107)

Constraints from uC′C
i1i2k1k2

:

uC′C
i1i2k1k2

=



















0, if i1 = i2;

− EC′′C
k2

ECC′

i FCC′′

i1k1
, if i ≺ i1 ≺ i2;

EC′′C
k2

ECC′

i FCC′′

i1k1
, if i ≺ i2 ≺ i1.

(17.108)

Two constraints can be obtained from uC′C
i1i2k1k2

:
1. For any 1 ≤ il, kl ≤ 3 where 1 ≤ l ≤ 4,

uC′C
i1i2k1k2

uC′C
i1i2k1k3

=
uC′C

i3i4k4k2

uC′C
i3i4k4k3

. (17.109)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ kl ≤ 3 where 1 ≤ l ≤ 4,

uC′C
i1i2k1k2

uC′C
i1ik1k2

=
uC′C

i1i2k3k4

uC′C
i1ik3k4

. (17.110)

17. Coordinate-Free Projective Geometry for Computer Vision 451

Define UC′C : (C ∧ R
4) × (C ∧ R

4) × (C ′′ ∧ R
4) × (C ′′ ∧ G2

4) −→ R by

UC′C(mC
1 , mC

2 , mC′′

, LC′′

) =

− (mC
1 ∨ mC′′

)(C ∨ LC′′

)(C′ ∨ (mC
1 ∧C mC

2)).
(17.111)

Then

UC′C(C ∧ eC
i1 , C ∧ eC

i2 , C
′′ ∧ eC′′

k1
, C′′ ∧ êC′′

k2
) = uC′C

i1i2k1k2
. (17.112)

Constraints from uC′C′′

i1i2k1k2
: If i1 6= i2, then

uC′C′′

i1i2k1k2
=



















0, if k1 = k2;

EC′′C
k1

ECC′

i1
FCC′′

i2k , if k ≺ k1 ≺ k2;

− EC′′C
k1

ECC′

i1
FCC′′

i2k , if k ≺ k2 ≺ k1.

(17.113)

Two constraints can be obtained from uC′C′′

i1i2k1k2
:

1. Let i1 6= i2 and i3 6= i4. Then for any 1 ≤ k1, k2 ≤ 3,

uC′C′′

i1i2k1k2

uC′C′′

i1i2k2k1

=
uC′C′′

i3i4k1k2

uC′C′′

i3i4k2k1

. (17.114)

2. Let i ≺ i1 ≺ i2. Then for any 1 ≤ kl ≤ 3 where 1 ≤ l ≤ 4,

uC′C′′

i1i2k1k2

uC′C′′

ii2k1k2

=
uC′C′′

i1i2k3k4

uC′C′′

ii2k3k4

. (17.115)

Define UC′C′′

: (C ∧ G2
4) × (C ∧ R

4) × (C ′′ ∧ G2
4) × (C ′′ ∧ G2

4) −→ R by

UC′C′′

(LC , mC , LC′′

1 , LC′′

2) = (LC ∨ C′′)(LC′′

1 ∨ C)(mC ∨ LC′′

1 ∨ LC′′

2).
(17.116)

When i1 6= i2,

UC′C′′

(C ∧ êC
i1 , C ∧ eC

i2 , C
′′ ∧ êC′′

k1
, C′′ ∧ êC′′

k2
) = uC′C′′

i1i2k1k2
. (17.117)

Constraints from uCC′

j1j2k1k2
: If k1 6= k2, then

uCC′

j1j2k1k2
=



















0, if j1 = j2;

− EC′C
j1

EC′′C
k2

FC′C′′

jk1
, if j ≺ j1 ≺ j2;

EC′C
j1

EC′′C
k2

FC′C′′

jk1
, if j ≺ j2 ≺ j1.

(17.118)

Two constraints can be obtained from uCC′

j1j2k1k2
:

452 Hongbo Li, Gerald Sommer

1. Let k1 6= k2 and k3 6= k4. Then for any 1 ≤ j1, j2 ≤ 3,

uCC′

j1j2k1k2

uCC′

j2j1k1k2

=
uCC′

j1j2k3k4

uCC′

j2j1k3k4

. (17.119)

2. Let k ≺ k1 ≺ k2, then for any 1 ≤ jl ≤ 3 where 1 ≤ l ≤ 4,

uCC′

j1j2k1k2

uCC′

j1j2k1k

=
uCC′

j3j4k1k2

uCC′

j3j4k1k

. (17.120)

Define UCC′

: (C′ ∧ G2
4) × (C ′ ∧ G2

4) × (C ′′ ∧ R
4) × (C ′′ ∧ G2

4) −→ R by

UCC′

(LC′

1 , LC′

2 , mC′′

, LC′′

) =

− (LC′

1 ∨ C)(LC′′

∨ C)(LC′

1 ∨ LC′

2 ∨ mC′′

).
(17.121)

When k1 6= k2,

UCC′

(C′ ∧ êC′

j1 , C′ ∧ êC′

j2 , C′′ ∧ eC′′

k1
, C′′ ∧ êC′′

k2
) = uCC′

j1j2k1k2
. (17.122)

Constraints from uCC′′

j1j2k1k2
: If j1 6= j2, then

uCC′′

j1j2k1k2
=



















0, if k1 = k2;

EC′C
j2

EC′′C
k1

FC′C′′

j1k , if k ≺ k1 ≺ k2;

− EC′C
j2 EC′′C

k1
FC′C′′

j1k , if k ≺ k2 ≺ k1.

(17.123)

Two constraints can be obtained from uCC′′

j1j2k1k2
:

1. Let j1 6= j2 and j3 6= j4. Then for any 1 ≤ k1, k2 ≤ 3,

uCC′′

j1j2k1k2

uCC′′

j1j2k2k1

=
uCC′′

j3j4k1k2

uCC′′

j3j4k2k1

. (17.124)

2. Let j ≺ j1 ≺ j2, then for any 1 ≤ kl ≤ 3 where 1 ≤ l ≤ 4,

uCC′′

j1j2k1k2

uCC′′

j1jk1k2

=
uCC′′

j1j2k3k4

uCC′′

j1jk3k4

. (17.125)

Define UCC′′

: (C′ ∧ R
4) × (C ′ ∧ G2

4) × (C ′′ ∧ G2
4) × (C ′′ ∧ G2

4) −→ R by

UCC′′

(mC′

, LC′

, LC′′

1 , LC′′

2) = (LC′′

1 ∨ C)(LC′

∨ C)

(mC′

∨ LC′′

1 ∨ LC′′

2).
(17.126)

When j1 6= j2,

UCC′′

(C′ ∧ eC′

j1 , C′ ∧ êC′

j2 , C′′ ∧ êC′′

k1
, C′′ ∧ êC′′

k2
) = uCC′′

j1j2k1k2
. (17.127)

17. Coordinate-Free Projective Geometry for Computer Vision 453

We have

V C′′

(mC
1 , mC

2 , LC′

1 , LC′

2)

=







UC′′C(mC
1 , mC

2 , LC′

1 ∨ LC′

2 , LC′

2), if LC′

1 ∨ LC′

2 6= 0;

−UC′′C′

(mC
1 ∧C mC

2 , mC
1 , LC′

2 , LC′

1), if mC
1 ∨ mC

2 6= 0.

(17.128)

Thus

vC′′

i1i2j1j2 =































uC′′C
i1i2jj2 , if j ≺ j1 ≺ j2;

− uC′′C
i1i2jj2

, if j ≺ j2 ≺ j1;

− uC′′C′

ii1j2j1 , if i ≺ i1 ≺ i2;

uC′′C′

ii1j2j1
, if i ≺ i2 ≺ i1.

(17.129)

Comparing these constraints, we find that the constraints (17.65), (17.66)
from V C′′

are equivalent to the constraints (17.104), (17.105) from UC′′C′

,
and are included in the constraints (17.99), (17.100) from UC′′C . Faugeras
and Mourrain’s first group of constraints is a special case of any of (17.65),
(17.104) and (17.99). Similarly, Faugeras and Mourrain’s second group of
constraints is a special case of any of (17.109), (17.114).

We also have

V C(LC′

1 , LC′

2 , LC′′

1 , LC′′

2)

=







UCC′

(LC′

1 , LC′

2 , LC′′

1 ∨ LC′′

2 , LC′′

2), if LC′′

1 ∨ LC′′

2 6= 0;

−UCC′′

(LC′

1 ∧C LC′

2 , LC′

1 , LC′′

2 , LC′′

1), if LC′

1 ∨ LC′

2 6= 0.

(17.130)

Thus

vC
j1j2k1k2

=































uCC′′

jj1k2k1
, if j ≺ j1 ≺ j2;

− uCC′′

jj1k2k1
, if j ≺ j2 ≺ j1;

− uCC′

j1j2kk2
, if k ≺ k1 ≺ k2;

uCC′

j1j2kk2
, if k ≺ k2 ≺ k1.

(17.131)

The constraints (17.84), (17.85) from V C are equivalent to the constraints
(17.124), (17.125) from UC′′C′

, and are also equivalent to the constraints
(17.119), (17.120) from UC′′C . Faugeras and Mourrain’s third group of con-
straints is a special case of any of (17.84), (17.124) and (17.119).

17.6 Conclusion

In this chapter we propose a new algebraic representation for image points
obtained from a pinhole camera, based on Hestenes and Ziegler’s idea of pro-
jective split. We reformulate camera modeling and calibration, epipolar and

454 Hongbo Li, Gerald Sommer

trifocal geometries with this new representation. We also propose a system-
atic approach to derive constraints on epipolar and trifocal tensors, by which
we have not only derived all known constraints, but also made considerable
generalizations.

